Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_pd(fr->ic->k_rf);
126     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177         fix3             = _mm_setzero_pd();
178         fiy3             = _mm_setzero_pd();
179         fiz3             = _mm_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_pd();
183         vvdwsum          = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209             dx30             = _mm_sub_pd(ix3,jx0);
210             dy30             = _mm_sub_pd(iy3,jy0);
211             dz30             = _mm_sub_pd(iz3,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
218
219             rinv00           = gmx_mm_invsqrt_pd(rsq00);
220             rinv10           = gmx_mm_invsqrt_pd(rsq10);
221             rinv20           = gmx_mm_invsqrt_pd(rsq20);
222             rinv30           = gmx_mm_invsqrt_pd(rsq30);
223
224             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
225             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
226             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232
233             fjx0             = _mm_setzero_pd();
234             fjy0             = _mm_setzero_pd();
235             fjz0             = _mm_setzero_pd();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
246
247             /* Calculate table index by multiplying r with table scale and truncate to integer */
248             rt               = _mm_mul_pd(r00,vftabscale);
249             vfitab           = _mm_cvttpd_epi32(rt);
250             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
251             vfitab           = _mm_slli_epi32(vfitab,3);
252
253             /* CUBIC SPLINE TABLE DISPERSION */
254             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
255             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
256             GMX_MM_TRANSPOSE2_PD(Y,F);
257             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
258             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(G,H);
260             Heps             = _mm_mul_pd(vfeps,H);
261             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
262             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
263             vvdw6            = _mm_mul_pd(c6_00,VV);
264             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
265             fvdw6            = _mm_mul_pd(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             GMX_MM_TRANSPOSE2_PD(Y,F);
272             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
273             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
274             GMX_MM_TRANSPOSE2_PD(G,H);
275             Heps             = _mm_mul_pd(vfeps,H);
276             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
277             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
278             vvdw12           = _mm_mul_pd(c12_00,VV);
279             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
280             fvdw12           = _mm_mul_pd(c12_00,FF);
281             vvdw             = _mm_add_pd(vvdw12,vvdw6);
282             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_pd(fscal,dx00);
291             ty               = _mm_mul_pd(fscal,dy00);
292             tz               = _mm_mul_pd(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_pd(fix0,tx);
296             fiy0             = _mm_add_pd(fiy0,ty);
297             fiz0             = _mm_add_pd(fiz0,tz);
298
299             fjx0             = _mm_add_pd(fjx0,tx);
300             fjy0             = _mm_add_pd(fjy0,ty);
301             fjz0             = _mm_add_pd(fjz0,tz);
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_pd(iq1,jq0);
309
310             /* REACTION-FIELD ELECTROSTATICS */
311             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
312             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_pd(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_pd(fscal,dx10);
321             ty               = _mm_mul_pd(fscal,dy10);
322             tz               = _mm_mul_pd(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm_add_pd(fix1,tx);
326             fiy1             = _mm_add_pd(fiy1,ty);
327             fiz1             = _mm_add_pd(fiz1,tz);
328
329             fjx0             = _mm_add_pd(fjx0,tx);
330             fjy0             = _mm_add_pd(fjy0,ty);
331             fjz0             = _mm_add_pd(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_pd(iq2,jq0);
339
340             /* REACTION-FIELD ELECTROSTATICS */
341             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
342             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx20);
351             ty               = _mm_mul_pd(fscal,dy20);
352             tz               = _mm_mul_pd(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm_add_pd(fix2,tx);
356             fiy2             = _mm_add_pd(fiy2,ty);
357             fiz2             = _mm_add_pd(fiz2,tz);
358
359             fjx0             = _mm_add_pd(fjx0,tx);
360             fjy0             = _mm_add_pd(fjy0,ty);
361             fjz0             = _mm_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq30             = _mm_mul_pd(iq3,jq0);
369
370             /* REACTION-FIELD ELECTROSTATICS */
371             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
