Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset1;
80     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
81     int              vdwioffset2;
82     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
83     int              vdwioffset3;
84     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
88     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
116     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
117     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->ic->rcoulomb;
121     rcutoff          = _mm_set1_pd(rcutoff_scalar);
122     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
148                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
149
150         fix1             = _mm_setzero_pd();
151         fiy1             = _mm_setzero_pd();
152         fiz1             = _mm_setzero_pd();
153         fix2             = _mm_setzero_pd();
154         fiy2             = _mm_setzero_pd();
155         fiz2             = _mm_setzero_pd();
156         fix3             = _mm_setzero_pd();
157         fiy3             = _mm_setzero_pd();
158         fiz3             = _mm_setzero_pd();
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184             dx30             = _mm_sub_pd(ix3,jx0);
185             dy30             = _mm_sub_pd(iy3,jy0);
186             dz30             = _mm_sub_pd(iz3,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
190             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
191             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
192
193             rinv10           = sse41_invsqrt_d(rsq10);
194             rinv20           = sse41_invsqrt_d(rsq20);
195             rinv30           = sse41_invsqrt_d(rsq30);
196
197             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
198             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
199             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203
204             fjx0             = _mm_setzero_pd();
205             fjy0             = _mm_setzero_pd();
206             fjz0             = _mm_setzero_pd();
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq10,rcutoff2))
213             {
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq10             = _mm_mul_pd(iq1,jq0);
217
218             /* REACTION-FIELD ELECTROSTATICS */
219             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
220             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
221
222             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
223
224             /* Update potential sum for this i atom from the interaction with this j atom. */
225             velec            = _mm_and_pd(velec,cutoff_mask);
226             velecsum         = _mm_add_pd(velecsum,velec);
227
228             fscal            = felec;
229
230             fscal            = _mm_and_pd(fscal,cutoff_mask);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_pd(fscal,dx10);
234             ty               = _mm_mul_pd(fscal,dy10);
235             tz               = _mm_mul_pd(fscal,dz10);
236
237             /* Update vectorial force */
238             fix1             = _mm_add_pd(fix1,tx);
239             fiy1             = _mm_add_pd(fiy1,ty);
240             fiz1             = _mm_add_pd(fiz1,tz);
241
242             fjx0             = _mm_add_pd(fjx0,tx);
243             fjy0             = _mm_add_pd(fjy0,ty);
244             fjz0             = _mm_add_pd(fjz0,tz);
245
246             }
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             if (gmx_mm_any_lt(rsq20,rcutoff2))
253             {
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq20             = _mm_mul_pd(iq2,jq0);
257
258             /* REACTION-FIELD ELECTROSTATICS */
259             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
260             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
261
262             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velec            = _mm_and_pd(velec,cutoff_mask);
266             velecsum         = _mm_add_pd(velecsum,velec);
267
268             fscal            = felec;
269
270             fscal            = _mm_and_pd(fscal,cutoff_mask);
271
272             /* Calculate temporary vectorial force */
273             tx               = _mm_mul_pd(fscal,dx20);
274             ty               = _mm_mul_pd(fscal,dy20);
275             tz               = _mm_mul_pd(fscal,dz20);
276
277             /* Update vectorial force */
278             fix2             = _mm_add_pd(fix2,tx);
279             fiy2             = _mm_add_pd(fiy2,ty);
280             fiz2             = _mm_add_pd(fiz2,tz);
281
282             fjx0             = _mm_add_pd(fjx0,tx);
283             fjy0             = _mm_add_pd(fjy0,ty);
284             fjz0             = _mm_add_pd(fjz0,tz);
285
286             }
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             if (gmx_mm_any_lt(rsq30,rcutoff2))
293             {
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq30             = _mm_mul_pd(iq3,jq0);
297
298             /* REACTION-FIELD ELECTROSTATICS */
299             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
300             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
301
302             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velec            = _mm_and_pd(velec,cutoff_mask);
306             velecsum         = _mm_add_pd(velecsum,velec);
307
308             fscal            = felec;
309
310             fscal            = _mm_and_pd(fscal,cutoff_mask);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm_mul_pd(fscal,dx30);
314             ty               = _mm_mul_pd(fscal,dy30);
315             tz               = _mm_mul_pd(fscal,dz30);
316
317             /* Update vectorial force */
318             fix3             = _mm_add_pd(fix3,tx);
319             fiy3             = _mm_add_pd(fiy3,ty);
