dd7d67adc38ccc95bca3edc0b4c9c332161f0e52
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_pd(fr->ic->k_rf);
124     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207             dx30             = _mm_sub_pd(ix3,jx0);
208             dy30             = _mm_sub_pd(iy3,jy0);
209             dz30             = _mm_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv00           = gmx_mm_invsqrt_pd(rsq00);
218             rinv10           = gmx_mm_invsqrt_pd(rsq10);
219             rinv20           = gmx_mm_invsqrt_pd(rsq20);
220             rinv30           = gmx_mm_invsqrt_pd(rsq30);
221
222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_pd(r00,vftabscale);
247             vfitab           = _mm_cvttpd_epi32(rt);
248             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
249             vfitab           = _mm_slli_epi32(vfitab,3);
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
253             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
254             GMX_MM_TRANSPOSE2_PD(Y,F);
255             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
256             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
257             GMX_MM_TRANSPOSE2_PD(G,H);
258             Heps             = _mm_mul_pd(vfeps,H);
259             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
260             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
261             vvdw6            = _mm_mul_pd(c6_00,VV);
262             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
263             fvdw6            = _mm_mul_pd(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab           = _mm_add_epi32(vfitab,ifour);
267             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             GMX_MM_TRANSPOSE2_PD(Y,F);
270             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
271             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(G,H);
273             Heps             = _mm_mul_pd(vfeps,H);
274             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
275             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
276             vvdw12           = _mm_mul_pd(c12_00,VV);
277             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
278             fvdw12           = _mm_mul_pd(c12_00,FF);
279             vvdw             = _mm_add_pd(vvdw12,vvdw6);
280             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = fvdw;
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx00);
289             ty               = _mm_mul_pd(fscal,dy00);
290             tz               = _mm_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_pd(fix0,tx);
294             fiy0             = _mm_add_pd(fiy0,ty);
295             fiz0             = _mm_add_pd(fiz0,tz);
296
297             fjx0             = _mm_add_pd(fjx0,tx);
298             fjy0             = _mm_add_pd(fjy0,ty);
299             fjz0             = _mm_add_pd(fjz0,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
310             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_pd(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_pd(fscal,dx10);
319             ty               = _mm_mul_pd(fscal,dy10);
320             tz               = _mm_mul_pd(fscal,dz10);
321
322             /* Update vectorial force */
323             fix1             = _mm_add_pd(fix1,tx);
324             fiy1             = _mm_add_pd(fiy1,ty);
325             fiz1             = _mm_add_pd(fiz1,tz);
326
327             fjx0             = _mm_add_pd(fjx0,tx);
328             fjy0             = _mm_add_pd(fjy0,ty);
329             fjz0             = _mm_add_pd(fjz0,tz);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq20             = _mm_mul_pd(iq2,jq0);
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
340             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_pd(fscal,dx20);
349             ty               = _mm_mul_pd(fscal,dy20);
350             tz               = _mm_mul_pd(fscal,dz20);
351
352             /* Update vectorial force */
353             fix2             = _mm_add_pd(fix2,tx);
354             fiy2             = _mm_add_pd(fiy2,ty);
355             fiz2             = _mm_add_pd(fiz2,tz);
356
357             fjx0             = _mm_add_pd(fjx0,tx);
358             fjy0             = _mm_add_pd(fjy0,ty);
359             fjz0             = _mm_add_pd(fjz0,tz);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq30             = _mm_mul_pd(iq3,jq0);
367
368             /* REACTION-FIELD ELECTROSTATICS */
369             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
370             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_pd(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_pd(fscal,dx30);
379             ty               = _mm_mul_pd(fscal,dy30);
380             tz               = _mm_mul_pd(fscal,dz30);
381
382             /* Update vectorial force */
383             fix3             = _mm_add_pd(fix3,tx);
384             fiy3             = _mm_add_pd(fiy3,ty);
385             fiz3             = _mm_add_pd(fiz3,tz);
386
387             fjx0             = _mm_add_pd(fjx0,tx);
388             fjy0             = _mm_add_pd(fjy0,ty);
389             fjz0             = _mm_add_pd(fjz0,tz);
390
391             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
392
393             /* Inner loop uses 155 flops */
394         }
395
396         if(jidx<j_index_end)
397         {
398
399             jnrA             = jjnr[jidx];
400             j_coord_offsetA  = DIM*jnrA;
401
402             /* load j atom coordinates */
403             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
404                                               &jx0,&jy0,&jz0);
405
