Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     krf              = _mm_set1_pd(fr->ic->k_rf);
114     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
115     crf              = _mm_set1_pd(fr->ic->c_rf);
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_pd();
149         fiy0             = _mm_setzero_pd();
150         fiz0             = _mm_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = sse41_invsqrt_d(rsq00);
183
184             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_pd(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_pd(iq0,jq0);
199             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
201
202             /* Calculate table index by multiplying r with table scale and truncate to integer */
203             rt               = _mm_mul_pd(r00,vftabscale);
204             vfitab           = _mm_cvttpd_epi32(rt);
205             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
206             vfitab           = _mm_slli_epi32(vfitab,3);
207
208             /* REACTION-FIELD ELECTROSTATICS */
209             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
210             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
211
212             /* CUBIC SPLINE TABLE DISPERSION */
213             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
214             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
215             GMX_MM_TRANSPOSE2_PD(Y,F);
216             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
217             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
218             GMX_MM_TRANSPOSE2_PD(G,H);
219             Heps             = _mm_mul_pd(vfeps,H);
220             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
221             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
222             vvdw6            = _mm_mul_pd(c6_00,VV);
223             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
224             fvdw6            = _mm_mul_pd(c6_00,FF);
225
226             /* CUBIC SPLINE TABLE REPULSION */
227             vfitab           = _mm_add_epi32(vfitab,ifour);
228             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
229             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
230             GMX_MM_TRANSPOSE2_PD(Y,F);
231             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
232             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
233             GMX_MM_TRANSPOSE2_PD(G,H);
234             Heps             = _mm_mul_pd(vfeps,H);
235             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
236             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
237             vvdw12           = _mm_mul_pd(c12_00,VV);
238             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
239             fvdw12           = _mm_mul_pd(c12_00,FF);
240             vvdw             = _mm_add_pd(vvdw12,vvdw6);
241             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velecsum         = _mm_add_pd(velecsum,velec);
245             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
246
247             fscal            = _mm_add_pd(felec,fvdw);
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm_mul_pd(fscal,dx00);
251             ty               = _mm_mul_pd(fscal,dy00);
252             tz               = _mm_mul_pd(fscal,dz00);
253
254             /* Update vectorial force */
255             fix0             = _mm_add_pd(fix0,tx);
256             fiy0             = _mm_add_pd(fiy0,ty);
257             fiz0             = _mm_add_pd(fiz0,tz);
258
259             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
260
261             /* Inner loop uses 67 flops */
262         }
263
264         if(jidx<j_index_end)
265         {
266
267             jnrA             = jjnr[jidx];
268             j_coord_offsetA  = DIM*jnrA;
269
270             /* load j atom coordinates */
271             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
272                                               &jx0,&jy0,&jz0);
273
274             /* Calculate displacement vector */
275             dx00             = _mm_sub_pd(ix0,jx0);
276             dy00             = _mm_sub_pd(iy0,jy0);
277             dz00             = _mm_sub_pd(iz0,jz0);
278
279             /* Calculate squared distance and things based on it */
280             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
281
282             rinv00           = sse41_invsqrt_d(rsq00);
283
284             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
285
286             /* Load parameters for j particles */
287             jq0              = _mm_load_sd(charge+jnrA+0);
288             vdwjidx0A        = 2*vdwtype[jnrA+0];
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r00              = _mm_mul_pd(rsq00,rinv00);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq00             = _mm_mul_pd(iq0,jq0);
298             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
299
300             /* Calculate table index by multiplying r with table scale and truncate to integer */
301             rt               = _mm_mul_pd(r00,vftabscale);
302             vfitab           = _mm_cvttpd_epi32(rt);
303             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
304             vfitab           = _mm_slli_epi32(vfitab,3);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
308             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
309
310             /* CUBIC SPLINE TABLE DISPERSION */
311             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
312             F                = _mm_setzero_pd();
313             GMX_MM_TRANSPOSE2_PD(Y,F);
314             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
315             H                = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(G,H);
317             Heps             = _mm_mul_pd(vfeps,H);
318             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
319             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
320             vvdw6            = _mm_mul_pd(c6_00,VV);
321             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
322             fvdw6            = _mm_mul_pd(c6_00,FF);
323
324             /* CUBIC SPLINE TABLE REPULSION */
325             vfitab           = _mm_add_epi32(vfitab,ifour);
326             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
327             F                = _mm_setzero_pd();
328             GMX_MM_TRANSPOSE2_PD(Y,F);
329             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
330             H                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(G,H);
332             Heps             = _mm_mul_pd(vfeps,H);
333             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
334             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
335             vvdw12           = _mm_mul_pd(c12_00,VV);
336             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
337             fvdw12           = _mm_mul_pd(c12_00,FF);
338             vvdw             = _mm_add_pd(vvdw12,vvdw6);
339             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
343             velecsum         = _mm_add_pd(velecsum,velec);
344             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
345             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
346
347             fscal            = _mm_add_pd(felec,fvdw);
348
349             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_pd(fscal,dx00);
353             ty               = _mm_mul_pd(fscal,dy00);
354             tz               = _mm_mul_pd(fscal,dz00);
355
356             /* Update vectorial force */
357             fix0             = _mm_add_pd(fix0,tx);
358             fiy0             = _mm_add_pd(fiy0,ty);
359             fiz0             = _mm_add_pd(fiz0,tz);
360
361             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
362
363             /* Inner loop uses 67 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
374         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 9 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_double
391  * Electrostatics interaction: ReactionField
392  * VdW interaction:            CubicSplineTable
393  * Geometry:                   Particle-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_double
398                     (t_nblist                    * gmx_restrict       nlist,
399                      rvec                        * gmx_restrict          xx,
400                      rvec                        * gmx_restrict          ff,
401                      struct t_forcerec           * gmx_restrict          fr,
402                      t_mdatoms                   * gmx_restrict     mdatoms,
403                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
404                      t_nrnb                      * gmx_restrict        nrnb)
405 {
406     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
407      * just 0 for non-waters.
