Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_pd(rcutoff_scalar);
125     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
151                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156         fix1             = _mm_setzero_pd();
157         fiy1             = _mm_setzero_pd();
158         fiz1             = _mm_setzero_pd();
159         fix2             = _mm_setzero_pd();
160         fiy2             = _mm_setzero_pd();
161         fiz2             = _mm_setzero_pd();
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184             dx10             = _mm_sub_pd(ix1,jx0);
185             dy10             = _mm_sub_pd(iy1,jy0);
186             dz10             = _mm_sub_pd(iz1,jz0);
187             dx20             = _mm_sub_pd(ix2,jx0);
188             dy20             = _mm_sub_pd(iy2,jy0);
189             dz20             = _mm_sub_pd(iz2,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
193             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
194             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
195
196             rinv00           = gmx_mm_invsqrt_pd(rsq00);
197             rinv10           = gmx_mm_invsqrt_pd(rsq10);
198             rinv20           = gmx_mm_invsqrt_pd(rsq20);
199
200             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
201             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
202             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206
207             fjx0             = _mm_setzero_pd();
208             fjy0             = _mm_setzero_pd();
209             fjz0             = _mm_setzero_pd();
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm_any_lt(rsq00,rcutoff2))
216             {
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220
221             /* REACTION-FIELD ELECTROSTATICS */
222             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
223             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
224
225             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velec            = _mm_and_pd(velec,cutoff_mask);
229             velecsum         = _mm_add_pd(velecsum,velec);
230
231             fscal            = felec;
232
233             fscal            = _mm_and_pd(fscal,cutoff_mask);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm_mul_pd(fscal,dx00);
237             ty               = _mm_mul_pd(fscal,dy00);
238             tz               = _mm_mul_pd(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm_add_pd(fix0,tx);
242             fiy0             = _mm_add_pd(fiy0,ty);
243             fiz0             = _mm_add_pd(fiz0,tz);
244
245             fjx0             = _mm_add_pd(fjx0,tx);
246             fjy0             = _mm_add_pd(fjy0,ty);
247             fjz0             = _mm_add_pd(fjz0,tz);
248
249             }
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             if (gmx_mm_any_lt(rsq10,rcutoff2))
256             {
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq10             = _mm_mul_pd(iq1,jq0);
260
261             /* REACTION-FIELD ELECTROSTATICS */
262             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
263             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
264
265             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _mm_and_pd(velec,cutoff_mask);
269             velecsum         = _mm_add_pd(velecsum,velec);
270
271             fscal            = felec;
272
273             fscal            = _mm_and_pd(fscal,cutoff_mask);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm_mul_pd(fscal,dx10);
277             ty               = _mm_mul_pd(fscal,dy10);
278             tz               = _mm_mul_pd(fscal,dz10);
279
280             /* Update vectorial force */
281             fix1             = _mm_add_pd(fix1,tx);
282             fiy1             = _mm_add_pd(fiy1,ty);
283             fiz1             = _mm_add_pd(fiz1,tz);
284
285             fjx0             = _mm_add_pd(fjx0,tx);
286             fjy0             = _mm_add_pd(fjy0,ty);
287             fjz0             = _mm_add_pd(fjz0,tz);
288
289             }
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm_any_lt(rsq20,rcutoff2))
296             {
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq20             = _mm_mul_pd(iq2,jq0);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
303             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
304
305             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_and_pd(velec,cutoff_mask);
309             velecsum         = _mm_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm_and_pd(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_pd(fscal,dx20);
317             ty               = _mm_mul_pd(fscal,dy20);
318             tz               = _mm_mul_pd(fscal,dz20);
319
320             /* Update vectorial force */
321             fix2             = _mm_add_pd(fix2,tx);
322             fiy2             = _mm_add_pd(fiy2,ty);
323             fiz2             = _mm_add_pd(fiz2,tz);
324
325             fjx0             = _mm_add_pd(fjx0,tx);
326             fjy0             = _mm_add_pd(fjy0,ty);
327             fjz0             = _mm_add_pd(fjz0,tz);
328
329             }
330
331             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
332
333             /* Inner loop uses 111 flops */
334         }
335
336         if(jidx<j_index_end)
337         {
338
339             jnrA             = jjnr[jidx];
340             j_coord_offsetA  = DIM*jnrA;
341
342             /* load j atom coordinates */
343             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
344                                               &jx0,&jy0,&jz0);
345
346             /* Calculate displacement vector */
347             dx00             = _mm_sub_pd(ix0,jx0);
348             dy00             = _mm_sub_pd(iy0,jy0);
349             dz00             = _mm_sub_pd(iz0,jz0);
350             dx10             = _mm_sub_pd(ix1,jx0);
351             dy10             = _mm_sub_pd(iy1,jy0);
352             dz10             = _mm_sub_pd(iz1,jz0);
353             dx20             = _mm_sub_pd(ix2,jx0);
354             dy20             = _mm_sub_pd(iy2,jy0);
355             dz20             = _mm_sub_pd(iz2,jz0);
356
357             /* Calculate squared distance and things based on it */
358             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
359             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
360             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
361
362             rinv00           = gmx_mm_invsqrt_pd(rsq00);
363             rinv10           = gmx_mm_invsqrt_pd(rsq10);