406             /* Calculate displacement vector */
407             dx00             = _mm_sub_pd(ix0,jx0);
408             dy00             = _mm_sub_pd(iy0,jy0);
409             dz00             = _mm_sub_pd(iz0,jz0);
410             dx10             = _mm_sub_pd(ix1,jx0);
411             dy10             = _mm_sub_pd(iy1,jy0);
412             dz10             = _mm_sub_pd(iz1,jz0);
413             dx20             = _mm_sub_pd(ix2,jx0);
414             dy20             = _mm_sub_pd(iy2,jy0);
415             dz20             = _mm_sub_pd(iz2,jz0);
416             dx30             = _mm_sub_pd(ix3,jx0);
417             dy30             = _mm_sub_pd(iy3,jy0);
418             dz30             = _mm_sub_pd(iz3,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
422             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
423             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
424             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
425
426             rinv00           = gmx_mm_invsqrt_pd(rsq00);
427             rinv10           = gmx_mm_invsqrt_pd(rsq10);
428             rinv20           = gmx_mm_invsqrt_pd(rsq20);
429             rinv30           = gmx_mm_invsqrt_pd(rsq30);
430
431             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
432             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
433             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
434
435             /* Load parameters for j particles */
436             jq0              = _mm_load_sd(charge+jnrA+0);
437             vdwjidx0A        = 2*vdwtype[jnrA+0];
438
439             fjx0             = _mm_setzero_pd();
440             fjy0             = _mm_setzero_pd();
441             fjz0             = _mm_setzero_pd();
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r00              = _mm_mul_pd(rsq00,rinv00);
448
449             /* Compute parameters for interactions between i and j atoms */
450             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
451
452             /* Calculate table index by multiplying r with table scale and truncate to integer */
453             rt               = _mm_mul_pd(r00,vftabscale);
454             vfitab           = _mm_cvttpd_epi32(rt);
455             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
456             vfitab           = _mm_slli_epi32(vfitab,3);
457
458             /* CUBIC SPLINE TABLE DISPERSION */
459             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
460             F                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(Y,F);
462             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
463             H                = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(G,H);
465             Heps             = _mm_mul_pd(vfeps,H);
466             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
467             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
468             vvdw6            = _mm_mul_pd(c6_00,VV);
469             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
470             fvdw6            = _mm_mul_pd(c6_00,FF);
471
472             /* CUBIC SPLINE TABLE REPULSION */
473             vfitab           = _mm_add_epi32(vfitab,ifour);
474             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
475             F                = _mm_setzero_pd();
476             GMX_MM_TRANSPOSE2_PD(Y,F);
477             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
478             H                = _mm_setzero_pd();
479             GMX_MM_TRANSPOSE2_PD(G,H);
480             Heps             = _mm_mul_pd(vfeps,H);
481             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
482             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
483             vvdw12           = _mm_mul_pd(c12_00,VV);
484             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
485             fvdw12           = _mm_mul_pd(c12_00,FF);
486             vvdw             = _mm_add_pd(vvdw12,vvdw6);
487             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
491             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
492
493             fscal            = fvdw;
494
495             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
496
497             /* Calculate temporary vectorial force */
498             tx               = _mm_mul_pd(fscal,dx00);
499             ty               = _mm_mul_pd(fscal,dy00);
500             tz               = _mm_mul_pd(fscal,dz00);
501
502             /* Update vectorial force */
503             fix0             = _mm_add_pd(fix0,tx);
504             fiy0             = _mm_add_pd(fiy0,ty);
505             fiz0             = _mm_add_pd(fiz0,tz);
506
507             fjx0             = _mm_add_pd(fjx0,tx);
508             fjy0             = _mm_add_pd(fjy0,ty);
509             fjz0             = _mm_add_pd(fjz0,tz);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq10             = _mm_mul_pd(iq1,jq0);
517
518             /* REACTION-FIELD ELECTROSTATICS */
519             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
520             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx10);
532             ty               = _mm_mul_pd(fscal,dy10);
533             tz               = _mm_mul_pd(fscal,dz10);
534
535             /* Update vectorial force */
536             fix1             = _mm_add_pd(fix1,tx);
537             fiy1             = _mm_add_pd(fiy1,ty);
538             fiz1             = _mm_add_pd(fiz1,tz);
539
540             fjx0             = _mm_add_pd(fjx0,tx);
541             fjy0             = _mm_add_pd(fjy0,ty);
542             fjz0             = _mm_add_pd(fjz0,tz);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq20             = _mm_mul_pd(iq2,jq0);