372             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_pd(fscal,dx30);
381             ty               = _mm_mul_pd(fscal,dy30);
382             tz               = _mm_mul_pd(fscal,dz30);
383
384             /* Update vectorial force */
385             fix3             = _mm_add_pd(fix3,tx);
386             fiy3             = _mm_add_pd(fiy3,ty);
387             fiz3             = _mm_add_pd(fiz3,tz);
388
389             fjx0             = _mm_add_pd(fjx0,tx);
390             fjy0             = _mm_add_pd(fjy0,ty);
391             fjz0             = _mm_add_pd(fjz0,tz);
392
393             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 155 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             jnrA             = jjnr[jidx];
402             j_coord_offsetA  = DIM*jnrA;
403
404             /* load j atom coordinates */
405             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
406                                               &jx0,&jy0,&jz0);
407
408             /* Calculate displacement vector */
409             dx00             = _mm_sub_pd(ix0,jx0);
410             dy00             = _mm_sub_pd(iy0,jy0);
411             dz00             = _mm_sub_pd(iz0,jz0);
412             dx10             = _mm_sub_pd(ix1,jx0);
413             dy10             = _mm_sub_pd(iy1,jy0);
414             dz10             = _mm_sub_pd(iz1,jz0);
415             dx20             = _mm_sub_pd(ix2,jx0);
416             dy20             = _mm_sub_pd(iy2,jy0);
417             dz20             = _mm_sub_pd(iz2,jz0);
418             dx30             = _mm_sub_pd(ix3,jx0);
419             dy30             = _mm_sub_pd(iy3,jy0);
420             dz30             = _mm_sub_pd(iz3,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
424             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
425             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
426             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
427
428             rinv00           = gmx_mm_invsqrt_pd(rsq00);
429             rinv10           = gmx_mm_invsqrt_pd(rsq10);
430             rinv20           = gmx_mm_invsqrt_pd(rsq20);
431             rinv30           = gmx_mm_invsqrt_pd(rsq30);
432
433             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
434             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
435             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
436
437             /* Load parameters for j particles */
438             jq0              = _mm_load_sd(charge+jnrA+0);
439             vdwjidx0A        = 2*vdwtype[jnrA+0];
440
441             fjx0             = _mm_setzero_pd();
442             fjy0             = _mm_setzero_pd();
443             fjz0             = _mm_setzero_pd();
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r00              = _mm_mul_pd(rsq00,rinv00);
450
451             /* Compute parameters for interactions between i and j atoms */
452             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
453
454             /* Calculate table index by multiplying r with table scale and truncate to integer */
455             rt               = _mm_mul_pd(r00,vftabscale);
456             vfitab           = _mm_cvttpd_epi32(rt);
457             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
458             vfitab           = _mm_slli_epi32(vfitab,3);
459
460             /* CUBIC SPLINE TABLE DISPERSION */
461             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
462             F                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(Y,F);
464             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
465             H                = _mm_setzero_pd();
466             GMX_MM_TRANSPOSE2_PD(G,H);
467             Heps             = _mm_mul_pd(vfeps,H);
468             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
469             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
470             vvdw6            = _mm_mul_pd(c6_00,VV);
471             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
472             fvdw6            = _mm_mul_pd(c6_00,FF);
473
474             /* CUBIC SPLINE TABLE REPULSION */
475             vfitab           = _mm_add_epi32(vfitab,ifour);
476             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
477             F                = _mm_setzero_pd();
478             GMX_MM_TRANSPOSE2_PD(Y,F);
479             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
480             H                = _mm_setzero_pd();
481             GMX_MM_TRANSPOSE2_PD(G,H);
482             Heps             = _mm_mul_pd(vfeps,H);
483             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
484             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
485             vvdw12           = _mm_mul_pd(c12_00,VV);
486             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
487             fvdw12           = _mm_mul_pd(c12_00,FF);
488             vvdw             = _mm_add_pd(vvdw12,vvdw6);
489             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
493             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
494
495             fscal            = fvdw;
496
497             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm_mul_pd(fscal,dx00);
