43a5eb9ca829ea3d7f202a6ae1c4af9a67117da1
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_pd(fr->ic->k_rf);
97     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_pd(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm_setzero_pd();
129         fiy0             = _mm_setzero_pd();
130         fiz0             = _mm_setzero_pd();
131
132         /* Load parameters for i particles */
133         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
134         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136         /* Reset potential sums */
137         velecsum         = _mm_setzero_pd();
138         vvdwsum          = _mm_setzero_pd();
139
140         /* Start inner kernel loop */
141         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
142         {
143
144             /* Get j neighbor index, and coordinate index */
145             jnrA             = jjnr[jidx];
146             jnrB             = jjnr[jidx+1];
147             j_coord_offsetA  = DIM*jnrA;
148             j_coord_offsetB  = DIM*jnrB;
149
150             /* load j atom coordinates */
151             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
152                                               &jx0,&jy0,&jz0);
153
154             /* Calculate displacement vector */
155             dx00             = _mm_sub_pd(ix0,jx0);
156             dy00             = _mm_sub_pd(iy0,jy0);
157             dz00             = _mm_sub_pd(iz0,jz0);
158
159             /* Calculate squared distance and things based on it */
160             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
161
162             rinv00           = gmx_mm_invsqrt_pd(rsq00);
163
164             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
165
166             /* Load parameters for j particles */
167             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
168             vdwjidx0A        = 2*vdwtype[jnrA+0];
169             vdwjidx0B        = 2*vdwtype[jnrB+0];
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             /* Compute parameters for interactions between i and j atoms */
176             qq00             = _mm_mul_pd(iq0,jq0);
177             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
178                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
179
180             /* REACTION-FIELD ELECTROSTATICS */
181             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
182             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
183
184             /* LENNARD-JONES DISPERSION/REPULSION */
185
186             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
187             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
188             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
189             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
190             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
191
192             /* Update potential sum for this i atom from the interaction with this j atom. */
193             velecsum         = _mm_add_pd(velecsum,velec);
194             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
195
196             fscal            = _mm_add_pd(felec,fvdw);
197
198             /* Calculate temporary vectorial force */
199             tx               = _mm_mul_pd(fscal,dx00);
200             ty               = _mm_mul_pd(fscal,dy00);
201             tz               = _mm_mul_pd(fscal,dz00);
202
203             /* Update vectorial force */
204             fix0             = _mm_add_pd(fix0,tx);
205             fiy0             = _mm_add_pd(fiy0,ty);
206             fiz0             = _mm_add_pd(fiz0,tz);
207
208             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
209
210             /* Inner loop uses 44 flops */
211         }
212
213         if(jidx<j_index_end)
214         {
215
216             jnrA             = jjnr[jidx];
217             j_coord_offsetA  = DIM*jnrA;
218
219             /* load j atom coordinates */
220             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
221                                               &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_pd(ix0,jx0);
225             dy00             = _mm_sub_pd(iy0,jy0);
226             dz00             = _mm_sub_pd(iz0,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230
231             rinv00           = gmx_mm_invsqrt_pd(rsq00);
232
233             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
234
235             /* Load parameters for j particles */
236             jq0              = _mm_load_sd(charge+jnrA+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_pd(iq0,jq0);
245             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
246
247             /* REACTION-FIELD ELECTROSTATICS */
248             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
249             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
250
251             /* LENNARD-JONES DISPERSION/REPULSION */
252
253             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
254             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
255             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
256             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
257             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
261             velecsum         = _mm_add_pd(velecsum,velec);
262             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
263             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm_add_pd(felec,fvdw);
266
267             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_pd(fscal,dx00);
271             ty               = _mm_mul_pd(fscal,dy00);
272             tz               = _mm_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_pd(fix0,tx);
276             fiy0             = _mm_add_pd(fiy0,ty);
277             fiz0             = _mm_add_pd(fiz0,tz);
278
279             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
280
281             /* Inner loop uses 44 flops */
282         }
283
284         /* End of innermost loop */
285
286         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
287                                               f+i_coord_offset,fshift+i_shift_offset);
288
289         ggid                        = gid[iidx];
290         /* Update potential energies */
291         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
292         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
293
294         /* Increment number of inner iterations */
295         inneriter                  += j_index_end - j_index_start;
296
297         /* Outer loop uses 9 flops */
298     }
299
300     /* Increment number of outer iterations */
301     outeriter        += nri;
302
303     /* Update outer/inner flops */
304
305     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
306 }
307 /*
308  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_double
309  * Electrostatics interaction: ReactionField
310  * VdW interaction:            LennardJones
311  * Geometry:                   Particle-Particle
312  * Calculate force/pot:        Force
313  */
314 void
315 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_double
316                     (t_nblist * gmx_restrict                nlist,
317                      rvec * gmx_restrict                    xx,
318                      rvec * gmx_restrict                    ff,
319                      t_forcerec * gmx_restrict              fr,
320                      t_mdatoms * gmx_restrict               mdatoms,
321                      nb_kernel_data_t * gmx_restrict        kernel_data,
322                      t_nrnb * gmx_restrict                  nrnb)
323 {
324     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
325      * just 0 for non-waters.
326      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
327      * jnr indices corresponding to data put in the four positions in the SIMD register.
