68a0c02141cc8668712e55ed4cdad84b48811fbe
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_pd(fr->ic->k_rf);
97     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_pd(fr->ic->c_rf);
99
100     /* Setup water-specific parameters */
101     inr              = nlist->iinr[0];
102     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
103     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
104     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
105
106     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
107     rcutoff_scalar   = fr->rcoulomb;
108     rcutoff          = _mm_set1_pd(rcutoff_scalar);
109     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
135                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
136
137         fix0             = _mm_setzero_pd();
138         fiy0             = _mm_setzero_pd();
139         fiz0             = _mm_setzero_pd();
140         fix1             = _mm_setzero_pd();
141         fiy1             = _mm_setzero_pd();
142         fiz1             = _mm_setzero_pd();
143         fix2             = _mm_setzero_pd();
144         fiy2             = _mm_setzero_pd();
145         fiz2             = _mm_setzero_pd();
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm_sub_pd(ix0,jx0);
166             dy00             = _mm_sub_pd(iy0,jy0);
167             dz00             = _mm_sub_pd(iz0,jz0);
168             dx10             = _mm_sub_pd(ix1,jx0);
169             dy10             = _mm_sub_pd(iy1,jy0);
170             dz10             = _mm_sub_pd(iz1,jz0);
171             dx20             = _mm_sub_pd(ix2,jx0);
172             dy20             = _mm_sub_pd(iy2,jy0);
173             dz20             = _mm_sub_pd(iz2,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
178             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
179
180             rinv00           = gmx_mm_invsqrt_pd(rsq00);
181             rinv10           = gmx_mm_invsqrt_pd(rsq10);
182             rinv20           = gmx_mm_invsqrt_pd(rsq20);
183
184             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
185             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
186             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
190
191             fjx0             = _mm_setzero_pd();
192             fjy0             = _mm_setzero_pd();
193             fjz0             = _mm_setzero_pd();
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_pd(iq0,jq0);
204
205             /* REACTION-FIELD ELECTROSTATICS */
206             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
207             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
208
209             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             velec            = _mm_and_pd(velec,cutoff_mask);
213             velecsum         = _mm_add_pd(velecsum,velec);
214
215             fscal            = felec;
216
217             fscal            = _mm_and_pd(fscal,cutoff_mask);
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_pd(fscal,dx00);
221             ty               = _mm_mul_pd(fscal,dy00);
222             tz               = _mm_mul_pd(fscal,dz00);
223
224             /* Update vectorial force */
225             fix0             = _mm_add_pd(fix0,tx);
226             fiy0             = _mm_add_pd(fiy0,ty);
227             fiz0             = _mm_add_pd(fiz0,tz);
228
229             fjx0             = _mm_add_pd(fjx0,tx);
230             fjy0             = _mm_add_pd(fjy0,ty);
231             fjz0             = _mm_add_pd(fjz0,tz);
232
233             }
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             if (gmx_mm_any_lt(rsq10,rcutoff2))
240             {
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq10             = _mm_mul_pd(iq1,jq0);
244
245             /* REACTION-FIELD ELECTROSTATICS */
246             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
247             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
248
249             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velec            = _mm_and_pd(velec,cutoff_mask);
253             velecsum         = _mm_add_pd(velecsum,velec);
254
255             fscal            = felec;
256
257             fscal            = _mm_and_pd(fscal,cutoff_mask);
258
259             /* Calculate temporary vectorial force */
260             tx               = _mm_mul_pd(fscal,dx10);
261             ty               = _mm_mul_pd(fscal,dy10);
262             tz               = _mm_mul_pd(fscal,dz10);
263
264             /* Update vectorial force */
265             fix1             = _mm_add_pd(fix1,tx);
266             fiy1             = _mm_add_pd(fiy1,ty);