501             ty               = _mm_mul_pd(fscal,dy00);
502             tz               = _mm_mul_pd(fscal,dz00);
503
504             /* Update vectorial force */
505             fix0             = _mm_add_pd(fix0,tx);
506             fiy0             = _mm_add_pd(fiy0,ty);
507             fiz0             = _mm_add_pd(fiz0,tz);
508
509             fjx0             = _mm_add_pd(fjx0,tx);
510             fjy0             = _mm_add_pd(fjy0,ty);
511             fjz0             = _mm_add_pd(fjz0,tz);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq10             = _mm_mul_pd(iq1,jq0);
519
520             /* REACTION-FIELD ELECTROSTATICS */
521             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
522             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
526             velecsum         = _mm_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx10);
534             ty               = _mm_mul_pd(fscal,dy10);
535             tz               = _mm_mul_pd(fscal,dz10);
536
537             /* Update vectorial force */
538             fix1             = _mm_add_pd(fix1,tx);
539             fiy1             = _mm_add_pd(fiy1,ty);
540             fiz1             = _mm_add_pd(fiz1,tz);
541
542             fjx0             = _mm_add_pd(fjx0,tx);
543             fjy0             = _mm_add_pd(fjy0,ty);
544             fjz0             = _mm_add_pd(fjz0,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq20             = _mm_mul_pd(iq2,jq0);
552
553             /* REACTION-FIELD ELECTROSTATICS */
554             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
555             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559             velecsum         = _mm_add_pd(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_pd(fscal,dx20);
567             ty               = _mm_mul_pd(fscal,dy20);
568             tz               = _mm_mul_pd(fscal,dz20);
569
570             /* Update vectorial force */
571             fix2             = _mm_add_pd(fix2,tx);
572             fiy2             = _mm_add_pd(fiy2,ty);
573             fiz2             = _mm_add_pd(fiz2,tz);
574
575             fjx0             = _mm_add_pd(fjx0,tx);
576             fjy0             = _mm_add_pd(fjy0,ty);
577             fjz0             = _mm_add_pd(fjz0,tz);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq30             = _mm_mul_pd(iq3,jq0);
585
586             /* REACTION-FIELD ELECTROSTATICS */
587             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
588             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
592             velecsum         = _mm_add_pd(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm_mul_pd(fscal,dx30);
600             ty               = _mm_mul_pd(fscal,dy30);
601             tz               = _mm_mul_pd(fscal,dz30);
602
603             /* Update vectorial force */
604             fix3             = _mm_add_pd(fix3,tx);
605             fiy3             = _mm_add_pd(fiy3,ty);
606             fiz3             = _mm_add_pd(fiz3,tz);
607
608             fjx0             = _mm_add_pd(fjx0,tx);
609             fjy0             = _mm_add_pd(fjy0,ty);
610             fjz0             = _mm_add_pd(fjz0,tz);
611
612             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
613
614             /* Inner loop uses 155 flops */
615         }
616
617         /* End of innermost loop */
618
619         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
620                                               f+i_coord_offset,fshift+i_shift_offset);
621
622         ggid                        = gid[iidx];
623         /* Update potential energies */
624         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
625         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
626
627         /* Increment number of inner iterations */
628         inneriter                  += j_index_end - j_index_start;
629
630         /* Outer loop uses 26 flops */
631     }
632
633     /* Increment number of outer iterations */
634     outeriter        += nri;
635
636     /* Update outer/inner flops */
637
638     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*155);
639 }
640 /*
641  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_double
642  * Electrostatics interaction: ReactionField
643  * VdW interaction:            CubicSplineTable
644  * Geometry:                   Water4-Particle
645  * Calculate force/pot:        Force
646  */
647 void
648 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_double
649                     (t_nblist                    * gmx_restrict       nlist,
650                      rvec                        * gmx_restrict          xx,
651                      rvec                        * gmx_restrict          ff,
652                      t_forcerec                  * gmx_restrict          fr,
653                      t_mdatoms                   * gmx_restrict     mdatoms,
654                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
655                      t_nrnb                      * gmx_restrict        nrnb)
656 {
657     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
658      * just 0 for non-waters.
659      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
660      * jnr indices corresponding to data put in the four positions in the SIMD register.
