Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_pd(fr->ic->k_rf);
123     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_pd();
177         vvdwsum          = _mm_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_pd(ix0,jx0);
195             dy00             = _mm_sub_pd(iy0,jy0);
196             dz00             = _mm_sub_pd(iz0,jz0);
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx20             = _mm_sub_pd(ix2,jx0);
201             dy20             = _mm_sub_pd(iy2,jy0);
202             dz20             = _mm_sub_pd(iz2,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
206             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
208
209             rinv00           = gmx_mm_invsqrt_pd(rsq00);
210             rinv10           = gmx_mm_invsqrt_pd(rsq10);
211             rinv20           = gmx_mm_invsqrt_pd(rsq20);
212
213             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
214             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
215             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221
222             fjx0             = _mm_setzero_pd();
223             fjy0             = _mm_setzero_pd();
224             fjz0             = _mm_setzero_pd();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm_mul_pd(iq0,jq0);
234             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
236
237             /* Calculate table index by multiplying r with table scale and truncate to integer */
238             rt               = _mm_mul_pd(r00,vftabscale);
239             vfitab           = _mm_cvttpd_epi32(rt);
240             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
241             vfitab           = _mm_slli_epi32(vfitab,3);
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
245             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Heps             = _mm_mul_pd(vfeps,H);
255             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
256             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
257             vvdw6            = _mm_mul_pd(c6_00,VV);
258             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
259             fvdw6            = _mm_mul_pd(c6_00,FF);
260
261             /* CUBIC SPLINE TABLE REPULSION */
262             vfitab           = _mm_add_epi32(vfitab,ifour);
263             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
265             GMX_MM_TRANSPOSE2_PD(Y,F);
266             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
267             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
268             GMX_MM_TRANSPOSE2_PD(G,H);
269             Heps             = _mm_mul_pd(vfeps,H);
270             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
271             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
272             vvdw12           = _mm_mul_pd(c12_00,VV);
273             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
274             fvdw12           = _mm_mul_pd(c12_00,FF);
275             vvdw             = _mm_add_pd(vvdw12,vvdw6);
276             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_pd(velecsum,velec);
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm_add_pd(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             fjx0             = _mm_add_pd(fjx0,tx);
295             fjy0             = _mm_add_pd(fjy0,ty);
296             fjz0             = _mm_add_pd(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm_mul_pd(iq1,jq0);
304
305             /* REACTION-FIELD ELECTROSTATICS */
306             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
307             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_pd(fscal,dx10);
316             ty               = _mm_mul_pd(fscal,dy10);
317             tz               = _mm_mul_pd(fscal,dz10);
318
319             /* Update vectorial force */
320             fix1             = _mm_add_pd(fix1,tx);
321             fiy1             = _mm_add_pd(fiy1,ty);
322             fiz1             = _mm_add_pd(fiz1,tz);
323
324             fjx0             = _mm_add_pd(fjx0,tx);
325             fjy0             = _mm_add_pd(fjy0,ty);
326             fjz0             = _mm_add_pd(fjz0,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* REACTION-FIELD ELECTROSTATICS */
336             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
337             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_pd(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_pd(fscal,dx20);
346             ty               = _mm_mul_pd(fscal,dy20);
347             tz               = _mm_mul_pd(fscal,dz20);
348
349             /* Update vectorial force */
350             fix2             = _mm_add_pd(fix2,tx);
351             fiy2             = _mm_add_pd(fiy2,ty);
352             fiz2             = _mm_add_pd(fiz2,tz);
353
354             fjx0             = _mm_add_pd(fjx0,tx);
355             fjy0             = _mm_add_pd(fjy0,ty);
356             fjz0             = _mm_add_pd(fjz0,tz);
357
358             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
359
360             /* Inner loop uses 134 flops */
361         }
362
363         if(jidx<j_index_end)
364         {
365
366             jnrA             = jjnr[jidx];
367             j_coord_offsetA  = DIM*jnrA;
368
369             /* load j atom coordinates */
370             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
371                                               &jx0,&jy0,&jz0);
372