267             fiz1             = _mm_add_pd(fiz1,tz);
268
269             fjx0             = _mm_add_pd(fjx0,tx);
270             fjy0             = _mm_add_pd(fjy0,ty);
271             fjz0             = _mm_add_pd(fjz0,tz);
272
273             }
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_mm_any_lt(rsq20,rcutoff2))
280             {
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq20             = _mm_mul_pd(iq2,jq0);
284
285             /* REACTION-FIELD ELECTROSTATICS */
286             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
287             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
288
289             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velec            = _mm_and_pd(velec,cutoff_mask);
293             velecsum         = _mm_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             fscal            = _mm_and_pd(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_pd(fscal,dx20);
301             ty               = _mm_mul_pd(fscal,dy20);
302             tz               = _mm_mul_pd(fscal,dz20);
303
304             /* Update vectorial force */
305             fix2             = _mm_add_pd(fix2,tx);
306             fiy2             = _mm_add_pd(fiy2,ty);
307             fiz2             = _mm_add_pd(fiz2,tz);
308
309             fjx0             = _mm_add_pd(fjx0,tx);
310             fjy0             = _mm_add_pd(fjy0,ty);
311             fjz0             = _mm_add_pd(fjz0,tz);
312
313             }
314
315             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
316
317             /* Inner loop uses 111 flops */
318         }
319
320         if(jidx<j_index_end)
321         {
322
323             jnrA             = jjnr[jidx];
324             j_coord_offsetA  = DIM*jnrA;
325
326             /* load j atom coordinates */
327             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
328                                               &jx0,&jy0,&jz0);
329
330             /* Calculate displacement vector */
331             dx00             = _mm_sub_pd(ix0,jx0);
332             dy00             = _mm_sub_pd(iy0,jy0);
333             dz00             = _mm_sub_pd(iz0,jz0);
334             dx10             = _mm_sub_pd(ix1,jx0);
335             dy10             = _mm_sub_pd(iy1,jy0);
336             dz10             = _mm_sub_pd(iz1,jz0);
337             dx20             = _mm_sub_pd(ix2,jx0);
338             dy20             = _mm_sub_pd(iy2,jy0);
339             dz20             = _mm_sub_pd(iz2,jz0);
340
341             /* Calculate squared distance and things based on it */
342             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
343             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
344             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
345
346             rinv00           = gmx_mm_invsqrt_pd(rsq00);
347             rinv10           = gmx_mm_invsqrt_pd(rsq10);
348             rinv20           = gmx_mm_invsqrt_pd(rsq20);
349
350             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
351             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
352             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
353
354             /* Load parameters for j particles */
355             jq0              = _mm_load_sd(charge+jnrA+0);
356
357             fjx0             = _mm_setzero_pd();
358             fjy0             = _mm_setzero_pd();
359             fjz0             = _mm_setzero_pd();
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq00,rcutoff2))
366             {
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq00             = _mm_mul_pd(iq0,jq0);
370
371             /* REACTION-FIELD ELECTROSTATICS */
372             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
373             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
374
375             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm_and_pd(velec,cutoff_mask);
379             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
380             velecsum         = _mm_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             fscal            = _mm_and_pd(fscal,cutoff_mask);
385
386             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm_mul_pd(fscal,dx00);
390             ty               = _mm_mul_pd(fscal,dy00);
391             tz               = _mm_mul_pd(fscal,dz00);
392
393             /* Update vectorial force */
394             fix0             = _mm_add_pd(fix0,tx);
395             fiy0             = _mm_add_pd(fiy0,ty);
396             fiz0             = _mm_add_pd(fiz0,tz);
397
398             fjx0             = _mm_add_pd(fjx0,tx);