364             rinv20           = gmx_mm_invsqrt_pd(rsq20);
365
366             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
367             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
368             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
369
370             /* Load parameters for j particles */
371             jq0              = _mm_load_sd(charge+jnrA+0);
372
373             fjx0             = _mm_setzero_pd();
374             fjy0             = _mm_setzero_pd();
375             fjz0             = _mm_setzero_pd();
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             if (gmx_mm_any_lt(rsq00,rcutoff2))
382             {
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq00             = _mm_mul_pd(iq0,jq0);
386
387             /* REACTION-FIELD ELECTROSTATICS */
388             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
389             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
390
391             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _mm_and_pd(velec,cutoff_mask);
395             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
396             velecsum         = _mm_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             fscal            = _mm_and_pd(fscal,cutoff_mask);
401
402             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm_mul_pd(fscal,dx00);
406             ty               = _mm_mul_pd(fscal,dy00);
407             tz               = _mm_mul_pd(fscal,dz00);
408
409             /* Update vectorial force */
410             fix0             = _mm_add_pd(fix0,tx);
411             fiy0             = _mm_add_pd(fiy0,ty);
412             fiz0             = _mm_add_pd(fiz0,tz);
413
414             fjx0             = _mm_add_pd(fjx0,tx);
415             fjy0             = _mm_add_pd(fjy0,ty);
416             fjz0             = _mm_add_pd(fjz0,tz);
417
418             }
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             if (gmx_mm_any_lt(rsq10,rcutoff2))
425             {
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq10             = _mm_mul_pd(iq1,jq0);
429
430             /* REACTION-FIELD ELECTROSTATICS */
431             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
432             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
433
434             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm_and_pd(velec,cutoff_mask);
438             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
439             velecsum         = _mm_add_pd(velecsum,velec);
440
441             fscal            = felec;
442
443             fscal            = _mm_and_pd(fscal,cutoff_mask);
444
445             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
446
447             /* Calculate temporary vectorial force */
448             tx               = _mm_mul_pd(fscal,dx10);
449             ty               = _mm_mul_pd(fscal,dy10);
450             tz               = _mm_mul_pd(fscal,dz10);
451
452             /* Update vectorial force */
453             fix1             = _mm_add_pd(fix1,tx);
454             fiy1             = _mm_add_pd(fiy1,ty);
455             fiz1             = _mm_add_pd(fiz1,tz);
456
457             fjx0             = _mm_add_pd(fjx0,tx);
458             fjy0             = _mm_add_pd(fjy0,ty);
459             fjz0             = _mm_add_pd(fjz0,tz);
460
461             }
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             if (gmx_mm_any_lt(rsq20,rcutoff2))
468             {
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq20             = _mm_mul_pd(iq2,jq0);
472
473             /* REACTION-FIELD ELECTROSTATICS */
474             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
475             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
476
477             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm_and_pd(velec,cutoff_mask);
481             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
482             velecsum         = _mm_add_pd(velecsum,velec);
483
484             fscal            = felec;
485
486             fscal            = _mm_and_pd(fscal,cutoff_mask);
487
488             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_pd(fscal,dx20);
492             ty               = _mm_mul_pd(fscal,dy20);
493             tz               = _mm_mul_pd(fscal,dz20);
494
495             /* Update vectorial force */
496             fix2             = _mm_add_pd(fix2,tx);
497             fiy2             = _mm_add_pd(fiy2,ty);
498             fiz2             = _mm_add_pd(fiz2,tz);
499
500             fjx0             = _mm_add_pd(fjx0,tx);
501             fjy0             = _mm_add_pd(fjy0,ty);
502             fjz0             = _mm_add_pd(fjz0,tz);
503
504             }
505
506             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
507
508             /* Inner loop uses 111 flops */
509         }
510
511         /* End of innermost loop */
512
513         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
514                                               f+i_coord_offset,fshift+i_shift_offset);
515
516         ggid                        = gid[iidx];
517         /* Update potential energies */
518         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
519
520         /* Increment number of inner iterations */
521         inneriter                  += j_index_end - j_index_start;
522
523         /* Outer loop uses 19 flops */
524     }
525
526     /* Increment number of outer iterations */
527     outeriter        += nri;
528
529     /* Update outer/inner flops */
530
531     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*111);
532 }
533 /*
534  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse4_1_double
535  * Electrostatics interaction: ReactionField
536  * VdW interaction:            None
537  * Geometry:                   Water3-Particle
538  * Calculate force/pot:        Force
539  */
540 void
541 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse4_1_double
542                     (t_nblist                    * gmx_restrict       nlist,
543                      rvec                        * gmx_restrict          xx,
544                      rvec                        * gmx_restrict          ff,
545                      t_forcerec                  * gmx_restrict          fr,
546                      t_mdatoms                   * gmx_restrict     mdatoms,
547                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
548                      t_nrnb                      * gmx_restrict        nrnb)
549 {
550     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
551      * just 0 for non-waters.