320             fiz3             = _mm_add_pd(fiz3,tz);
321
322             fjx0             = _mm_add_pd(fjx0,tx);
323             fjy0             = _mm_add_pd(fjy0,ty);
324             fjz0             = _mm_add_pd(fjz0,tz);
325
326             }
327
328             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
329
330             /* Inner loop uses 111 flops */
331         }
332
333         if(jidx<j_index_end)
334         {
335
336             jnrA             = jjnr[jidx];
337             j_coord_offsetA  = DIM*jnrA;
338
339             /* load j atom coordinates */
340             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
341                                               &jx0,&jy0,&jz0);
342
343             /* Calculate displacement vector */
344             dx10             = _mm_sub_pd(ix1,jx0);
345             dy10             = _mm_sub_pd(iy1,jy0);
346             dz10             = _mm_sub_pd(iz1,jz0);
347             dx20             = _mm_sub_pd(ix2,jx0);
348             dy20             = _mm_sub_pd(iy2,jy0);
349             dz20             = _mm_sub_pd(iz2,jz0);
350             dx30             = _mm_sub_pd(ix3,jx0);
351             dy30             = _mm_sub_pd(iy3,jy0);
352             dz30             = _mm_sub_pd(iz3,jz0);
353
354             /* Calculate squared distance and things based on it */
355             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
356             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
357             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
358
359             rinv10           = sse41_invsqrt_d(rsq10);
360             rinv20           = sse41_invsqrt_d(rsq20);
361             rinv30           = sse41_invsqrt_d(rsq30);
362
363             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
364             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
365             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
366
367             /* Load parameters for j particles */
368             jq0              = _mm_load_sd(charge+jnrA+0);
369
370             fjx0             = _mm_setzero_pd();
371             fjy0             = _mm_setzero_pd();
372             fjz0             = _mm_setzero_pd();
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm_any_lt(rsq10,rcutoff2))
379             {
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq10             = _mm_mul_pd(iq1,jq0);
383
384             /* REACTION-FIELD ELECTROSTATICS */
385             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
386             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
387
388             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_and_pd(velec,cutoff_mask);
392             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
393             velecsum         = _mm_add_pd(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm_and_pd(fscal,cutoff_mask);
398
399             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm_mul_pd(fscal,dx10);
403             ty               = _mm_mul_pd(fscal,dy10);
404             tz               = _mm_mul_pd(fscal,dz10);
405
406             /* Update vectorial force */
407             fix1             = _mm_add_pd(fix1,tx);
408             fiy1             = _mm_add_pd(fiy1,ty);
409             fiz1             = _mm_add_pd(fiz1,tz);
410
411             fjx0             = _mm_add_pd(fjx0,tx);
412             fjy0             = _mm_add_pd(fjy0,ty);
413             fjz0             = _mm_add_pd(fjz0,tz);
414
415             }
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             if (gmx_mm_any_lt(rsq20,rcutoff2))
422             {
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq20             = _mm_mul_pd(iq2,jq0);
426
427             /* REACTION-FIELD ELECTROSTATICS */
428             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
429             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
430
431             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_and_pd(velec,cutoff_mask);
435             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
436             velecsum         = _mm_add_pd(velecsum,velec);
437
438             fscal            = felec;
439
440             fscal            = _mm_and_pd(fscal,cutoff_mask);
441
442             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm_mul_pd(fscal,dx20);
446             ty               = _mm_mul_pd(fscal,dy20);
447             tz               = _mm_mul_pd(fscal,dz20);
448
449             /* Update vectorial force */
450             fix2             = _mm_add_pd(fix2,tx);
451             fiy2             = _mm_add_pd(fiy2,ty);
452             fiz2             = _mm_add_pd(fiz2,tz);
453
454             fjx0             = _mm_add_pd(fjx0,tx);
455             fjy0             = _mm_add_pd(fjy0,ty);
456             fjz0             = _mm_add_pd(fjz0,tz);
457
458             }
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (gmx_mm_any_lt(rsq30,rcutoff2))
465             {
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq30             = _mm_mul_pd(iq3,jq0);
469
470             /* REACTION-FIELD ELECTROSTATICS */
471             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
472             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
473
474             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_and_pd(velec,cutoff_mask);
478             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
479             velecsum         = _mm_add_pd(velecsum,velec);
480
481             fscal            = felec;
482
483             fscal            = _mm_and_pd(fscal,cutoff_mask);
484
485             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
486
487             /* Calculate temporary vectorial force */
488             tx               = _mm_mul_pd(fscal,dx30);
489             ty               = _mm_mul_pd(fscal,dy30);
490             tz               = _mm_mul_pd(fscal,dz30);