661      */
662     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
663     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
664     int              jnrA,jnrB;
665     int              j_coord_offsetA,j_coord_offsetB;
666     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
667     real             rcutoff_scalar;
668     real             *shiftvec,*fshift,*x,*f;
669     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
670     int              vdwioffset0;
671     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
672     int              vdwioffset1;
673     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
674     int              vdwioffset2;
675     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
676     int              vdwioffset3;
677     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
678     int              vdwjidx0A,vdwjidx0B;
679     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
680     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
681     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
682     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
683     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
684     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
685     real             *charge;
686     int              nvdwtype;
687     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
688     int              *vdwtype;
689     real             *vdwparam;
690     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
691     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
692     __m128i          vfitab;
693     __m128i          ifour       = _mm_set1_epi32(4);
694     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
695     real             *vftab;
696     __m128d          dummy_mask,cutoff_mask;
697     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
698     __m128d          one     = _mm_set1_pd(1.0);
699     __m128d          two     = _mm_set1_pd(2.0);
700     x                = xx[0];
701     f                = ff[0];
702
703     nri              = nlist->nri;
704     iinr             = nlist->iinr;
705     jindex           = nlist->jindex;
706     jjnr             = nlist->jjnr;
707     shiftidx         = nlist->shift;
708     gid              = nlist->gid;
709     shiftvec         = fr->shift_vec[0];
710     fshift           = fr->fshift[0];
711     facel            = _mm_set1_pd(fr->epsfac);
712     charge           = mdatoms->chargeA;
713     krf              = _mm_set1_pd(fr->ic->k_rf);
714     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
715     crf              = _mm_set1_pd(fr->ic->c_rf);
716     nvdwtype         = fr->ntype;
717     vdwparam         = fr->nbfp;
718     vdwtype          = mdatoms->typeA;
719
720     vftab            = kernel_data->table_vdw->data;
721     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
722
723     /* Setup water-specific parameters */
724     inr              = nlist->iinr[0];
725     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
726     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
727     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
728     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
729
730     /* Avoid stupid compiler warnings */
731     jnrA = jnrB = 0;
732     j_coord_offsetA = 0;
733     j_coord_offsetB = 0;
734
735     outeriter        = 0;
736     inneriter        = 0;
737
738     /* Start outer loop over neighborlists */
739     for(iidx=0; iidx<nri; iidx++)
740     {
741         /* Load shift vector for this list */
742         i_shift_offset   = DIM*shiftidx[iidx];
743
744         /* Load limits for loop over neighbors */
745         j_index_start    = jindex[iidx];
746         j_index_end      = jindex[iidx+1];
747
748         /* Get outer coordinate index */
749         inr              = iinr[iidx];
750         i_coord_offset   = DIM*inr;
751
752         /* Load i particle coords and add shift vector */
753         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
754                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
755
756         fix0             = _mm_setzero_pd();
757         fiy0             = _mm_setzero_pd();
758         fiz0             = _mm_setzero_pd();
759         fix1             = _mm_setzero_pd();
760         fiy1             = _mm_setzero_pd();
761         fiz1             = _mm_setzero_pd();
762         fix2             = _mm_setzero_pd();
763         fiy2             = _mm_setzero_pd();
764         fiz2             = _mm_setzero_pd();
765         fix3             = _mm_setzero_pd();
766         fiy3             = _mm_setzero_pd();
767         fiz3             = _mm_setzero_pd();
768
769         /* Start inner kernel loop */
770         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrA             = jjnr[jidx];
775             jnrB             = jjnr[jidx+1];
776             j_coord_offsetA  = DIM*jnrA;
777             j_coord_offsetB  = DIM*jnrB;
778
779             /* load j atom coordinates */
780             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
781                                               &jx0,&jy0,&jz0);