408      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
409      * jnr indices corresponding to data put in the four positions in the SIMD register.
410      */
411     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
412     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413     int              jnrA,jnrB;
414     int              j_coord_offsetA,j_coord_offsetB;
415     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
416     real             rcutoff_scalar;
417     real             *shiftvec,*fshift,*x,*f;
418     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B;
422     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     int              nvdwtype;
427     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
428     int              *vdwtype;
429     real             *vdwparam;
430     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
431     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
432     __m128i          vfitab;
433     __m128i          ifour       = _mm_set1_epi32(4);
434     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
435     real             *vftab;
436     __m128d          dummy_mask,cutoff_mask;
437     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
438     __m128d          one     = _mm_set1_pd(1.0);
439     __m128d          two     = _mm_set1_pd(2.0);
440     x                = xx[0];
441     f                = ff[0];
442
443     nri              = nlist->nri;
444     iinr             = nlist->iinr;
445     jindex           = nlist->jindex;
446     jjnr             = nlist->jjnr;
447     shiftidx         = nlist->shift;
448     gid              = nlist->gid;
449     shiftvec         = fr->shift_vec[0];
450     fshift           = fr->fshift[0];
451     facel            = _mm_set1_pd(fr->ic->epsfac);
452     charge           = mdatoms->chargeA;
453     krf              = _mm_set1_pd(fr->ic->k_rf);
454     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
455     crf              = _mm_set1_pd(fr->ic->c_rf);
456     nvdwtype         = fr->ntype;
457     vdwparam         = fr->nbfp;
458     vdwtype          = mdatoms->typeA;
459
460     vftab            = kernel_data->table_vdw->data;
461     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
462
463     /* Avoid stupid compiler warnings */
464     jnrA = jnrB = 0;
465     j_coord_offsetA = 0;
466     j_coord_offsetB = 0;
467
468     outeriter        = 0;
469     inneriter        = 0;
470
471     /* Start outer loop over neighborlists */
472     for(iidx=0; iidx<nri; iidx++)
473     {
474         /* Load shift vector for this list */
475         i_shift_offset   = DIM*shiftidx[iidx];
476
477         /* Load limits for loop over neighbors */
478         j_index_start    = jindex[iidx];
479         j_index_end      = jindex[iidx+1];
480
481         /* Get outer coordinate index */
482         inr              = iinr[iidx];
483         i_coord_offset   = DIM*inr;
484
485         /* Load i particle coords and add shift vector */
486         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
487
488         fix0             = _mm_setzero_pd();
489         fiy0             = _mm_setzero_pd();
490         fiz0             = _mm_setzero_pd();
491
492         /* Load parameters for i particles */
493         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
494         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
495
496         /* Start inner kernel loop */
497         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
498         {
499
500             /* Get j neighbor index, and coordinate index */
501             jnrA             = jjnr[jidx];
502             jnrB             = jjnr[jidx+1];
503             j_coord_offsetA  = DIM*jnrA;
504             j_coord_offsetB  = DIM*jnrB;
505
506             /* load j atom coordinates */
507             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
508                                               &jx0,&jy0,&jz0);
509
510             /* Calculate displacement vector */
511             dx00             = _mm_sub_pd(ix0,jx0);
512             dy00             = _mm_sub_pd(iy0,jy0);
513             dz00             = _mm_sub_pd(iz0,jz0);
514
515             /* Calculate squared distance and things based on it */
516             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
517
518             rinv00           = sse41_invsqrt_d(rsq00);
519
520             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
521
522             /* Load parameters for j particles */
523             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525             vdwjidx0B        = 2*vdwtype[jnrB+0];
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r00              = _mm_mul_pd(rsq00,rinv00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm_mul_pd(iq0,jq0);
535             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = _mm_mul_pd(r00,vftabscale);
540             vfitab           = _mm_cvttpd_epi32(rt);
541             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
542             vfitab           = _mm_slli_epi32(vfitab,3);
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
546
547             /* CUBIC SPLINE TABLE DISPERSION */
548             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
549             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
550             GMX_MM_TRANSPOSE2_PD(Y,F);
551             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
552             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(G,H);