491
492             /* Update vectorial force */
493             fix3             = _mm_add_pd(fix3,tx);
494             fiy3             = _mm_add_pd(fiy3,ty);
495             fiz3             = _mm_add_pd(fiz3,tz);
496
497             fjx0             = _mm_add_pd(fjx0,tx);
498             fjy0             = _mm_add_pd(fjy0,ty);
499             fjz0             = _mm_add_pd(fjz0,tz);
500
501             }
502
503             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
504
505             /* Inner loop uses 111 flops */
506         }
507
508         /* End of innermost loop */
509
510         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
511                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
512
513         ggid                        = gid[iidx];
514         /* Update potential energies */
515         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
516
517         /* Increment number of inner iterations */
518         inneriter                  += j_index_end - j_index_start;
519
520         /* Outer loop uses 19 flops */
521     }
522
523     /* Increment number of outer iterations */
524     outeriter        += nri;
525
526     /* Update outer/inner flops */
527
528     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*111);
529 }
530 /*
531  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_double
532  * Electrostatics interaction: ReactionField
533  * VdW interaction:            None
534  * Geometry:                   Water4-Particle
535  * Calculate force/pot:        Force
536  */
537 void
538 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_double
539                     (t_nblist                    * gmx_restrict       nlist,
540                      rvec                        * gmx_restrict          xx,
541                      rvec                        * gmx_restrict          ff,
542                      struct t_forcerec           * gmx_restrict          fr,
543                      t_mdatoms                   * gmx_restrict     mdatoms,
544                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
545                      t_nrnb                      * gmx_restrict        nrnb)
546 {
547     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
548      * just 0 for non-waters.
549      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
550      * jnr indices corresponding to data put in the four positions in the SIMD register.
551      */
552     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
553     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
554     int              jnrA,jnrB;
555     int              j_coord_offsetA,j_coord_offsetB;
556     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
557     real             rcutoff_scalar;
558     real             *shiftvec,*fshift,*x,*f;
559     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
560     int              vdwioffset1;
561     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
562     int              vdwioffset2;
563     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
564     int              vdwioffset3;
565     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
566     int              vdwjidx0A,vdwjidx0B;
567     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
568     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
569     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
570     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
571     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
572     real             *charge;
573     __m128d          dummy_mask,cutoff_mask;
574     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
575     __m128d          one     = _mm_set1_pd(1.0);
576     __m128d          two     = _mm_set1_pd(2.0);
577     x                = xx[0];
578     f                = ff[0];
579
580     nri              = nlist->nri;
581     iinr             = nlist->iinr;
582     jindex           = nlist->jindex;
583     jjnr             = nlist->jjnr;
584     shiftidx         = nlist->shift;
585     gid              = nlist->gid;
586     shiftvec         = fr->shift_vec[0];
587     fshift           = fr->fshift[0];
588     facel            = _mm_set1_pd(fr->ic->epsfac);
589     charge           = mdatoms->chargeA;
590     krf              = _mm_set1_pd(fr->ic->k_rf);
591     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
592     crf              = _mm_set1_pd(fr->ic->c_rf);
593
594     /* Setup water-specific parameters */
595     inr              = nlist->iinr[0];
596     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
597     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
598     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
599
600     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
601     rcutoff_scalar   = fr->ic->rcoulomb;
602     rcutoff          = _mm_set1_pd(rcutoff_scalar);
603     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
604
605     /* Avoid stupid compiler warnings */
606     jnrA = jnrB = 0;
607     j_coord_offsetA = 0;
608     j_coord_offsetB = 0;
609
610     outeriter        = 0;
611     inneriter        = 0;
612
613     /* Start outer loop over neighborlists */
614     for(iidx=0; iidx<nri; iidx++)
615     {
616         /* Load shift vector for this list */
617         i_shift_offset   = DIM*shiftidx[iidx];
618
619         /* Load limits for loop over neighbors */
620         j_index_start    = jindex[iidx];
621         j_index_end      = jindex[iidx+1];
622
623         /* Get outer coordinate index */
624         inr              = iinr[iidx];
625         i_coord_offset   = DIM*inr;
626
627         /* Load i particle coords and add shift vector */
628         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
629                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
630
631         fix1             = _mm_setzero_pd();