399             fjy0             = _mm_add_pd(fjy0,ty);
400             fjz0             = _mm_add_pd(fjz0,tz);
401
402             }
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             if (gmx_mm_any_lt(rsq10,rcutoff2))
409             {
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq10             = _mm_mul_pd(iq1,jq0);
413
414             /* REACTION-FIELD ELECTROSTATICS */
415             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
416             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
417
418             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_pd(velec,cutoff_mask);
422             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_and_pd(fscal,cutoff_mask);
428
429             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_pd(fscal,dx10);
433             ty               = _mm_mul_pd(fscal,dy10);
434             tz               = _mm_mul_pd(fscal,dz10);
435
436             /* Update vectorial force */
437             fix1             = _mm_add_pd(fix1,tx);
438             fiy1             = _mm_add_pd(fiy1,ty);
439             fiz1             = _mm_add_pd(fiz1,tz);
440
441             fjx0             = _mm_add_pd(fjx0,tx);
442             fjy0             = _mm_add_pd(fjy0,ty);
443             fjz0             = _mm_add_pd(fjz0,tz);
444
445             }
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             if (gmx_mm_any_lt(rsq20,rcutoff2))
452             {
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq20             = _mm_mul_pd(iq2,jq0);
456
457             /* REACTION-FIELD ELECTROSTATICS */
458             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
459             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
460
461             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm_and_pd(velec,cutoff_mask);
465             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
466             velecsum         = _mm_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm_and_pd(fscal,cutoff_mask);
471
472             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_pd(fscal,dx20);
476             ty               = _mm_mul_pd(fscal,dy20);
477             tz               = _mm_mul_pd(fscal,dz20);
478
479             /* Update vectorial force */
480             fix2             = _mm_add_pd(fix2,tx);
481             fiy2             = _mm_add_pd(fiy2,ty);
482             fiz2             = _mm_add_pd(fiz2,tz);
483
484             fjx0             = _mm_add_pd(fjx0,tx);
485             fjy0             = _mm_add_pd(fjy0,ty);
486             fjz0             = _mm_add_pd(fjz0,tz);
487
488             }
489
490             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
491
492             /* Inner loop uses 111 flops */
493         }
494
495         /* End of innermost loop */
496
497         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
498                                               f+i_coord_offset,fshift+i_shift_offset);
499
500         ggid                        = gid[iidx];
501         /* Update potential energies */
502         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
503
504         /* Increment number of inner iterations */
505         inneriter                  += j_index_end - j_index_start;
506
507         /* Outer loop uses 19 flops */
508     }
509
510     /* Increment number of outer iterations */
511     outeriter        += nri;
512
513     /* Update outer/inner flops */
514
515     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*111);
516 }
517 /*
518  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse4_1_double
519  * Electrostatics interaction: ReactionField
520  * VdW interaction:            None
521  * Geometry:                   Water3-Particle
522  * Calculate force/pot:        Force
523  */
524 void
525 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse4_1_double
526                     (t_nblist * gmx_restrict                nlist,
527                      rvec * gmx_restrict                    xx,
528                      rvec * gmx_restrict                    ff,
529                      t_forcerec * gmx_restrict              fr,
530                      t_mdatoms * gmx_restrict               mdatoms,
531                      nb_kernel_data_t * gmx_restrict        kernel_data,
532                      t_nrnb * gmx_restrict                  nrnb)
533 {
534     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
535      * just 0 for non-waters.
536      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
537      * jnr indices corresponding to data put in the four positions in the SIMD register.