552      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
553      * jnr indices corresponding to data put in the four positions in the SIMD register.
554      */
555     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
556     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
557     int              jnrA,jnrB;
558     int              j_coord_offsetA,j_coord_offsetB;
559     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
560     real             rcutoff_scalar;
561     real             *shiftvec,*fshift,*x,*f;
562     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
563     int              vdwioffset0;
564     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
565     int              vdwioffset1;
566     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
567     int              vdwioffset2;
568     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
569     int              vdwjidx0A,vdwjidx0B;
570     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
571     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
572     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
573     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
574     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
575     real             *charge;
576     __m128d          dummy_mask,cutoff_mask;
577     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
578     __m128d          one     = _mm_set1_pd(1.0);
579     __m128d          two     = _mm_set1_pd(2.0);
580     x                = xx[0];
581     f                = ff[0];
582
583     nri              = nlist->nri;
584     iinr             = nlist->iinr;
585     jindex           = nlist->jindex;
586     jjnr             = nlist->jjnr;
587     shiftidx         = nlist->shift;
588     gid              = nlist->gid;
589     shiftvec         = fr->shift_vec[0];
590     fshift           = fr->fshift[0];
591     facel            = _mm_set1_pd(fr->epsfac);
592     charge           = mdatoms->chargeA;
593     krf              = _mm_set1_pd(fr->ic->k_rf);
594     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
595     crf              = _mm_set1_pd(fr->ic->c_rf);
596
597     /* Setup water-specific parameters */
598     inr              = nlist->iinr[0];
599     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
600     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
601     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
602
603     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
604     rcutoff_scalar   = fr->rcoulomb;
605     rcutoff          = _mm_set1_pd(rcutoff_scalar);
606     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
607
608     /* Avoid stupid compiler warnings */
609     jnrA = jnrB = 0;
610     j_coord_offsetA = 0;
611     j_coord_offsetB = 0;
612
613     outeriter        = 0;
614     inneriter        = 0;
615
616     /* Start outer loop over neighborlists */
617     for(iidx=0; iidx<nri; iidx++)
618     {
619         /* Load shift vector for this list */
620         i_shift_offset   = DIM*shiftidx[iidx];
621
622         /* Load limits for loop over neighbors */
623         j_index_start    = jindex[iidx];
624         j_index_end      = jindex[iidx+1];
625
626         /* Get outer coordinate index */
627         inr              = iinr[iidx];
628         i_coord_offset   = DIM*inr;
629
630         /* Load i particle coords and add shift vector */
631         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
632                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
633
634         fix0             = _mm_setzero_pd();
635         fiy0             = _mm_setzero_pd();
636         fiz0             = _mm_setzero_pd();
637         fix1             = _mm_setzero_pd();
638         fiy1             = _mm_setzero_pd();
639         fiz1             = _mm_setzero_pd();
640         fix2             = _mm_setzero_pd();
641         fiy2             = _mm_setzero_pd();
642         fiz2             = _mm_setzero_pd();
643
644         /* Start inner kernel loop */
645         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
646         {
647
648             /* Get j neighbor index, and coordinate index */
649             jnrA             = jjnr[jidx];
650             jnrB             = jjnr[jidx+1];
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653
654             /* load j atom coordinates */
655             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
656                                               &jx0,&jy0,&jz0);
657
658             /* Calculate displacement vector */
659             dx00             = _mm_sub_pd(ix0,jx0);
660             dy00             = _mm_sub_pd(iy0,jy0);
661             dz00             = _mm_sub_pd(iz0,jz0);
662             dx10             = _mm_sub_pd(ix1,jx0);
663             dy10             = _mm_sub_pd(iy1,jy0);
664             dz10             = _mm_sub_pd(iz1,jz0);
665             dx20             = _mm_sub_pd(ix2,jx0);
666             dy20             = _mm_sub_pd(iy2,jy0);
667             dz20             = _mm_sub_pd(iz2,jz0);
668
669             /* Calculate squared distance and things based on it */
670             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
671             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