782
783             /* Calculate displacement vector */
784             dx00             = _mm_sub_pd(ix0,jx0);
785             dy00             = _mm_sub_pd(iy0,jy0);
786             dz00             = _mm_sub_pd(iz0,jz0);
787             dx10             = _mm_sub_pd(ix1,jx0);
788             dy10             = _mm_sub_pd(iy1,jy0);
789             dz10             = _mm_sub_pd(iz1,jz0);
790             dx20             = _mm_sub_pd(ix2,jx0);
791             dy20             = _mm_sub_pd(iy2,jy0);
792             dz20             = _mm_sub_pd(iz2,jz0);
793             dx30             = _mm_sub_pd(ix3,jx0);
794             dy30             = _mm_sub_pd(iy3,jy0);
795             dz30             = _mm_sub_pd(iz3,jz0);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
799             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
800             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
801             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
802
803             rinv00           = gmx_mm_invsqrt_pd(rsq00);
804             rinv10           = gmx_mm_invsqrt_pd(rsq10);
805             rinv20           = gmx_mm_invsqrt_pd(rsq20);
806             rinv30           = gmx_mm_invsqrt_pd(rsq30);
807
808             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
809             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
810             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
811
812             /* Load parameters for j particles */
813             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
814             vdwjidx0A        = 2*vdwtype[jnrA+0];
815             vdwjidx0B        = 2*vdwtype[jnrB+0];
816
817             fjx0             = _mm_setzero_pd();
818             fjy0             = _mm_setzero_pd();
819             fjz0             = _mm_setzero_pd();
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             r00              = _mm_mul_pd(rsq00,rinv00);
826
827             /* Compute parameters for interactions between i and j atoms */
828             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
829                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
830
831             /* Calculate table index by multiplying r with table scale and truncate to integer */
832             rt               = _mm_mul_pd(r00,vftabscale);
833             vfitab           = _mm_cvttpd_epi32(rt);
834             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
835             vfitab           = _mm_slli_epi32(vfitab,3);
836
837             /* CUBIC SPLINE TABLE DISPERSION */
838             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
839             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
840             GMX_MM_TRANSPOSE2_PD(Y,F);
841             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
842             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
843             GMX_MM_TRANSPOSE2_PD(G,H);
844             Heps             = _mm_mul_pd(vfeps,H);
845             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
846             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
847             fvdw6            = _mm_mul_pd(c6_00,FF);
848
849             /* CUBIC SPLINE TABLE REPULSION */
850             vfitab           = _mm_add_epi32(vfitab,ifour);
851             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
852             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
853             GMX_MM_TRANSPOSE2_PD(Y,F);
854             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
855             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
856             GMX_MM_TRANSPOSE2_PD(G,H);
857             Heps             = _mm_mul_pd(vfeps,H);
858             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
859             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
860             fvdw12           = _mm_mul_pd(c12_00,FF);
861             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
862
863             fscal            = fvdw;
864
865             /* Calculate temporary vectorial force */
866             tx               = _mm_mul_pd(fscal,dx00);
867             ty               = _mm_mul_pd(fscal,dy00);
868             tz               = _mm_mul_pd(fscal,dz00);
869
870             /* Update vectorial force */
871             fix0             = _mm_add_pd(fix0,tx);
872             fiy0             = _mm_add_pd(fiy0,ty);
873             fiz0             = _mm_add_pd(fiz0,tz);
874
875             fjx0             = _mm_add_pd(fjx0,tx);
876             fjy0             = _mm_add_pd(fjy0,ty);
877             fjz0             = _mm_add_pd(fjz0,tz);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq10             = _mm_mul_pd(iq1,jq0);
885
886             /* REACTION-FIELD ELECTROSTATICS */
887             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
888
889             fscal            = felec;
890
891             /* Calculate temporary vectorial force */
892             tx               = _mm_mul_pd(fscal,dx10);
893             ty               = _mm_mul_pd(fscal,dy10);