328      */
329     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
330     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
331     int              jnrA,jnrB;
332     int              j_coord_offsetA,j_coord_offsetB;
333     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
334     real             rcutoff_scalar;
335     real             *shiftvec,*fshift,*x,*f;
336     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
337     int              vdwioffset0;
338     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
339     int              vdwjidx0A,vdwjidx0B;
340     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
341     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
342     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
343     real             *charge;
344     int              nvdwtype;
345     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
346     int              *vdwtype;
347     real             *vdwparam;
348     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
349     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
350     __m128d          dummy_mask,cutoff_mask;
351     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
352     __m128d          one     = _mm_set1_pd(1.0);
353     __m128d          two     = _mm_set1_pd(2.0);
354     x                = xx[0];
355     f                = ff[0];
356
357     nri              = nlist->nri;
358     iinr             = nlist->iinr;
359     jindex           = nlist->jindex;
360     jjnr             = nlist->jjnr;
361     shiftidx         = nlist->shift;
362     gid              = nlist->gid;
363     shiftvec         = fr->shift_vec[0];
364     fshift           = fr->fshift[0];
365     facel            = _mm_set1_pd(fr->epsfac);
366     charge           = mdatoms->chargeA;
367     krf              = _mm_set1_pd(fr->ic->k_rf);
368     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
369     crf              = _mm_set1_pd(fr->ic->c_rf);
370     nvdwtype         = fr->ntype;
371     vdwparam         = fr->nbfp;
372     vdwtype          = mdatoms->typeA;
373
374     /* Avoid stupid compiler warnings */
375     jnrA = jnrB = 0;
376     j_coord_offsetA = 0;
377     j_coord_offsetB = 0;
378
379     outeriter        = 0;
380     inneriter        = 0;
381
382     /* Start outer loop over neighborlists */
383     for(iidx=0; iidx<nri; iidx++)
384     {
385         /* Load shift vector for this list */
386         i_shift_offset   = DIM*shiftidx[iidx];
387
388         /* Load limits for loop over neighbors */
389         j_index_start    = jindex[iidx];
390         j_index_end      = jindex[iidx+1];
391
392         /* Get outer coordinate index */
393         inr              = iinr[iidx];
394         i_coord_offset   = DIM*inr;
395
396         /* Load i particle coords and add shift vector */
397         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
398
399         fix0             = _mm_setzero_pd();
400         fiy0             = _mm_setzero_pd();
401         fiz0             = _mm_setzero_pd();
402
403         /* Load parameters for i particles */
404         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
405         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
406
407         /* Start inner kernel loop */
408         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
409         {
410
411             /* Get j neighbor index, and coordinate index */
412             jnrA             = jjnr[jidx];
413             jnrB             = jjnr[jidx+1];
414             j_coord_offsetA  = DIM*jnrA;
415             j_coord_offsetB  = DIM*jnrB;
416
417             /* load j atom coordinates */
418             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
419                                               &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm_sub_pd(ix0,jx0);
423             dy00             = _mm_sub_pd(iy0,jy0);
424             dz00             = _mm_sub_pd(iz0,jz0);
425
426             /* Calculate squared distance and things based on it */
427             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
428
429             rinv00           = gmx_mm_invsqrt_pd(rsq00);
430
431             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
432
433             /* Load parameters for j particles */
434             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
435             vdwjidx0A        = 2*vdwtype[jnrA+0];
436             vdwjidx0B        = 2*vdwtype[jnrB+0];
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             /* Compute parameters for interactions between i and j atoms */
443             qq00             = _mm_mul_pd(iq0,jq0);
444             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
445                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
446
447             /* REACTION-FIELD ELECTROSTATICS */
448             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
449
450             /* LENNARD-JONES DISPERSION/REPULSION */
451
452             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
453             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
454
455             fscal            = _mm_add_pd(felec,fvdw);
456
457             /* Calculate temporary vectorial force */
458             tx               = _mm_mul_pd(fscal,dx00);
459             ty               = _mm_mul_pd(fscal,dy00);
460             tz               = _mm_mul_pd(fscal,dz00);
461
462             /* Update vectorial force */
463             fix0             = _mm_add_pd(fix0,tx);
464             fiy0             = _mm_add_pd(fiy0,ty);
465             fiz0             = _mm_add_pd(fiz0,tz);
466
467             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
468
469             /* Inner loop uses 34 flops */
470         }
471
472         if(jidx<j_index_end)
473         {
474
475             jnrA             = jjnr[jidx];
476             j_coord_offsetA  = DIM*jnrA;
477
478             /* load j atom coordinates */
479             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
480                                               &jx0,&jy0,&jz0);
481
482             /* Calculate displacement vector */
483             dx00             = _mm_sub_pd(ix0,jx0);
484             dy00             = _mm_sub_pd(iy0,jy0);
485             dz00             = _mm_sub_pd(iz0,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
489
490             rinv00           = gmx_mm_invsqrt_pd(rsq00);
491
492             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
493
494             /* Load parameters for j particles */
495             jq0              = _mm_load_sd(charge+jnrA+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm_mul_pd(iq0,jq0);
504             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
505
506             /* REACTION-FIELD ELECTROSTATICS */
507             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
508
509             /* LENNARD-JONES DISPERSION/REPULSION */
510
511             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
512             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
513
514             fscal            = _mm_add_pd(felec,fvdw);
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
529
530             /* Inner loop uses 34 flops */
531         }
532
533         /* End of innermost loop */
534
535         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
536                                               f+i_coord_offset,fshift+i_shift_offset);
537
538         /* Increment number of inner iterations */
539         inneriter                  += j_index_end - j_index_start;
540
541         /* Outer loop uses 7 flops */
542     }
543
544     /* Increment number of outer iterations */
545     outeriter        += nri;
546
547     /* Update outer/inner flops */
548
549     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
550 }