373             /* Calculate displacement vector */
374             dx00             = _mm_sub_pd(ix0,jx0);
375             dy00             = _mm_sub_pd(iy0,jy0);
376             dz00             = _mm_sub_pd(iz0,jz0);
377             dx10             = _mm_sub_pd(ix1,jx0);
378             dy10             = _mm_sub_pd(iy1,jy0);
379             dz10             = _mm_sub_pd(iz1,jz0);
380             dx20             = _mm_sub_pd(ix2,jx0);
381             dy20             = _mm_sub_pd(iy2,jy0);
382             dz20             = _mm_sub_pd(iz2,jz0);
383
384             /* Calculate squared distance and things based on it */
385             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
386             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
387             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
388
389             rinv00           = gmx_mm_invsqrt_pd(rsq00);
390             rinv10           = gmx_mm_invsqrt_pd(rsq10);
391             rinv20           = gmx_mm_invsqrt_pd(rsq20);
392
393             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
394             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
395             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
396
397             /* Load parameters for j particles */
398             jq0              = _mm_load_sd(charge+jnrA+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400
401             fjx0             = _mm_setzero_pd();
402             fjy0             = _mm_setzero_pd();
403             fjz0             = _mm_setzero_pd();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r00              = _mm_mul_pd(rsq00,rinv00);
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq00             = _mm_mul_pd(iq0,jq0);
413             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
414
415             /* Calculate table index by multiplying r with table scale and truncate to integer */
416             rt               = _mm_mul_pd(r00,vftabscale);
417             vfitab           = _mm_cvttpd_epi32(rt);
418             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
419             vfitab           = _mm_slli_epi32(vfitab,3);
420
421             /* REACTION-FIELD ELECTROSTATICS */
422             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
423             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
424
425             /* CUBIC SPLINE TABLE DISPERSION */
426             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
427             F                = _mm_setzero_pd();
428             GMX_MM_TRANSPOSE2_PD(Y,F);
429             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
430             H                = _mm_setzero_pd();
431             GMX_MM_TRANSPOSE2_PD(G,H);
432             Heps             = _mm_mul_pd(vfeps,H);
433             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
434             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
435             vvdw6            = _mm_mul_pd(c6_00,VV);
436             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
437             fvdw6            = _mm_mul_pd(c6_00,FF);
438
439             /* CUBIC SPLINE TABLE REPULSION */
440             vfitab           = _mm_add_epi32(vfitab,ifour);
441             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
442             F                = _mm_setzero_pd();
443             GMX_MM_TRANSPOSE2_PD(Y,F);
444             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
445             H                = _mm_setzero_pd();
446             GMX_MM_TRANSPOSE2_PD(G,H);
447             Heps             = _mm_mul_pd(vfeps,H);
448             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
449             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
450             vvdw12           = _mm_mul_pd(c12_00,VV);
451             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
452             fvdw12           = _mm_mul_pd(c12_00,FF);
453             vvdw             = _mm_add_pd(vvdw12,vvdw6);
454             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
458             velecsum         = _mm_add_pd(velecsum,velec);
459             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
460             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
461
462             fscal            = _mm_add_pd(felec,fvdw);
463
464             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm_mul_pd(fscal,dx00);
468             ty               = _mm_mul_pd(fscal,dy00);
469             tz               = _mm_mul_pd(fscal,dz00);
470
471             /* Update vectorial force */
472             fix0             = _mm_add_pd(fix0,tx);
473             fiy0             = _mm_add_pd(fiy0,ty);
474             fiz0             = _mm_add_pd(fiz0,tz);
475
476             fjx0             = _mm_add_pd(fjx0,tx);
477             fjy0             = _mm_add_pd(fjy0,ty);
478             fjz0             = _mm_add_pd(fjz0,tz);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq10             = _mm_mul_pd(iq1,jq0);
486
487             /* REACTION-FIELD ELECTROSTATICS */
488             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
489             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
493             velecsum         = _mm_add_pd(velecsum,velec);
494
495             fscal            = felec;
496
497             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm_mul_pd(fscal,dx10);
501             ty               = _mm_mul_pd(fscal,dy10);