538      */
539     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
540     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
541     int              jnrA,jnrB;
542     int              j_coord_offsetA,j_coord_offsetB;
543     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
544     real             rcutoff_scalar;
545     real             *shiftvec,*fshift,*x,*f;
546     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
547     int              vdwioffset0;
548     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
549     int              vdwioffset1;
550     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
551     int              vdwioffset2;
552     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
553     int              vdwjidx0A,vdwjidx0B;
554     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
555     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
556     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
557     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
558     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
559     real             *charge;
560     __m128d          dummy_mask,cutoff_mask;
561     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
562     __m128d          one     = _mm_set1_pd(1.0);
563     __m128d          two     = _mm_set1_pd(2.0);
564     x                = xx[0];
565     f                = ff[0];
566
567     nri              = nlist->nri;
568     iinr             = nlist->iinr;
569     jindex           = nlist->jindex;
570     jjnr             = nlist->jjnr;
571     shiftidx         = nlist->shift;
572     gid              = nlist->gid;
573     shiftvec         = fr->shift_vec[0];
574     fshift           = fr->fshift[0];
575     facel            = _mm_set1_pd(fr->epsfac);
576     charge           = mdatoms->chargeA;
577     krf              = _mm_set1_pd(fr->ic->k_rf);
578     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
579     crf              = _mm_set1_pd(fr->ic->c_rf);
580
581     /* Setup water-specific parameters */
582     inr              = nlist->iinr[0];
583     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
584     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
585     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
586
587     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
588     rcutoff_scalar   = fr->rcoulomb;
589     rcutoff          = _mm_set1_pd(rcutoff_scalar);
590     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
591
592     /* Avoid stupid compiler warnings */
593     jnrA = jnrB = 0;
594     j_coord_offsetA = 0;
595     j_coord_offsetB = 0;
596
597     outeriter        = 0;
598     inneriter        = 0;
599
600     /* Start outer loop over neighborlists */
601     for(iidx=0; iidx<nri; iidx++)
602     {
603         /* Load shift vector for this list */
604         i_shift_offset   = DIM*shiftidx[iidx];
605
606         /* Load limits for loop over neighbors */
607         j_index_start    = jindex[iidx];
608         j_index_end      = jindex[iidx+1];
609
610         /* Get outer coordinate index */
611         inr              = iinr[iidx];
612         i_coord_offset   = DIM*inr;
613
614         /* Load i particle coords and add shift vector */
615         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
616                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
617
618         fix0             = _mm_setzero_pd();
619         fiy0             = _mm_setzero_pd();
620         fiz0             = _mm_setzero_pd();
621         fix1             = _mm_setzero_pd();
622         fiy1             = _mm_setzero_pd();
623         fiz1             = _mm_setzero_pd();
624         fix2             = _mm_setzero_pd();
625         fiy2             = _mm_setzero_pd();
626         fiz2             = _mm_setzero_pd();
627
628         /* Start inner kernel loop */
629         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
630         {
631
632             /* Get j neighbor index, and coordinate index */
633             jnrA             = jjnr[jidx];
634             jnrB             = jjnr[jidx+1];
635             j_coord_offsetA  = DIM*jnrA;
636             j_coord_offsetB  = DIM*jnrB;
637
638             /* load j atom coordinates */
639             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
640                                               &jx0,&jy0,&jz0);
641
642             /* Calculate displacement vector */
643             dx00             = _mm_sub_pd(ix0,jx0);
644             dy00             = _mm_sub_pd(iy0,jy0);
645             dz00             = _mm_sub_pd(iz0,jz0);
646             dx10             = _mm_sub_pd(ix1,jx0);
647             dy10             = _mm_sub_pd(iy1,jy0);
648             dz10             = _mm_sub_pd(iz1,jz0);
649             dx20             = _mm_sub_pd(ix2,jx0);
650             dy20             = _mm_sub_pd(iy2,jy0);
651             dz20             = _mm_sub_pd(iz2,jz0);
652
653             /* Calculate squared distance and things based on it */
654             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
655             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
656             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
657