550
551             /* REACTION-FIELD ELECTROSTATICS */
552             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
553             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
557             velecsum         = _mm_add_pd(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm_mul_pd(fscal,dx20);
565             ty               = _mm_mul_pd(fscal,dy20);
566             tz               = _mm_mul_pd(fscal,dz20);
567
568             /* Update vectorial force */
569             fix2             = _mm_add_pd(fix2,tx);
570             fiy2             = _mm_add_pd(fiy2,ty);
571             fiz2             = _mm_add_pd(fiz2,tz);
572
573             fjx0             = _mm_add_pd(fjx0,tx);
574             fjy0             = _mm_add_pd(fjy0,ty);
575             fjz0             = _mm_add_pd(fjz0,tz);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq30             = _mm_mul_pd(iq3,jq0);
583
584             /* REACTION-FIELD ELECTROSTATICS */
585             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
586             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
590             velecsum         = _mm_add_pd(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_pd(fscal,dx30);
598             ty               = _mm_mul_pd(fscal,dy30);
599             tz               = _mm_mul_pd(fscal,dz30);
600
601             /* Update vectorial force */
602             fix3             = _mm_add_pd(fix3,tx);
603             fiy3             = _mm_add_pd(fiy3,ty);
604             fiz3             = _mm_add_pd(fiz3,tz);
605
606             fjx0             = _mm_add_pd(fjx0,tx);
607             fjy0             = _mm_add_pd(fjy0,ty);
608             fjz0             = _mm_add_pd(fjz0,tz);
609
610             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
611
612             /* Inner loop uses 155 flops */
613         }
614
615         /* End of innermost loop */
616
617         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
618                                               f+i_coord_offset,fshift+i_shift_offset);
619
620         ggid                        = gid[iidx];
621         /* Update potential energies */
622         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
623         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 26 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*155);
637 }
638 /*
639  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_double
640  * Electrostatics interaction: ReactionField
641  * VdW interaction:            CubicSplineTable
642  * Geometry:                   Water4-Particle
643  * Calculate force/pot:        Force
644  */
645 void
646 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_double
647                     (t_nblist                    * gmx_restrict       nlist,
648                      rvec                        * gmx_restrict          xx,
649                      rvec                        * gmx_restrict          ff,
650                      t_forcerec                  * gmx_restrict          fr,
651                      t_mdatoms                   * gmx_restrict     mdatoms,
652                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
653                      t_nrnb                      * gmx_restrict        nrnb)
654 {
655     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
656      * just 0 for non-waters.
657      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
658      * jnr indices corresponding to data put in the four positions in the SIMD register.
659      */
660     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
661     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
662     int              jnrA,jnrB;
663     int              j_coord_offsetA,j_coord_offsetB;
664     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
665     real             rcutoff_scalar;
666     real             *shiftvec,*fshift,*x,*f;
667     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
668     int              vdwioffset0;
669     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
670     int              vdwioffset1;
671     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
672     int              vdwioffset2;
673     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
674     int              vdwioffset3;
675     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
676     int              vdwjidx0A,vdwjidx0B;
677     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
678     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
679     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
680     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
681     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
682     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
683     real             *charge;
684     int              nvdwtype;
685     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
686     int              *vdwtype;
687     real             *vdwparam;
688     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
689     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
690     __m128i          vfitab;
691     __m128i          ifour       = _mm_set1_epi32(4);
692     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
693     real             *vftab;
694     __m128d          dummy_mask,cutoff_mask;
695     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
696     __m128d          one     = _mm_set1_pd(1.0);
697     __m128d          two     = _mm_set1_pd(2.0);
698     x                = xx[0];
699     f                = ff[0];
700
701     nri              = nlist->nri;
702     iinr             = nlist->iinr;