502             tz               = _mm_mul_pd(fscal,dz10);
503
504             /* Update vectorial force */
505             fix1             = _mm_add_pd(fix1,tx);
506             fiy1             = _mm_add_pd(fiy1,ty);
507             fiz1             = _mm_add_pd(fiz1,tz);
508
509             fjx0             = _mm_add_pd(fjx0,tx);
510             fjy0             = _mm_add_pd(fjy0,ty);
511             fjz0             = _mm_add_pd(fjz0,tz);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq20             = _mm_mul_pd(iq2,jq0);
519
520             /* REACTION-FIELD ELECTROSTATICS */
521             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
522             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
526             velecsum         = _mm_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx20);
534             ty               = _mm_mul_pd(fscal,dy20);
535             tz               = _mm_mul_pd(fscal,dz20);
536
537             /* Update vectorial force */
538             fix2             = _mm_add_pd(fix2,tx);
539             fiy2             = _mm_add_pd(fiy2,ty);
540             fiz2             = _mm_add_pd(fiz2,tz);
541
542             fjx0             = _mm_add_pd(fjx0,tx);
543             fjy0             = _mm_add_pd(fjy0,ty);
544             fjz0             = _mm_add_pd(fjz0,tz);
545
546             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
547
548             /* Inner loop uses 134 flops */
549         }
550
551         /* End of innermost loop */
552
553         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
554                                               f+i_coord_offset,fshift+i_shift_offset);
555
556         ggid                        = gid[iidx];
557         /* Update potential energies */
558         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
559         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
560
561         /* Increment number of inner iterations */
562         inneriter                  += j_index_end - j_index_start;
563
564         /* Outer loop uses 20 flops */
565     }
566
567     /* Increment number of outer iterations */
568     outeriter        += nri;
569
570     /* Update outer/inner flops */
571
572     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*134);
573 }
574 /*
575  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse4_1_double
576  * Electrostatics interaction: ReactionField
577  * VdW interaction:            CubicSplineTable
578  * Geometry:                   Water3-Particle
579  * Calculate force/pot:        Force
580  */
581 void
582 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse4_1_double
583                     (t_nblist                    * gmx_restrict       nlist,
584                      rvec                        * gmx_restrict          xx,
585                      rvec                        * gmx_restrict          ff,
586                      t_forcerec                  * gmx_restrict          fr,
587                      t_mdatoms                   * gmx_restrict     mdatoms,
588                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
589                      t_nrnb                      * gmx_restrict        nrnb)
590 {
591     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
592      * just 0 for non-waters.
593      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
594      * jnr indices corresponding to data put in the four positions in the SIMD register.
595      */
596     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
597     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
598     int              jnrA,jnrB;
599     int              j_coord_offsetA,j_coord_offsetB;
600     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
601     real             rcutoff_scalar;
602     real             *shiftvec,*fshift,*x,*f;
603     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
604     int              vdwioffset0;
605     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
606     int              vdwioffset1;
607     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
608     int              vdwioffset2;
609     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
610     int              vdwjidx0A,vdwjidx0B;
611     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
612     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
613     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
614     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
615     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
616     real             *charge;
617     int              nvdwtype;
618     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
619     int              *vdwtype;
620     real             *vdwparam;
621     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
622     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
623     __m128i          vfitab;
624     __m128i          ifour       = _mm_set1_epi32(4);
625     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
626     real             *vftab;
627     __m128d          dummy_mask,cutoff_mask;
628     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
629     __m128d          one     = _mm_set1_pd(1.0);
630     __m128d          two     = _mm_set1_pd(2.0);
631     x                = xx[0];
632     f                = ff[0];
633
634     nri              = nlist->nri;
635     iinr             = nlist->iinr;
636     jindex           = nlist->jindex;
637     jjnr             = nlist->jjnr;