672             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
673
674             rinv00           = gmx_mm_invsqrt_pd(rsq00);
675             rinv10           = gmx_mm_invsqrt_pd(rsq10);
676             rinv20           = gmx_mm_invsqrt_pd(rsq20);
677
678             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
679             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
680             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
681
682             /* Load parameters for j particles */
683             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
684
685             fjx0             = _mm_setzero_pd();
686             fjy0             = _mm_setzero_pd();
687             fjz0             = _mm_setzero_pd();
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             if (gmx_mm_any_lt(rsq00,rcutoff2))
694             {
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq00             = _mm_mul_pd(iq0,jq0);
698
699             /* REACTION-FIELD ELECTROSTATICS */
700             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
701
702             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
703
704             fscal            = felec;
705
706             fscal            = _mm_and_pd(fscal,cutoff_mask);
707
708             /* Calculate temporary vectorial force */
709             tx               = _mm_mul_pd(fscal,dx00);
710             ty               = _mm_mul_pd(fscal,dy00);
711             tz               = _mm_mul_pd(fscal,dz00);
712
713             /* Update vectorial force */
714             fix0             = _mm_add_pd(fix0,tx);
715             fiy0             = _mm_add_pd(fiy0,ty);
716             fiz0             = _mm_add_pd(fiz0,tz);
717
718             fjx0             = _mm_add_pd(fjx0,tx);
719             fjy0             = _mm_add_pd(fjy0,ty);
720             fjz0             = _mm_add_pd(fjz0,tz);
721
722             }
723
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             if (gmx_mm_any_lt(rsq10,rcutoff2))
729             {
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq10             = _mm_mul_pd(iq1,jq0);
733
734             /* REACTION-FIELD ELECTROSTATICS */
735             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
736
737             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
738
739             fscal            = felec;
740
741             fscal            = _mm_and_pd(fscal,cutoff_mask);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm_mul_pd(fscal,dx10);
745             ty               = _mm_mul_pd(fscal,dy10);
746             tz               = _mm_mul_pd(fscal,dz10);
747
748             /* Update vectorial force */
749             fix1             = _mm_add_pd(fix1,tx);
750             fiy1             = _mm_add_pd(fiy1,ty);
751             fiz1             = _mm_add_pd(fiz1,tz);
752
753             fjx0             = _mm_add_pd(fjx0,tx);
754             fjy0             = _mm_add_pd(fjy0,ty);
755             fjz0             = _mm_add_pd(fjz0,tz);
756
757             }
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             if (gmx_mm_any_lt(rsq20,rcutoff2))
764             {
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq20             = _mm_mul_pd(iq2,jq0);
768
769             /* REACTION-FIELD ELECTROSTATICS */
770             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
771
772             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
773
774             fscal            = felec;
775
776             fscal            = _mm_and_pd(fscal,cutoff_mask);
777
778             /* Calculate temporary vectorial force */
779             tx               = _mm_mul_pd(fscal,dx20);
780             ty               = _mm_mul_pd(fscal,dy20);
781             tz               = _mm_mul_pd(fscal,dz20);
782
783             /* Update vectorial force */
784             fix2             = _mm_add_pd(fix2,tx);
785             fiy2             = _mm_add_pd(fiy2,ty);
786             fiz2             = _mm_add_pd(fiz2,tz);
787
788             fjx0             = _mm_add_pd(fjx0,tx);
789             fjy0             = _mm_add_pd(fjy0,ty);
790             fjz0             = _mm_add_pd(fjz0,tz);
791
792             }
793
794             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
795
796             /* Inner loop uses 93 flops */
797         }
798
799         if(jidx<j_index_end)
800         {
801
802             jnrA             = jjnr[jidx];
803             j_coord_offsetA  = DIM*jnrA;
804
805             /* load j atom coordinates */
806             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
807                                               &jx0,&jy0,&jz0);
808
809             /* Calculate displacement vector */
810             dx00             = _mm_sub_pd(ix0,jx0);
811             dy00             = _mm_sub_pd(iy0,jy0);
812             dz00             = _mm_sub_pd(iz0,jz0);
813             dx10             = _mm_sub_pd(ix1,jx0);
814             dy10             = _mm_sub_pd(iy1,jy0);
815             dz10             = _mm_sub_pd(iz1,jz0);
816             dx20             = _mm_sub_pd(ix2,jx0);
817             dy20             = _mm_sub_pd(iy2,jy0);