632         fiy1             = _mm_setzero_pd();
633         fiz1             = _mm_setzero_pd();
634         fix2             = _mm_setzero_pd();
635         fiy2             = _mm_setzero_pd();
636         fiz2             = _mm_setzero_pd();
637         fix3             = _mm_setzero_pd();
638         fiy3             = _mm_setzero_pd();
639         fiz3             = _mm_setzero_pd();
640
641         /* Start inner kernel loop */
642         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
643         {
644
645             /* Get j neighbor index, and coordinate index */
646             jnrA             = jjnr[jidx];
647             jnrB             = jjnr[jidx+1];
648             j_coord_offsetA  = DIM*jnrA;
649             j_coord_offsetB  = DIM*jnrB;
650
651             /* load j atom coordinates */
652             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
653                                               &jx0,&jy0,&jz0);
654
655             /* Calculate displacement vector */
656             dx10             = _mm_sub_pd(ix1,jx0);
657             dy10             = _mm_sub_pd(iy1,jy0);
658             dz10             = _mm_sub_pd(iz1,jz0);
659             dx20             = _mm_sub_pd(ix2,jx0);
660             dy20             = _mm_sub_pd(iy2,jy0);
661             dz20             = _mm_sub_pd(iz2,jz0);
662             dx30             = _mm_sub_pd(ix3,jx0);
663             dy30             = _mm_sub_pd(iy3,jy0);
664             dz30             = _mm_sub_pd(iz3,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
668             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
669             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
670
671             rinv10           = sse41_invsqrt_d(rsq10);
672             rinv20           = sse41_invsqrt_d(rsq20);
673             rinv30           = sse41_invsqrt_d(rsq30);
674
675             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
676             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
677             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
678
679             /* Load parameters for j particles */
680             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
681
682             fjx0             = _mm_setzero_pd();
683             fjy0             = _mm_setzero_pd();
684             fjz0             = _mm_setzero_pd();
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm_any_lt(rsq10,rcutoff2))
691             {
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq10             = _mm_mul_pd(iq1,jq0);
695
696             /* REACTION-FIELD ELECTROSTATICS */
697             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
698
699             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
700
701             fscal            = felec;
702
703             fscal            = _mm_and_pd(fscal,cutoff_mask);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm_mul_pd(fscal,dx10);
707             ty               = _mm_mul_pd(fscal,dy10);
708             tz               = _mm_mul_pd(fscal,dz10);
709
710             /* Update vectorial force */
711             fix1             = _mm_add_pd(fix1,tx);
712             fiy1             = _mm_add_pd(fiy1,ty);
713             fiz1             = _mm_add_pd(fiz1,tz);
714
715             fjx0             = _mm_add_pd(fjx0,tx);
716             fjy0             = _mm_add_pd(fjy0,ty);
717             fjz0             = _mm_add_pd(fjz0,tz);
718
719             }
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             if (gmx_mm_any_lt(rsq20,rcutoff2))
726             {
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq20             = _mm_mul_pd(iq2,jq0);
730
731             /* REACTION-FIELD ELECTROSTATICS */
732             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
733
734             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
735
736             fscal            = felec;
737
738             fscal            = _mm_and_pd(fscal,cutoff_mask);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm_mul_pd(fscal,dx20);
742             ty               = _mm_mul_pd(fscal,dy20);
743             tz               = _mm_mul_pd(fscal,dz20);
744
745             /* Update vectorial force */
746             fix2             = _mm_add_pd(fix2,tx);
747             fiy2             = _mm_add_pd(fiy2,ty);
748             fiz2             = _mm_add_pd(fiz2,tz);
749
750             fjx0             = _mm_add_pd(fjx0,tx);
751             fjy0             = _mm_add_pd(fjy0,ty);
752             fjz0             = _mm_add_pd(fjz0,tz);
753
754             }
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm_any_lt(rsq30,rcutoff2))
761             {
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq30             = _mm_mul_pd(iq3,jq0);
765
766             /* REACTION-FIELD ELECTROSTATICS */
767             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
768
769             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
770
771             fscal            = felec;
772
773             fscal            = _mm_and_pd(fscal,cutoff_mask);
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm_mul_pd(fscal,dx30);
777             ty               = _mm_mul_pd(fscal,dy30);
778             tz               = _mm_mul_pd(fscal,dz30);
779
780             /* Update vectorial force */
781             fix3             = _mm_add_pd(fix3,tx);
782             fiy3             = _mm_add_pd(fiy3,ty);
783             fiz3             = _mm_add_pd(fiz3,tz);
784
785             fjx0             = _mm_add_pd(fjx0,tx);
786             fjy0             = _mm_add_pd(fjy0,ty);
787             fjz0             = _mm_add_pd(fjz0,tz);
788
789             }
790
791             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
792
793             /* Inner loop uses 93 flops */
794         }
795
796         if(jidx<j_index_end)
797         {
798
799             jnrA             = jjnr[jidx];