638     shiftidx         = nlist->shift;
639     gid              = nlist->gid;
640     shiftvec         = fr->shift_vec[0];
641     fshift           = fr->fshift[0];
642     facel            = _mm_set1_pd(fr->epsfac);
643     charge           = mdatoms->chargeA;
644     krf              = _mm_set1_pd(fr->ic->k_rf);
645     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
646     crf              = _mm_set1_pd(fr->ic->c_rf);
647     nvdwtype         = fr->ntype;
648     vdwparam         = fr->nbfp;
649     vdwtype          = mdatoms->typeA;
650
651     vftab            = kernel_data->table_vdw->data;
652     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
653
654     /* Setup water-specific parameters */
655     inr              = nlist->iinr[0];
656     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
657     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
658     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
659     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
660
661     /* Avoid stupid compiler warnings */
662     jnrA = jnrB = 0;
663     j_coord_offsetA = 0;
664     j_coord_offsetB = 0;
665
666     outeriter        = 0;
667     inneriter        = 0;
668
669     /* Start outer loop over neighborlists */
670     for(iidx=0; iidx<nri; iidx++)
671     {
672         /* Load shift vector for this list */
673         i_shift_offset   = DIM*shiftidx[iidx];
674
675         /* Load limits for loop over neighbors */
676         j_index_start    = jindex[iidx];
677         j_index_end      = jindex[iidx+1];
678
679         /* Get outer coordinate index */
680         inr              = iinr[iidx];
681         i_coord_offset   = DIM*inr;
682
683         /* Load i particle coords and add shift vector */
684         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
685                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
686
687         fix0             = _mm_setzero_pd();
688         fiy0             = _mm_setzero_pd();
689         fiz0             = _mm_setzero_pd();
690         fix1             = _mm_setzero_pd();
691         fiy1             = _mm_setzero_pd();
692         fiz1             = _mm_setzero_pd();
693         fix2             = _mm_setzero_pd();
694         fiy2             = _mm_setzero_pd();
695         fiz2             = _mm_setzero_pd();
696
697         /* Start inner kernel loop */
698         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
699         {
700
701             /* Get j neighbor index, and coordinate index */
702             jnrA             = jjnr[jidx];
703             jnrB             = jjnr[jidx+1];
704             j_coord_offsetA  = DIM*jnrA;
705             j_coord_offsetB  = DIM*jnrB;
706
707             /* load j atom coordinates */
708             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
709                                               &jx0,&jy0,&jz0);
710
711             /* Calculate displacement vector */
712             dx00             = _mm_sub_pd(ix0,jx0);
713             dy00             = _mm_sub_pd(iy0,jy0);
714             dz00             = _mm_sub_pd(iz0,jz0);
715             dx10             = _mm_sub_pd(ix1,jx0);
716             dy10             = _mm_sub_pd(iy1,jy0);
717             dz10             = _mm_sub_pd(iz1,jz0);
718             dx20             = _mm_sub_pd(ix2,jx0);
719             dy20             = _mm_sub_pd(iy2,jy0);
720             dz20             = _mm_sub_pd(iz2,jz0);
721
722             /* Calculate squared distance and things based on it */
723             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
724             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
725             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
726
727             rinv00           = gmx_mm_invsqrt_pd(rsq00);
728             rinv10           = gmx_mm_invsqrt_pd(rsq10);
729             rinv20           = gmx_mm_invsqrt_pd(rsq20);
730
731             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
732             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
733             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
734
735             /* Load parameters for j particles */
736             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
737             vdwjidx0A        = 2*vdwtype[jnrA+0];
738             vdwjidx0B        = 2*vdwtype[jnrB+0];
739
740             fjx0             = _mm_setzero_pd();
741             fjy0             = _mm_setzero_pd();
742             fjz0             = _mm_setzero_pd();
743
744             /**************************
745              * CALCULATE INTERACTIONS *
746              **************************/
747
748             r00              = _mm_mul_pd(rsq00,rinv00);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq00             = _mm_mul_pd(iq0,jq0);
752             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
753                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
754
755             /* Calculate table index by multiplying r with table scale and truncate to integer */
756             rt               = _mm_mul_pd(r00,vftabscale);
757             vfitab           = _mm_cvttpd_epi32(rt);
758             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
759             vfitab           = _mm_slli_epi32(vfitab,3);
760
761             /* REACTION-FIELD ELECTROSTATICS */
762             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
763
764             /* CUBIC SPLINE TABLE DISPERSION */