818             dz20             = _mm_sub_pd(iz2,jz0);
819
820             /* Calculate squared distance and things based on it */
821             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
822             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
823             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
824
825             rinv00           = gmx_mm_invsqrt_pd(rsq00);
826             rinv10           = gmx_mm_invsqrt_pd(rsq10);
827             rinv20           = gmx_mm_invsqrt_pd(rsq20);
828
829             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
830             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
831             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
832
833             /* Load parameters for j particles */
834             jq0              = _mm_load_sd(charge+jnrA+0);
835
836             fjx0             = _mm_setzero_pd();
837             fjy0             = _mm_setzero_pd();
838             fjz0             = _mm_setzero_pd();
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             if (gmx_mm_any_lt(rsq00,rcutoff2))
845             {
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq00             = _mm_mul_pd(iq0,jq0);
849
850             /* REACTION-FIELD ELECTROSTATICS */
851             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
852
853             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
854
855             fscal            = felec;
856
857             fscal            = _mm_and_pd(fscal,cutoff_mask);
858
859             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
860
861             /* Calculate temporary vectorial force */
862             tx               = _mm_mul_pd(fscal,dx00);
863             ty               = _mm_mul_pd(fscal,dy00);
864             tz               = _mm_mul_pd(fscal,dz00);
865
866             /* Update vectorial force */
867             fix0             = _mm_add_pd(fix0,tx);
868             fiy0             = _mm_add_pd(fiy0,ty);
869             fiz0             = _mm_add_pd(fiz0,tz);
870
871             fjx0             = _mm_add_pd(fjx0,tx);
872             fjy0             = _mm_add_pd(fjy0,ty);
873             fjz0             = _mm_add_pd(fjz0,tz);
874
875             }
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             if (gmx_mm_any_lt(rsq10,rcutoff2))
882             {
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq10             = _mm_mul_pd(iq1,jq0);
886
887             /* REACTION-FIELD ELECTROSTATICS */
888             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
889
890             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
891
892             fscal            = felec;
893
894             fscal            = _mm_and_pd(fscal,cutoff_mask);
895
896             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm_mul_pd(fscal,dx10);
900             ty               = _mm_mul_pd(fscal,dy10);
901             tz               = _mm_mul_pd(fscal,dz10);
902
903             /* Update vectorial force */
904             fix1             = _mm_add_pd(fix1,tx);
905             fiy1             = _mm_add_pd(fiy1,ty);
906             fiz1             = _mm_add_pd(fiz1,tz);
907
908             fjx0             = _mm_add_pd(fjx0,tx);
909             fjy0             = _mm_add_pd(fjy0,ty);
910             fjz0             = _mm_add_pd(fjz0,tz);
911
912             }
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             if (gmx_mm_any_lt(rsq20,rcutoff2))
919             {
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq20             = _mm_mul_pd(iq2,jq0);
923
924             /* REACTION-FIELD ELECTROSTATICS */
925             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
926
927             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
928
929             fscal            = felec;
930
931             fscal            = _mm_and_pd(fscal,cutoff_mask);
932
933             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_pd(fscal,dx20);
937             ty               = _mm_mul_pd(fscal,dy20);
938             tz               = _mm_mul_pd(fscal,dz20);
939
940             /* Update vectorial force */
941             fix2             = _mm_add_pd(fix2,tx);
942             fiy2             = _mm_add_pd(fiy2,ty);
943             fiz2             = _mm_add_pd(fiz2,tz);
944
945             fjx0             = _mm_add_pd(fjx0,tx);
946             fjy0             = _mm_add_pd(fjy0,ty);
947             fjz0             = _mm_add_pd(fjz0,tz);
948
949             }
950
951             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
952
953             /* Inner loop uses 93 flops */
954         }
955
956         /* End of innermost loop */
957
958         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
959                                               f+i_coord_offset,fshift+i_shift_offset);
960
961         /* Increment number of inner iterations */
962         inneriter                  += j_index_end - j_index_start;
963
964         /* Outer loop uses 18 flops */
965     }
966
967     /* Increment number of outer iterations */
968     outeriter        += nri;
969
970     /* Update outer/inner flops */
971
972     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*93);
973 }