a63af3d2f552f07b9d0543b12f38cb050862ae52
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128d          dummy_mask,cutoff_mask;
74     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
75     __m128d          one     = _mm_set1_pd(1.0);
76     __m128d          two     = _mm_set1_pd(2.0);
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = _mm_set1_pd(fr->epsfac);
89     charge           = mdatoms->chargeA;
90     krf              = _mm_set1_pd(fr->ic->k_rf);
91     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
92     crf              = _mm_set1_pd(fr->ic->c_rf);
93
94     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
95     rcutoff_scalar   = fr->rcoulomb;
96     rcutoff          = _mm_set1_pd(rcutoff_scalar);
97     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
123
124         fix0             = _mm_setzero_pd();
125         fiy0             = _mm_setzero_pd();
126         fiz0             = _mm_setzero_pd();
127
128         /* Load parameters for i particles */
129         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
130
131         /* Reset potential sums */
132         velecsum         = _mm_setzero_pd();
133
134         /* Start inner kernel loop */
135         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
136         {
137
138             /* Get j neighbor index, and coordinate index */
139             jnrA             = jjnr[jidx];
140             jnrB             = jjnr[jidx+1];
141             j_coord_offsetA  = DIM*jnrA;
142             j_coord_offsetB  = DIM*jnrB;
143
144             /* load j atom coordinates */
145             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
146                                               &jx0,&jy0,&jz0);
147
148             /* Calculate displacement vector */
149             dx00             = _mm_sub_pd(ix0,jx0);
150             dy00             = _mm_sub_pd(iy0,jy0);
151             dz00             = _mm_sub_pd(iz0,jz0);
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
155
156             rinv00           = gmx_mm_invsqrt_pd(rsq00);
157
158             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
159
160             /* Load parameters for j particles */
161             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             if (gmx_mm_any_lt(rsq00,rcutoff2))
168             {
169
170             /* Compute parameters for interactions between i and j atoms */
171             qq00             = _mm_mul_pd(iq0,jq0);
172
173             /* REACTION-FIELD ELECTROSTATICS */
174             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
175             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
176
177             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
178
179             /* Update potential sum for this i atom from the interaction with this j atom. */
180             velec            = _mm_and_pd(velec,cutoff_mask);
181             velecsum         = _mm_add_pd(velecsum,velec);
182
183             fscal            = felec;
184
185             fscal            = _mm_and_pd(fscal,cutoff_mask);
186
187             /* Calculate temporary vectorial force */
188             tx               = _mm_mul_pd(fscal,dx00);
189             ty               = _mm_mul_pd(fscal,dy00);
190             tz               = _mm_mul_pd(fscal,dz00);
191
192             /* Update vectorial force */
193             fix0             = _mm_add_pd(fix0,tx);
194             fiy0             = _mm_add_pd(fiy0,ty);
195             fiz0             = _mm_add_pd(fiz0,tz);
196
197             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
198
199             }
200
201             /* Inner loop uses 36 flops */
202         }
203
204         if(jidx<j_index_end)
205         {
206
207             jnrA             = jjnr[jidx];
208             j_coord_offsetA  = DIM*jnrA;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221
222             rinv00           = gmx_mm_invsqrt_pd(rsq00);
223
224             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
225
226             /* Load parameters for j particles */
227             jq0              = _mm_load_sd(charge+jnrA+0);
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_pd(iq0,jq0);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
241             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
242
243             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm_and_pd(velec,cutoff_mask);
247             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
248             velecsum         = _mm_add_pd(velecsum,velec);
249
250             fscal            = felec;
251
252             fscal            = _mm_and_pd(fscal,cutoff_mask);
253
254             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm_mul_pd(fscal,dx00);
258             ty               = _mm_mul_pd(fscal,dy00);
259             tz               = _mm_mul_pd(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm_add_pd(fix0,tx);
263             fiy0             = _mm_add_pd(fiy0,ty);
264             fiz0             = _mm_add_pd(fiz0,tz);
265
266             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
267
268             }
269
270             /* Inner loop uses 36 flops */
271         }
272
273         /* End of innermost loop */
274
275         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
276                                               f+i_coord_offset,fshift+i_shift_offset);
277
278         ggid                        = gid[iidx];
279         /* Update potential energies */
280         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
281
282         /* Increment number of inner iterations */
283         inneriter                  += j_index_end - j_index_start;
284
285         /* Outer loop uses 8 flops */
286     }
287
288     /* Increment number of outer iterations */
289     outeriter        += nri;
290
291     /* Update outer/inner flops */
292
293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
294 }
295 /*
296  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_double
297  * Electrostatics interaction: ReactionField
298  * VdW interaction:            None
299  * Geometry:                   Particle-Particle
300  * Calculate force/pot:        Force
301  */
302 void
303 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_double
304                     (t_nblist * gmx_restrict                nlist,
305                      rvec * gmx_restrict                    xx,
306                      rvec * gmx_restrict                    ff,
307                      t_forcerec * gmx_restrict              fr,
308                      t_mdatoms * gmx_restrict               mdatoms,
309                      nb_kernel_data_t * gmx_restrict        kernel_data,
310                      t_nrnb * gmx_restrict                  nrnb)
311 {
312     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
313      * just 0 for non-waters.
314      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
315      * jnr indices corresponding to data put in the four positions in the SIMD register.