765             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
766             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
767             GMX_MM_TRANSPOSE2_PD(Y,F);
768             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
769             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
770             GMX_MM_TRANSPOSE2_PD(G,H);
771             Heps             = _mm_mul_pd(vfeps,H);
772             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
773             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
774             fvdw6            = _mm_mul_pd(c6_00,FF);
775
776             /* CUBIC SPLINE TABLE REPULSION */
777             vfitab           = _mm_add_epi32(vfitab,ifour);
778             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
779             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
780             GMX_MM_TRANSPOSE2_PD(Y,F);
781             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
782             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
783             GMX_MM_TRANSPOSE2_PD(G,H);
784             Heps             = _mm_mul_pd(vfeps,H);
785             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
786             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
787             fvdw12           = _mm_mul_pd(c12_00,FF);
788             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
789
790             fscal            = _mm_add_pd(felec,fvdw);
791
792             /* Calculate temporary vectorial force */
793             tx               = _mm_mul_pd(fscal,dx00);
794             ty               = _mm_mul_pd(fscal,dy00);
795             tz               = _mm_mul_pd(fscal,dz00);
796
797             /* Update vectorial force */
798             fix0             = _mm_add_pd(fix0,tx);
799             fiy0             = _mm_add_pd(fiy0,ty);
800             fiz0             = _mm_add_pd(fiz0,tz);
801
802             fjx0             = _mm_add_pd(fjx0,tx);
803             fjy0             = _mm_add_pd(fjy0,ty);
804             fjz0             = _mm_add_pd(fjz0,tz);
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             /* Compute parameters for interactions between i and j atoms */
811             qq10             = _mm_mul_pd(iq1,jq0);
812
813             /* REACTION-FIELD ELECTROSTATICS */
814             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
815
816             fscal            = felec;
817
818             /* Calculate temporary vectorial force */
819             tx               = _mm_mul_pd(fscal,dx10);
820             ty               = _mm_mul_pd(fscal,dy10);
821             tz               = _mm_mul_pd(fscal,dz10);
822
823             /* Update vectorial force */
824             fix1             = _mm_add_pd(fix1,tx);
825             fiy1             = _mm_add_pd(fiy1,ty);
826             fiz1             = _mm_add_pd(fiz1,tz);
827
828             fjx0             = _mm_add_pd(fjx0,tx);
829             fjy0             = _mm_add_pd(fjy0,ty);
830             fjz0             = _mm_add_pd(fjz0,tz);
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq20             = _mm_mul_pd(iq2,jq0);
838
839             /* REACTION-FIELD ELECTROSTATICS */
840             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
841
842             fscal            = felec;
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm_mul_pd(fscal,dx20);
846             ty               = _mm_mul_pd(fscal,dy20);
847             tz               = _mm_mul_pd(fscal,dz20);
848
849             /* Update vectorial force */
850             fix2             = _mm_add_pd(fix2,tx);
851             fiy2             = _mm_add_pd(fiy2,ty);
852             fiz2             = _mm_add_pd(fiz2,tz);
853
854             fjx0             = _mm_add_pd(fjx0,tx);
855             fjy0             = _mm_add_pd(fjy0,ty);
856             fjz0             = _mm_add_pd(fjz0,tz);
857
858             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
859
860             /* Inner loop uses 111 flops */
861         }
862
863         if(jidx<j_index_end)
864         {
865
866             jnrA             = jjnr[jidx];
867             j_coord_offsetA  = DIM*jnrA;
868
869             /* load j atom coordinates */
870             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_pd(ix0,jx0);
875             dy00             = _mm_sub_pd(iy0,jy0);
876             dz00             = _mm_sub_pd(iz0,jz0);
877             dx10             = _mm_sub_pd(ix1,jx0);
878             dy10             = _mm_sub_pd(iy1,jy0);
879             dz10             = _mm_sub_pd(iz1,jz0);
880             dx20             = _mm_sub_pd(ix2,jx0);
881             dy20             = _mm_sub_pd(iy2,jy0);
882             dz20             = _mm_sub_pd(iz2,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
886             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
887             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
888
889             rinv00           = gmx_mm_invsqrt_pd(rsq00);
890             rinv10           = gmx_mm_invsqrt_pd(rsq10);
891             rinv20           = gmx_mm_invsqrt_pd(rsq20);
892
893             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
894             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
895             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
896
897             /* Load parameters for j particles */
898             jq0              = _mm_load_sd(charge+jnrA+0);