800             j_coord_offsetA  = DIM*jnrA;
801
802             /* load j atom coordinates */
803             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
804                                               &jx0,&jy0,&jz0);
805
806             /* Calculate displacement vector */
807             dx10             = _mm_sub_pd(ix1,jx0);
808             dy10             = _mm_sub_pd(iy1,jy0);
809             dz10             = _mm_sub_pd(iz1,jz0);
810             dx20             = _mm_sub_pd(ix2,jx0);
811             dy20             = _mm_sub_pd(iy2,jy0);
812             dz20             = _mm_sub_pd(iz2,jz0);
813             dx30             = _mm_sub_pd(ix3,jx0);
814             dy30             = _mm_sub_pd(iy3,jy0);
815             dz30             = _mm_sub_pd(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
819             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
820             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
821
822             rinv10           = sse41_invsqrt_d(rsq10);
823             rinv20           = sse41_invsqrt_d(rsq20);
824             rinv30           = sse41_invsqrt_d(rsq30);
825
826             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
827             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
828             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
829
830             /* Load parameters for j particles */
831             jq0              = _mm_load_sd(charge+jnrA+0);
832
833             fjx0             = _mm_setzero_pd();
834             fjy0             = _mm_setzero_pd();
835             fjz0             = _mm_setzero_pd();
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             if (gmx_mm_any_lt(rsq10,rcutoff2))
842             {
843
844             /* Compute parameters for interactions between i and j atoms */
845             qq10             = _mm_mul_pd(iq1,jq0);
846
847             /* REACTION-FIELD ELECTROSTATICS */
848             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
849
850             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
851
852             fscal            = felec;
853
854             fscal            = _mm_and_pd(fscal,cutoff_mask);
855
856             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm_mul_pd(fscal,dx10);
860             ty               = _mm_mul_pd(fscal,dy10);
861             tz               = _mm_mul_pd(fscal,dz10);
862
863             /* Update vectorial force */
864             fix1             = _mm_add_pd(fix1,tx);
865             fiy1             = _mm_add_pd(fiy1,ty);
866             fiz1             = _mm_add_pd(fiz1,tz);
867
868             fjx0             = _mm_add_pd(fjx0,tx);
869             fjy0             = _mm_add_pd(fjy0,ty);
870             fjz0             = _mm_add_pd(fjz0,tz);
871
872             }
873
874             /**************************
875              * CALCULATE INTERACTIONS *
876              **************************/
877
878             if (gmx_mm_any_lt(rsq20,rcutoff2))
879             {
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq20             = _mm_mul_pd(iq2,jq0);
883
884             /* REACTION-FIELD ELECTROSTATICS */
885             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
886
887             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
888
889             fscal            = felec;
890
891             fscal            = _mm_and_pd(fscal,cutoff_mask);
892
893             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm_mul_pd(fscal,dx20);
897             ty               = _mm_mul_pd(fscal,dy20);
898             tz               = _mm_mul_pd(fscal,dz20);
899
900             /* Update vectorial force */
901             fix2             = _mm_add_pd(fix2,tx);
902             fiy2             = _mm_add_pd(fiy2,ty);
903             fiz2             = _mm_add_pd(fiz2,tz);
904
905             fjx0             = _mm_add_pd(fjx0,tx);
906             fjy0             = _mm_add_pd(fjy0,ty);
907             fjz0             = _mm_add_pd(fjz0,tz);
908
909             }
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             if (gmx_mm_any_lt(rsq30,rcutoff2))
916             {
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq30             = _mm_mul_pd(iq3,jq0);
920
921             /* REACTION-FIELD ELECTROSTATICS */
922             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
923
924             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
925
926             fscal            = felec;
927
928             fscal            = _mm_and_pd(fscal,cutoff_mask);
929
930             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx30);
934             ty               = _mm_mul_pd(fscal,dy30);
935             tz               = _mm_mul_pd(fscal,dz30);
936
937             /* Update vectorial force */
938             fix3             = _mm_add_pd(fix3,tx);
939             fiy3             = _mm_add_pd(fiy3,ty);
940             fiz3             = _mm_add_pd(fiz3,tz);
941
942             fjx0             = _mm_add_pd(fjx0,tx);
943             fjy0             = _mm_add_pd(fjy0,ty);
944             fjz0             = _mm_add_pd(fjz0,tz);
945
946             }
947
948             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
949
950             /* Inner loop uses 93 flops */
951         }
952
953         /* End of innermost loop */
954
955         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
956                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
957
958         /* Increment number of inner iterations */
959         inneriter                  += j_index_end - j_index_start;
960
961         /* Outer loop uses 18 flops */
962     }
963
964     /* Increment number of outer iterations */
965     outeriter        += nri;
966
967     /* Update outer/inner flops */
968
969     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*93);
970 }