658             rinv00           = gmx_mm_invsqrt_pd(rsq00);
659             rinv10           = gmx_mm_invsqrt_pd(rsq10);
660             rinv20           = gmx_mm_invsqrt_pd(rsq20);
661
662             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
663             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
664             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
665
666             /* Load parameters for j particles */
667             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
668
669             fjx0             = _mm_setzero_pd();
670             fjy0             = _mm_setzero_pd();
671             fjz0             = _mm_setzero_pd();
672
673             /**************************
674              * CALCULATE INTERACTIONS *
675              **************************/
676
677             if (gmx_mm_any_lt(rsq00,rcutoff2))
678             {
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq00             = _mm_mul_pd(iq0,jq0);
682
683             /* REACTION-FIELD ELECTROSTATICS */
684             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
685
686             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
687
688             fscal            = felec;
689
690             fscal            = _mm_and_pd(fscal,cutoff_mask);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm_mul_pd(fscal,dx00);
694             ty               = _mm_mul_pd(fscal,dy00);
695             tz               = _mm_mul_pd(fscal,dz00);
696
697             /* Update vectorial force */
698             fix0             = _mm_add_pd(fix0,tx);
699             fiy0             = _mm_add_pd(fiy0,ty);
700             fiz0             = _mm_add_pd(fiz0,tz);
701
702             fjx0             = _mm_add_pd(fjx0,tx);
703             fjy0             = _mm_add_pd(fjy0,ty);
704             fjz0             = _mm_add_pd(fjz0,tz);
705
706             }
707
708             /**************************
709              * CALCULATE INTERACTIONS *
710              **************************/
711
712             if (gmx_mm_any_lt(rsq10,rcutoff2))
713             {
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq10             = _mm_mul_pd(iq1,jq0);
717
718             /* REACTION-FIELD ELECTROSTATICS */
719             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
720
721             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
722
723             fscal            = felec;
724
725             fscal            = _mm_and_pd(fscal,cutoff_mask);
726
727             /* Calculate temporary vectorial force */
728             tx               = _mm_mul_pd(fscal,dx10);
729             ty               = _mm_mul_pd(fscal,dy10);
730             tz               = _mm_mul_pd(fscal,dz10);
731
732             /* Update vectorial force */
733             fix1             = _mm_add_pd(fix1,tx);
734             fiy1             = _mm_add_pd(fiy1,ty);
735             fiz1             = _mm_add_pd(fiz1,tz);
736
737             fjx0             = _mm_add_pd(fjx0,tx);
738             fjy0             = _mm_add_pd(fjy0,ty);
739             fjz0             = _mm_add_pd(fjz0,tz);
740
741             }
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             if (gmx_mm_any_lt(rsq20,rcutoff2))
748             {
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq20             = _mm_mul_pd(iq2,jq0);
752
753             /* REACTION-FIELD ELECTROSTATICS */
754             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
755
756             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
757
758             fscal            = felec;
759
760             fscal            = _mm_and_pd(fscal,cutoff_mask);
761
762             /* Calculate temporary vectorial force */
763             tx               = _mm_mul_pd(fscal,dx20);
764             ty               = _mm_mul_pd(fscal,dy20);
765             tz               = _mm_mul_pd(fscal,dz20);
766
767             /* Update vectorial force */
768             fix2             = _mm_add_pd(fix2,tx);
769             fiy2             = _mm_add_pd(fiy2,ty);
770             fiz2             = _mm_add_pd(fiz2,tz);
771
772             fjx0             = _mm_add_pd(fjx0,tx);
773             fjy0             = _mm_add_pd(fjy0,ty);
774             fjz0             = _mm_add_pd(fjz0,tz);
775
776             }
777
778             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
779
780             /* Inner loop uses 93 flops */
781         }
782
783         if(jidx<j_index_end)
784         {
785
786             jnrA             = jjnr[jidx];
787             j_coord_offsetA  = DIM*jnrA;
788
789             /* load j atom coordinates */
790             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
791                                               &jx0,&jy0,&jz0);
792
793             /* Calculate displacement vector */
794             dx00             = _mm_sub_pd(ix0,jx0);
795             dy00             = _mm_sub_pd(iy0,jy0);
796             dz00             = _mm_sub_pd(iz0,jz0);
797             dx10             = _mm_sub_pd(ix1,jx0);
798             dy10             = _mm_sub_pd(iy1,jy0);
799             dz10             = _mm_sub_pd(iz1,jz0);
800             dx20             = _mm_sub_pd(ix2,jx0);
801             dy20             = _mm_sub_pd(iy2,jy0);