899             vdwjidx0A        = 2*vdwtype[jnrA+0];
900
901             fjx0             = _mm_setzero_pd();
902             fjy0             = _mm_setzero_pd();
903             fjz0             = _mm_setzero_pd();
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             r00              = _mm_mul_pd(rsq00,rinv00);
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq00             = _mm_mul_pd(iq0,jq0);
913             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
914
915             /* Calculate table index by multiplying r with table scale and truncate to integer */
916             rt               = _mm_mul_pd(r00,vftabscale);
917             vfitab           = _mm_cvttpd_epi32(rt);
918             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
919             vfitab           = _mm_slli_epi32(vfitab,3);
920
921             /* REACTION-FIELD ELECTROSTATICS */
922             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
923
924             /* CUBIC SPLINE TABLE DISPERSION */
925             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
926             F                = _mm_setzero_pd();
927             GMX_MM_TRANSPOSE2_PD(Y,F);
928             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
929             H                = _mm_setzero_pd();
930             GMX_MM_TRANSPOSE2_PD(G,H);
931             Heps             = _mm_mul_pd(vfeps,H);
932             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
933             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
934             fvdw6            = _mm_mul_pd(c6_00,FF);
935
936             /* CUBIC SPLINE TABLE REPULSION */
937             vfitab           = _mm_add_epi32(vfitab,ifour);
938             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
939             F                = _mm_setzero_pd();
940             GMX_MM_TRANSPOSE2_PD(Y,F);
941             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
942             H                = _mm_setzero_pd();
943             GMX_MM_TRANSPOSE2_PD(G,H);
944             Heps             = _mm_mul_pd(vfeps,H);
945             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
946             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
947             fvdw12           = _mm_mul_pd(c12_00,FF);
948             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
949
950             fscal            = _mm_add_pd(felec,fvdw);
951
952             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm_mul_pd(fscal,dx00);
956             ty               = _mm_mul_pd(fscal,dy00);
957             tz               = _mm_mul_pd(fscal,dz00);
958
959             /* Update vectorial force */
960             fix0             = _mm_add_pd(fix0,tx);
961             fiy0             = _mm_add_pd(fiy0,ty);
962             fiz0             = _mm_add_pd(fiz0,tz);
963
964             fjx0             = _mm_add_pd(fjx0,tx);
965             fjy0             = _mm_add_pd(fjy0,ty);
966             fjz0             = _mm_add_pd(fjz0,tz);
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq10             = _mm_mul_pd(iq1,jq0);
974
975             /* REACTION-FIELD ELECTROSTATICS */
976             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
977
978             fscal            = felec;
979
980             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm_mul_pd(fscal,dx10);
984             ty               = _mm_mul_pd(fscal,dy10);
985             tz               = _mm_mul_pd(fscal,dz10);
986
987             /* Update vectorial force */
988             fix1             = _mm_add_pd(fix1,tx);
989             fiy1             = _mm_add_pd(fiy1,ty);
990             fiz1             = _mm_add_pd(fiz1,tz);
991
992             fjx0             = _mm_add_pd(fjx0,tx);
993             fjy0             = _mm_add_pd(fjy0,ty);
994             fjz0             = _mm_add_pd(fjz0,tz);
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq20             = _mm_mul_pd(iq2,jq0);
1002
1003             /* REACTION-FIELD ELECTROSTATICS */
1004             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1005
1006             fscal            = felec;
1007
1008             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_pd(fscal,dx20);
1012             ty               = _mm_mul_pd(fscal,dy20);
1013             tz               = _mm_mul_pd(fscal,dz20);
1014
1015             /* Update vectorial force */
1016             fix2             = _mm_add_pd(fix2,tx);
1017             fiy2             = _mm_add_pd(fiy2,ty);
1018             fiz2             = _mm_add_pd(fiz2,tz);
1019
1020             fjx0             = _mm_add_pd(fjx0,tx);
1021             fjy0             = _mm_add_pd(fjy0,ty);
1022             fjz0             = _mm_add_pd(fjz0,tz);
1023
1024             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1025
1026             /* Inner loop uses 111 flops */
1027         }
1028
1029         /* End of innermost loop */
1030
1031         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1032                                               f+i_coord_offset,fshift+i_shift_offset);
1033
1034         /* Increment number of inner iterations */
1035         inneriter                  += j_index_end - j_index_start;
1036
1037         /* Outer loop uses 18 flops */
1038     }
1039
1040     /* Increment number of outer iterations */
1041     outeriter        += nri;
1042
1043     /* Update outer/inner flops */
1044
1045     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1046 }