316      */
317     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
318     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
319     int              jnrA,jnrB;
320     int              j_coord_offsetA,j_coord_offsetB;
321     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
322     real             rcutoff_scalar;
323     real             *shiftvec,*fshift,*x,*f;
324     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
325     int              vdwioffset0;
326     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
327     int              vdwjidx0A,vdwjidx0B;
328     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
329     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
330     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
331     real             *charge;
332     __m128d          dummy_mask,cutoff_mask;
333     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
334     __m128d          one     = _mm_set1_pd(1.0);
335     __m128d          two     = _mm_set1_pd(2.0);
336     x                = xx[0];
337     f                = ff[0];
338
339     nri              = nlist->nri;
340     iinr             = nlist->iinr;
341     jindex           = nlist->jindex;
342     jjnr             = nlist->jjnr;
343     shiftidx         = nlist->shift;
344     gid              = nlist->gid;
345     shiftvec         = fr->shift_vec[0];
346     fshift           = fr->fshift[0];
347     facel            = _mm_set1_pd(fr->epsfac);
348     charge           = mdatoms->chargeA;
349     krf              = _mm_set1_pd(fr->ic->k_rf);
350     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
351     crf              = _mm_set1_pd(fr->ic->c_rf);
352
353     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
354     rcutoff_scalar   = fr->rcoulomb;
355     rcutoff          = _mm_set1_pd(rcutoff_scalar);
356     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
357
358     /* Avoid stupid compiler warnings */
359     jnrA = jnrB = 0;
360     j_coord_offsetA = 0;
361     j_coord_offsetB = 0;
362
363     outeriter        = 0;
364     inneriter        = 0;
365
366     /* Start outer loop over neighborlists */
367     for(iidx=0; iidx<nri; iidx++)
368     {
369         /* Load shift vector for this list */
370         i_shift_offset   = DIM*shiftidx[iidx];
371
372         /* Load limits for loop over neighbors */
373         j_index_start    = jindex[iidx];
374         j_index_end      = jindex[iidx+1];
375
376         /* Get outer coordinate index */
377         inr              = iinr[iidx];
378         i_coord_offset   = DIM*inr;
379
380         /* Load i particle coords and add shift vector */
381         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
382
383         fix0             = _mm_setzero_pd();
384         fiy0             = _mm_setzero_pd();
385         fiz0             = _mm_setzero_pd();
386
387         /* Load parameters for i particles */
388         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
389
390         /* Start inner kernel loop */
391         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
392         {
393
394             /* Get j neighbor index, and coordinate index */
395             jnrA             = jjnr[jidx];
396             jnrB             = jjnr[jidx+1];
397             j_coord_offsetA  = DIM*jnrA;
398             j_coord_offsetB  = DIM*jnrB;
399
400             /* load j atom coordinates */
401             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
402                                               &jx0,&jy0,&jz0);
403
404             /* Calculate displacement vector */
405             dx00             = _mm_sub_pd(ix0,jx0);
406             dy00             = _mm_sub_pd(iy0,jy0);
407             dz00             = _mm_sub_pd(iz0,jz0);
408
409             /* Calculate squared distance and things based on it */
410             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
411
412             rinv00           = gmx_mm_invsqrt_pd(rsq00);
413
414             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
415
416             /* Load parameters for j particles */
417             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             if (gmx_mm_any_lt(rsq00,rcutoff2))
424             {
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq00             = _mm_mul_pd(iq0,jq0);
428
429             /* REACTION-FIELD ELECTROSTATICS */
430             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
431
432             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
433
434             fscal            = felec;
435
436             fscal            = _mm_and_pd(fscal,cutoff_mask);
437
438             /* Calculate temporary vectorial force */
439             tx               = _mm_mul_pd(fscal,dx00);
440             ty               = _mm_mul_pd(fscal,dy00);
441             tz               = _mm_mul_pd(fscal,dz00);
442
443             /* Update vectorial force */
444             fix0             = _mm_add_pd(fix0,tx);
445             fiy0             = _mm_add_pd(fiy0,ty);
446             fiz0             = _mm_add_pd(fiz0,tz);
447
448             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
449
450             }
451
452             /* Inner loop uses 30 flops */
453         }
454
455         if(jidx<j_index_end)
456         {
457
458             jnrA             = jjnr[jidx];
459             j_coord_offsetA  = DIM*jnrA;
460
461             /* load j atom coordinates */
462             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_pd(ix0,jx0);
467             dy00             = _mm_sub_pd(iy0,jy0);
468             dz00             = _mm_sub_pd(iz0,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
472
473             rinv00           = gmx_mm_invsqrt_pd(rsq00);
474
475             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
476
477             /* Load parameters for j particles */
478             jq0              = _mm_load_sd(charge+jnrA+0);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             if (gmx_mm_any_lt(rsq00,rcutoff2))
485             {
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq00             = _mm_mul_pd(iq0,jq0);
489
490             /* REACTION-FIELD ELECTROSTATICS */
491             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
492
493             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
494
495             fscal            = felec;
496
497             fscal            = _mm_and_pd(fscal,cutoff_mask);
498
499             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
500
501             /* Calculate temporary vectorial force */
502             tx               = _mm_mul_pd(fscal,dx00);
503             ty               = _mm_mul_pd(fscal,dy00);
504             tz               = _mm_mul_pd(fscal,dz00);
505
506             /* Update vectorial force */
507             fix0             = _mm_add_pd(fix0,tx);
508             fiy0             = _mm_add_pd(fiy0,ty);
509             fiz0             = _mm_add_pd(fiz0,tz);
510
511             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
512
513             }
514
515             /* Inner loop uses 30 flops */
516         }
517
518         /* End of innermost loop */
519
520         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
521                                               f+i_coord_offset,fshift+i_shift_offset);
522
523         /* Increment number of inner iterations */
524         inneriter                  += j_index_end - j_index_start;
525
526         /* Outer loop uses 7 flops */
527     }
528
529     /* Increment number of outer iterations */
530     outeriter        += nri;
531
532     /* Update outer/inner flops */
533
534     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
535 }