703     jindex           = nlist->jindex;
704     jjnr             = nlist->jjnr;
705     shiftidx         = nlist->shift;
706     gid              = nlist->gid;
707     shiftvec         = fr->shift_vec[0];
708     fshift           = fr->fshift[0];
709     facel            = _mm_set1_pd(fr->epsfac);
710     charge           = mdatoms->chargeA;
711     krf              = _mm_set1_pd(fr->ic->k_rf);
712     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
713     crf              = _mm_set1_pd(fr->ic->c_rf);
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717
718     vftab            = kernel_data->table_vdw->data;
719     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
724     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
725     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* Avoid stupid compiler warnings */
729     jnrA = jnrB = 0;
730     j_coord_offsetA = 0;
731     j_coord_offsetB = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
753
754         fix0             = _mm_setzero_pd();
755         fiy0             = _mm_setzero_pd();
756         fiz0             = _mm_setzero_pd();
757         fix1             = _mm_setzero_pd();
758         fiy1             = _mm_setzero_pd();
759         fiz1             = _mm_setzero_pd();
760         fix2             = _mm_setzero_pd();
761         fiy2             = _mm_setzero_pd();
762         fiz2             = _mm_setzero_pd();
763         fix3             = _mm_setzero_pd();
764         fiy3             = _mm_setzero_pd();
765         fiz3             = _mm_setzero_pd();
766
767         /* Start inner kernel loop */
768         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrA             = jjnr[jidx];
773             jnrB             = jjnr[jidx+1];
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776
777             /* load j atom coordinates */
778             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
779                                               &jx0,&jy0,&jz0);
780
781             /* Calculate displacement vector */
782             dx00             = _mm_sub_pd(ix0,jx0);
783             dy00             = _mm_sub_pd(iy0,jy0);
784             dz00             = _mm_sub_pd(iz0,jz0);
785             dx10             = _mm_sub_pd(ix1,jx0);
786             dy10             = _mm_sub_pd(iy1,jy0);
787             dz10             = _mm_sub_pd(iz1,jz0);
788             dx20             = _mm_sub_pd(ix2,jx0);
789             dy20             = _mm_sub_pd(iy2,jy0);
790             dz20             = _mm_sub_pd(iz2,jz0);
791             dx30             = _mm_sub_pd(ix3,jx0);
792             dy30             = _mm_sub_pd(iy3,jy0);
793             dz30             = _mm_sub_pd(iz3,jz0);
794
795             /* Calculate squared distance and things based on it */
796             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
797             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
798             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
799             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
800
801             rinv00           = gmx_mm_invsqrt_pd(rsq00);
802             rinv10           = gmx_mm_invsqrt_pd(rsq10);
803             rinv20           = gmx_mm_invsqrt_pd(rsq20);
804             rinv30           = gmx_mm_invsqrt_pd(rsq30);
805
806             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
807             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
808             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
809
810             /* Load parameters for j particles */
811             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
812             vdwjidx0A        = 2*vdwtype[jnrA+0];
813             vdwjidx0B        = 2*vdwtype[jnrB+0];
814
815             fjx0             = _mm_setzero_pd();
816             fjy0             = _mm_setzero_pd();
817             fjz0             = _mm_setzero_pd();
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             r00              = _mm_mul_pd(rsq00,rinv00);
824
825             /* Compute parameters for interactions between i and j atoms */
826             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
827                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
828
829             /* Calculate table index by multiplying r with table scale and truncate to integer */
830             rt               = _mm_mul_pd(r00,vftabscale);
831             vfitab           = _mm_cvttpd_epi32(rt);
832             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
833             vfitab           = _mm_slli_epi32(vfitab,3);
834
835             /* CUBIC SPLINE TABLE DISPERSION */
836             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
837             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
838             GMX_MM_TRANSPOSE2_PD(Y,F);
839             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
840             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
841             GMX_MM_TRANSPOSE2_PD(G,H);
842             Heps             = _mm_mul_pd(vfeps,H);
843             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
844             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
845             fvdw6            = _mm_mul_pd(c6_00,FF);
846
847             /* CUBIC SPLINE TABLE REPULSION */
848             vfitab           = _mm_add_epi32(vfitab,ifour);
849             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
850             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
851             GMX_MM_TRANSPOSE2_PD(Y,F);
852             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
853             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