802             dz20             = _mm_sub_pd(iz2,jz0);
803
804             /* Calculate squared distance and things based on it */
805             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
806             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
807             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
808
809             rinv00           = gmx_mm_invsqrt_pd(rsq00);
810             rinv10           = gmx_mm_invsqrt_pd(rsq10);
811             rinv20           = gmx_mm_invsqrt_pd(rsq20);
812
813             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
814             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
815             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
816
817             /* Load parameters for j particles */
818             jq0              = _mm_load_sd(charge+jnrA+0);
819
820             fjx0             = _mm_setzero_pd();
821             fjy0             = _mm_setzero_pd();
822             fjz0             = _mm_setzero_pd();
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             if (gmx_mm_any_lt(rsq00,rcutoff2))
829             {
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq00             = _mm_mul_pd(iq0,jq0);
833
834             /* REACTION-FIELD ELECTROSTATICS */
835             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
836
837             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
838
839             fscal            = felec;
840
841             fscal            = _mm_and_pd(fscal,cutoff_mask);
842
843             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm_mul_pd(fscal,dx00);
847             ty               = _mm_mul_pd(fscal,dy00);
848             tz               = _mm_mul_pd(fscal,dz00);
849
850             /* Update vectorial force */
851             fix0             = _mm_add_pd(fix0,tx);
852             fiy0             = _mm_add_pd(fiy0,ty);
853             fiz0             = _mm_add_pd(fiz0,tz);
854
855             fjx0             = _mm_add_pd(fjx0,tx);
856             fjy0             = _mm_add_pd(fjy0,ty);
857             fjz0             = _mm_add_pd(fjz0,tz);
858
859             }
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             if (gmx_mm_any_lt(rsq10,rcutoff2))
866             {
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq10             = _mm_mul_pd(iq1,jq0);
870
871             /* REACTION-FIELD ELECTROSTATICS */
872             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
873
874             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
875
876             fscal            = felec;
877
878             fscal            = _mm_and_pd(fscal,cutoff_mask);
879
880             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
881
882             /* Calculate temporary vectorial force */
883             tx               = _mm_mul_pd(fscal,dx10);
884             ty               = _mm_mul_pd(fscal,dy10);
885             tz               = _mm_mul_pd(fscal,dz10);
886
887             /* Update vectorial force */
888             fix1             = _mm_add_pd(fix1,tx);
889             fiy1             = _mm_add_pd(fiy1,ty);
890             fiz1             = _mm_add_pd(fiz1,tz);
891
892             fjx0             = _mm_add_pd(fjx0,tx);
893             fjy0             = _mm_add_pd(fjy0,ty);
894             fjz0             = _mm_add_pd(fjz0,tz);
895
896             }
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             if (gmx_mm_any_lt(rsq20,rcutoff2))
903             {
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq20             = _mm_mul_pd(iq2,jq0);
907
908             /* REACTION-FIELD ELECTROSTATICS */
909             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
910
911             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
912
913             fscal            = felec;
914
915             fscal            = _mm_and_pd(fscal,cutoff_mask);
916
917             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx20);
921             ty               = _mm_mul_pd(fscal,dy20);
922             tz               = _mm_mul_pd(fscal,dz20);
923
924             /* Update vectorial force */
925             fix2             = _mm_add_pd(fix2,tx);
926             fiy2             = _mm_add_pd(fiy2,ty);
927             fiz2             = _mm_add_pd(fiz2,tz);
928
929             fjx0             = _mm_add_pd(fjx0,tx);
930             fjy0             = _mm_add_pd(fjy0,ty);
931             fjz0             = _mm_add_pd(fjz0,tz);
932
933             }
934
935             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
936
937             /* Inner loop uses 93 flops */
938         }
939
940         /* End of innermost loop */
941
942         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
943                                               f+i_coord_offset,fshift+i_shift_offset);
944
945         /* Increment number of inner iterations */
946         inneriter                  += j_index_end - j_index_start;
947
948         /* Outer loop uses 18 flops */
949     }
950
951     /* Increment number of outer iterations */
952     outeriter        += nri;
953
954     /* Update outer/inner flops */
955
956     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*93);
957 }