894             tz               = _mm_mul_pd(fscal,dz10);
895
896             /* Update vectorial force */
897             fix1             = _mm_add_pd(fix1,tx);
898             fiy1             = _mm_add_pd(fiy1,ty);
899             fiz1             = _mm_add_pd(fiz1,tz);
900
901             fjx0             = _mm_add_pd(fjx0,tx);
902             fjy0             = _mm_add_pd(fjy0,ty);
903             fjz0             = _mm_add_pd(fjz0,tz);
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             /* Compute parameters for interactions between i and j atoms */
910             qq20             = _mm_mul_pd(iq2,jq0);
911
912             /* REACTION-FIELD ELECTROSTATICS */
913             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
914
915             fscal            = felec;
916
917             /* Calculate temporary vectorial force */
918             tx               = _mm_mul_pd(fscal,dx20);
919             ty               = _mm_mul_pd(fscal,dy20);
920             tz               = _mm_mul_pd(fscal,dz20);
921
922             /* Update vectorial force */
923             fix2             = _mm_add_pd(fix2,tx);
924             fiy2             = _mm_add_pd(fiy2,ty);
925             fiz2             = _mm_add_pd(fiz2,tz);
926
927             fjx0             = _mm_add_pd(fjx0,tx);
928             fjy0             = _mm_add_pd(fjy0,ty);
929             fjz0             = _mm_add_pd(fjz0,tz);
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq30             = _mm_mul_pd(iq3,jq0);
937
938             /* REACTION-FIELD ELECTROSTATICS */
939             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
940
941             fscal            = felec;
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm_mul_pd(fscal,dx30);
945             ty               = _mm_mul_pd(fscal,dy30);
946             tz               = _mm_mul_pd(fscal,dz30);
947
948             /* Update vectorial force */
949             fix3             = _mm_add_pd(fix3,tx);
950             fiy3             = _mm_add_pd(fiy3,ty);
951             fiz3             = _mm_add_pd(fiz3,tz);
952
953             fjx0             = _mm_add_pd(fjx0,tx);
954             fjy0             = _mm_add_pd(fjy0,ty);
955             fjz0             = _mm_add_pd(fjz0,tz);
956
957             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
958
959             /* Inner loop uses 132 flops */
960         }
961
962         if(jidx<j_index_end)
963         {
964
965             jnrA             = jjnr[jidx];
966             j_coord_offsetA  = DIM*jnrA;
967
968             /* load j atom coordinates */
969             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
970                                               &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm_sub_pd(ix0,jx0);
974             dy00             = _mm_sub_pd(iy0,jy0);
975             dz00             = _mm_sub_pd(iz0,jz0);
976             dx10             = _mm_sub_pd(ix1,jx0);
977             dy10             = _mm_sub_pd(iy1,jy0);
978             dz10             = _mm_sub_pd(iz1,jz0);
979             dx20             = _mm_sub_pd(ix2,jx0);
980             dy20             = _mm_sub_pd(iy2,jy0);
981             dz20             = _mm_sub_pd(iz2,jz0);
982             dx30             = _mm_sub_pd(ix3,jx0);
983             dy30             = _mm_sub_pd(iy3,jy0);
984             dz30             = _mm_sub_pd(iz3,jz0);
985
986             /* Calculate squared distance and things based on it */
987             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
988             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
989             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
990             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
991
992             rinv00           = gmx_mm_invsqrt_pd(rsq00);
993             rinv10           = gmx_mm_invsqrt_pd(rsq10);
994             rinv20           = gmx_mm_invsqrt_pd(rsq20);
995             rinv30           = gmx_mm_invsqrt_pd(rsq30);
996
997             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
998             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
999             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1000
1001             /* Load parameters for j particles */
1002             jq0              = _mm_load_sd(charge+jnrA+0);
1003             vdwjidx0A        = 2*vdwtype[jnrA+0];
1004
1005             fjx0             = _mm_setzero_pd();
1006             fjy0             = _mm_setzero_pd();
1007             fjz0             = _mm_setzero_pd();
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             r00              = _mm_mul_pd(rsq00,rinv00);
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1017
1018             /* Calculate table index by multiplying r with table scale and truncate to integer */
1019             rt               = _mm_mul_pd(r00,vftabscale);
1020             vfitab           = _mm_cvttpd_epi32(rt);
1021             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1022             vfitab           = _mm_slli_epi32(vfitab,3);
1023