854             GMX_MM_TRANSPOSE2_PD(G,H);
855             Heps             = _mm_mul_pd(vfeps,H);
856             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
857             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
858             fvdw12           = _mm_mul_pd(c12_00,FF);
859             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
860
861             fscal            = fvdw;
862
863             /* Calculate temporary vectorial force */
864             tx               = _mm_mul_pd(fscal,dx00);
865             ty               = _mm_mul_pd(fscal,dy00);
866             tz               = _mm_mul_pd(fscal,dz00);
867
868             /* Update vectorial force */
869             fix0             = _mm_add_pd(fix0,tx);
870             fiy0             = _mm_add_pd(fiy0,ty);
871             fiz0             = _mm_add_pd(fiz0,tz);
872
873             fjx0             = _mm_add_pd(fjx0,tx);
874             fjy0             = _mm_add_pd(fjy0,ty);
875             fjz0             = _mm_add_pd(fjz0,tz);
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq10             = _mm_mul_pd(iq1,jq0);
883
884             /* REACTION-FIELD ELECTROSTATICS */
885             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
886
887             fscal            = felec;
888
889             /* Calculate temporary vectorial force */
890             tx               = _mm_mul_pd(fscal,dx10);
891             ty               = _mm_mul_pd(fscal,dy10);
892             tz               = _mm_mul_pd(fscal,dz10);
893
894             /* Update vectorial force */
895             fix1             = _mm_add_pd(fix1,tx);
896             fiy1             = _mm_add_pd(fiy1,ty);
897             fiz1             = _mm_add_pd(fiz1,tz);
898
899             fjx0             = _mm_add_pd(fjx0,tx);
900             fjy0             = _mm_add_pd(fjy0,ty);
901             fjz0             = _mm_add_pd(fjz0,tz);
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_pd(iq2,jq0);
909
910             /* REACTION-FIELD ELECTROSTATICS */
911             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
912
913             fscal            = felec;
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm_mul_pd(fscal,dx20);
917             ty               = _mm_mul_pd(fscal,dy20);
918             tz               = _mm_mul_pd(fscal,dz20);
919
920             /* Update vectorial force */
921             fix2             = _mm_add_pd(fix2,tx);
922             fiy2             = _mm_add_pd(fiy2,ty);
923             fiz2             = _mm_add_pd(fiz2,tz);
924
925             fjx0             = _mm_add_pd(fjx0,tx);
926             fjy0             = _mm_add_pd(fjy0,ty);
927             fjz0             = _mm_add_pd(fjz0,tz);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq30             = _mm_mul_pd(iq3,jq0);
935
936             /* REACTION-FIELD ELECTROSTATICS */
937             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
938
939             fscal            = felec;
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_pd(fscal,dx30);
943             ty               = _mm_mul_pd(fscal,dy30);
944             tz               = _mm_mul_pd(fscal,dz30);
945
946             /* Update vectorial force */
947             fix3             = _mm_add_pd(fix3,tx);
948             fiy3             = _mm_add_pd(fiy3,ty);
949             fiz3             = _mm_add_pd(fiz3,tz);
950
951             fjx0             = _mm_add_pd(fjx0,tx);
952             fjy0             = _mm_add_pd(fjy0,ty);
953             fjz0             = _mm_add_pd(fjz0,tz);
954
955             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
956
957             /* Inner loop uses 132 flops */
958         }
959
960         if(jidx<j_index_end)
961         {
962
963             jnrA             = jjnr[jidx];
964             j_coord_offsetA  = DIM*jnrA;
965
966             /* load j atom coordinates */
967             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
968                                               &jx0,&jy0,&jz0);
969
970             /* Calculate displacement vector */
971             dx00             = _mm_sub_pd(ix0,jx0);
972             dy00             = _mm_sub_pd(iy0,jy0);
973             dz00             = _mm_sub_pd(iz0,jz0);
974             dx10             = _mm_sub_pd(ix1,jx0);
975             dy10             = _mm_sub_pd(iy1,jy0);
976             dz10             = _mm_sub_pd(iz1,jz0);
977             dx20             = _mm_sub_pd(ix2,jx0);
978             dy20             = _mm_sub_pd(iy2,jy0);
979             dz20             = _mm_sub_pd(iz2,jz0);
980             dx30             = _mm_sub_pd(ix3,jx0);
981             dy30             = _mm_sub_pd(iy3,jy0);
982             dz30             = _mm_sub_pd(iz3,jz0);
983
984             /* Calculate squared distance and things based on it */
985             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
986             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
987             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
988             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
989
990             rinv00           = gmx_mm_invsqrt_pd(rsq00);
991             rinv10           = gmx_mm_invsqrt_pd(rsq10);
992             rinv20           = gmx_mm_invsqrt_pd(rsq20);
993             rinv30           = gmx_mm_invsqrt_pd(rsq30);
994
995             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
996             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
997             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
998
999             /* Load parameters for j particles */
1000             jq0              = _mm_load_sd(charge+jnrA+0);