554             Heps             = _mm_mul_pd(vfeps,H);
555             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
556             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
557             fvdw6            = _mm_mul_pd(c6_00,FF);
558
559             /* CUBIC SPLINE TABLE REPULSION */
560             vfitab           = _mm_add_epi32(vfitab,ifour);
561             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
562             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
563             GMX_MM_TRANSPOSE2_PD(Y,F);
564             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
565             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
566             GMX_MM_TRANSPOSE2_PD(G,H);
567             Heps             = _mm_mul_pd(vfeps,H);
568             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
569             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
570             fvdw12           = _mm_mul_pd(c12_00,FF);
571             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
572
573             fscal            = _mm_add_pd(felec,fvdw);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_pd(fscal,dx00);
577             ty               = _mm_mul_pd(fscal,dy00);
578             tz               = _mm_mul_pd(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm_add_pd(fix0,tx);
582             fiy0             = _mm_add_pd(fiy0,ty);
583             fiz0             = _mm_add_pd(fiz0,tz);
584
585             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
586
587             /* Inner loop uses 54 flops */
588         }
589
590         if(jidx<j_index_end)
591         {
592
593             jnrA             = jjnr[jidx];
594             j_coord_offsetA  = DIM*jnrA;
595
596             /* load j atom coordinates */
597             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
598                                               &jx0,&jy0,&jz0);
599
600             /* Calculate displacement vector */
601             dx00             = _mm_sub_pd(ix0,jx0);
602             dy00             = _mm_sub_pd(iy0,jy0);
603             dz00             = _mm_sub_pd(iz0,jz0);
604
605             /* Calculate squared distance and things based on it */
606             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
607
608             rinv00           = sse41_invsqrt_d(rsq00);
609
610             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
611
612             /* Load parameters for j particles */
613             jq0              = _mm_load_sd(charge+jnrA+0);
614             vdwjidx0A        = 2*vdwtype[jnrA+0];
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             r00              = _mm_mul_pd(rsq00,rinv00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm_mul_pd(iq0,jq0);
624             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
625
626             /* Calculate table index by multiplying r with table scale and truncate to integer */
627             rt               = _mm_mul_pd(r00,vftabscale);
628             vfitab           = _mm_cvttpd_epi32(rt);
629             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
630             vfitab           = _mm_slli_epi32(vfitab,3);
631
632             /* REACTION-FIELD ELECTROSTATICS */
633             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
634
635             /* CUBIC SPLINE TABLE DISPERSION */
636             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
637             F                = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(Y,F);
639             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
640             H                = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(G,H);
642             Heps             = _mm_mul_pd(vfeps,H);
643             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
644             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
645             fvdw6            = _mm_mul_pd(c6_00,FF);
646
647             /* CUBIC SPLINE TABLE REPULSION */
648             vfitab           = _mm_add_epi32(vfitab,ifour);
649             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
650             F                = _mm_setzero_pd();
651             GMX_MM_TRANSPOSE2_PD(Y,F);
652             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
653             H                = _mm_setzero_pd();
654             GMX_MM_TRANSPOSE2_PD(G,H);
655             Heps             = _mm_mul_pd(vfeps,H);
656             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
657             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
658             fvdw12           = _mm_mul_pd(c12_00,FF);
659             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
660
661             fscal            = _mm_add_pd(felec,fvdw);
662
663             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_pd(fscal,dx00);
667             ty               = _mm_mul_pd(fscal,dy00);
668             tz               = _mm_mul_pd(fscal,dz00);
669
670             /* Update vectorial force */
671             fix0             = _mm_add_pd(fix0,tx);
672             fiy0             = _mm_add_pd(fiy0,ty);
673             fiz0             = _mm_add_pd(fiz0,tz);
674
675             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
676
677             /* Inner loop uses 54 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 7 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
697 }