1024             /* CUBIC SPLINE TABLE DISPERSION */
1025             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1026             F                = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(Y,F);
1028             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1029             H                = _mm_setzero_pd();
1030             GMX_MM_TRANSPOSE2_PD(G,H);
1031             Heps             = _mm_mul_pd(vfeps,H);
1032             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1033             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1034             fvdw6            = _mm_mul_pd(c6_00,FF);
1035
1036             /* CUBIC SPLINE TABLE REPULSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1039             F                = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(Y,F);
1041             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1042             H                = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(G,H);
1044             Heps             = _mm_mul_pd(vfeps,H);
1045             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1046             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1047             fvdw12           = _mm_mul_pd(c12_00,FF);
1048             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1049
1050             fscal            = fvdw;
1051
1052             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1053
1054             /* Calculate temporary vectorial force */
1055             tx               = _mm_mul_pd(fscal,dx00);
1056             ty               = _mm_mul_pd(fscal,dy00);
1057             tz               = _mm_mul_pd(fscal,dz00);
1058
1059             /* Update vectorial force */
1060             fix0             = _mm_add_pd(fix0,tx);
1061             fiy0             = _mm_add_pd(fiy0,ty);
1062             fiz0             = _mm_add_pd(fiz0,tz);
1063
1064             fjx0             = _mm_add_pd(fjx0,tx);
1065             fjy0             = _mm_add_pd(fjy0,ty);
1066             fjz0             = _mm_add_pd(fjz0,tz);
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq10             = _mm_mul_pd(iq1,jq0);
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_pd(fscal,dx10);
1084             ty               = _mm_mul_pd(fscal,dy10);
1085             tz               = _mm_mul_pd(fscal,dz10);
1086
1087             /* Update vectorial force */
1088             fix1             = _mm_add_pd(fix1,tx);
1089             fiy1             = _mm_add_pd(fiy1,ty);
1090             fiz1             = _mm_add_pd(fiz1,tz);
1091
1092             fjx0             = _mm_add_pd(fjx0,tx);
1093             fjy0             = _mm_add_pd(fjy0,ty);
1094             fjz0             = _mm_add_pd(fjz0,tz);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq20             = _mm_mul_pd(iq2,jq0);
1102
1103             /* REACTION-FIELD ELECTROSTATICS */
1104             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_pd(fscal,dx20);
1112             ty               = _mm_mul_pd(fscal,dy20);
1113             tz               = _mm_mul_pd(fscal,dz20);
1114
1115             /* Update vectorial force */
1116             fix2             = _mm_add_pd(fix2,tx);
1117             fiy2             = _mm_add_pd(fiy2,ty);
1118             fiz2             = _mm_add_pd(fiz2,tz);
1119
1120             fjx0             = _mm_add_pd(fjx0,tx);
1121             fjy0             = _mm_add_pd(fjy0,ty);
1122             fjz0             = _mm_add_pd(fjz0,tz);
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq30             = _mm_mul_pd(iq3,jq0);
1130
1131             /* REACTION-FIELD ELECTROSTATICS */
1132             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1133
1134             fscal            = felec;
1135
1136             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm_mul_pd(fscal,dx30);
1140             ty               = _mm_mul_pd(fscal,dy30);
1141             tz               = _mm_mul_pd(fscal,dz30);
1142
1143             /* Update vectorial force */
1144             fix3             = _mm_add_pd(fix3,tx);
1145             fiy3             = _mm_add_pd(fiy3,ty);
1146             fiz3             = _mm_add_pd(fiz3,tz);
1147
1148             fjx0             = _mm_add_pd(fjx0,tx);
1149             fjy0             = _mm_add_pd(fjy0,ty);
1150             fjz0             = _mm_add_pd(fjz0,tz);
1151
1152             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1153
1154             /* Inner loop uses 132 flops */
1155         }
1156
1157         /* End of innermost loop */
1158
1159         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1160                                               f+i_coord_offset,fshift+i_shift_offset);
1161
1162         /* Increment number of inner iterations */
1163         inneriter                  += j_index_end - j_index_start;
1164
1165         /* Outer loop uses 24 flops */
1166     }
1167
1168     /* Increment number of outer iterations */
1169     outeriter        += nri;
1170
1171     /* Update outer/inner flops */
1172
1173     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1174 }