1001             vdwjidx0A        = 2*vdwtype[jnrA+0];
1002
1003             fjx0             = _mm_setzero_pd();
1004             fjy0             = _mm_setzero_pd();
1005             fjz0             = _mm_setzero_pd();
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             r00              = _mm_mul_pd(rsq00,rinv00);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm_mul_pd(r00,vftabscale);
1018             vfitab           = _mm_cvttpd_epi32(rt);
1019             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1020             vfitab           = _mm_slli_epi32(vfitab,3);
1021
1022             /* CUBIC SPLINE TABLE DISPERSION */
1023             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1024             F                = _mm_setzero_pd();
1025             GMX_MM_TRANSPOSE2_PD(Y,F);
1026             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1027             H                = _mm_setzero_pd();
1028             GMX_MM_TRANSPOSE2_PD(G,H);
1029             Heps             = _mm_mul_pd(vfeps,H);
1030             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1031             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1032             fvdw6            = _mm_mul_pd(c6_00,FF);
1033
1034             /* CUBIC SPLINE TABLE REPULSION */
1035             vfitab           = _mm_add_epi32(vfitab,ifour);
1036             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1037             F                = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(Y,F);
1039             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1040             H                = _mm_setzero_pd();
1041             GMX_MM_TRANSPOSE2_PD(G,H);
1042             Heps             = _mm_mul_pd(vfeps,H);
1043             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1044             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1045             fvdw12           = _mm_mul_pd(c12_00,FF);
1046             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1047
1048             fscal            = fvdw;
1049
1050             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = _mm_mul_pd(fscal,dx00);
1054             ty               = _mm_mul_pd(fscal,dy00);
1055             tz               = _mm_mul_pd(fscal,dz00);
1056
1057             /* Update vectorial force */
1058             fix0             = _mm_add_pd(fix0,tx);
1059             fiy0             = _mm_add_pd(fiy0,ty);
1060             fiz0             = _mm_add_pd(fiz0,tz);
1061
1062             fjx0             = _mm_add_pd(fjx0,tx);
1063             fjy0             = _mm_add_pd(fjy0,ty);
1064             fjz0             = _mm_add_pd(fjz0,tz);
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq10             = _mm_mul_pd(iq1,jq0);
1072
1073             /* REACTION-FIELD ELECTROSTATICS */
1074             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm_mul_pd(fscal,dx10);
1082             ty               = _mm_mul_pd(fscal,dy10);
1083             tz               = _mm_mul_pd(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm_add_pd(fix1,tx);
1087             fiy1             = _mm_add_pd(fiy1,ty);
1088             fiz1             = _mm_add_pd(fiz1,tz);
1089
1090             fjx0             = _mm_add_pd(fjx0,tx);
1091             fjy0             = _mm_add_pd(fjy0,ty);
1092             fjz0             = _mm_add_pd(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm_mul_pd(iq2,jq0);
1100
1101             /* REACTION-FIELD ELECTROSTATICS */
1102             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm_mul_pd(fscal,dx20);
1110             ty               = _mm_mul_pd(fscal,dy20);
1111             tz               = _mm_mul_pd(fscal,dz20);
1112
1113             /* Update vectorial force */
1114             fix2             = _mm_add_pd(fix2,tx);
1115             fiy2             = _mm_add_pd(fiy2,ty);
1116             fiz2             = _mm_add_pd(fiz2,tz);
1117
1118             fjx0             = _mm_add_pd(fjx0,tx);
1119             fjy0             = _mm_add_pd(fjy0,ty);
1120             fjz0             = _mm_add_pd(fjz0,tz);
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq30             = _mm_mul_pd(iq3,jq0);
1128
1129             /* REACTION-FIELD ELECTROSTATICS */
1130             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1135
1136             /* Calculate temporary vectorial force */
1137             tx               = _mm_mul_pd(fscal,dx30);
1138             ty               = _mm_mul_pd(fscal,dy30);
1139             tz               = _mm_mul_pd(fscal,dz30);
1140
1141             /* Update vectorial force */
1142             fix3             = _mm_add_pd(fix3,tx);
1143             fiy3             = _mm_add_pd(fiy3,ty);
1144             fiz3             = _mm_add_pd(fiz3,tz);
1145
1146             fjx0             = _mm_add_pd(fjx0,tx);
1147             fjy0             = _mm_add_pd(fjy0,ty);
1148             fjz0             = _mm_add_pd(fjz0,tz);
1149
1150             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1151
1152             /* Inner loop uses 132 flops */
1153         }
1154
1155         /* End of innermost loop */
1156
1157         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1158                                               f+i_coord_offset,fshift+i_shift_offset);
1159
1160         /* Increment number of inner iterations */
1161         inneriter                  += j_index_end - j_index_start;
1162
1163         /* Outer loop uses 24 flops */
1164     }
1165
1166     /* Increment number of outer iterations */
1167     outeriter        += nri;
1168
1169     /* Update outer/inner flops */
1170
1171     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1172 }