Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_pd(fr->ic->k_rf);
122     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_pd(rcutoff_scalar);
138     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
139
140     rswitch_scalar   = fr->rvdw_switch;
141     rswitch          = _mm_set1_pd(rswitch_scalar);
142     /* Setup switch parameters */
143     d_scalar         = rcutoff_scalar-rswitch_scalar;
144     d                = _mm_set1_pd(d_scalar);
145     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
146     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
147     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
149     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_pd();
179         fiy0             = _mm_setzero_pd();
180         fiz0             = _mm_setzero_pd();
181         fix1             = _mm_setzero_pd();
182         fiy1             = _mm_setzero_pd();
183         fiz1             = _mm_setzero_pd();
184         fix2             = _mm_setzero_pd();
185         fiy2             = _mm_setzero_pd();
186         fiz2             = _mm_setzero_pd();
187         fix3             = _mm_setzero_pd();
188         fiy3             = _mm_setzero_pd();
189         fiz3             = _mm_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_pd();
193         vvdwsum          = _mm_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_pd(ix0,jx0);
211             dy00             = _mm_sub_pd(iy0,jy0);
212             dz00             = _mm_sub_pd(iz0,jz0);
213             dx10             = _mm_sub_pd(ix1,jx0);
214             dy10             = _mm_sub_pd(iy1,jy0);
215             dz10             = _mm_sub_pd(iz1,jz0);
216             dx20             = _mm_sub_pd(ix2,jx0);
217             dy20             = _mm_sub_pd(iy2,jy0);
218             dz20             = _mm_sub_pd(iz2,jz0);
219             dx30             = _mm_sub_pd(ix3,jx0);
220             dy30             = _mm_sub_pd(iy3,jy0);
221             dz30             = _mm_sub_pd(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm_invsqrt_pd(rsq20);
232             rinv30           = gmx_mm_invsqrt_pd(rsq30);
233
234             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
235             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _mm_setzero_pd();
245             fjy0             = _mm_setzero_pd();
246             fjz0             = _mm_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             if (gmx_mm_any_lt(rsq00,rcutoff2))
253             {
254
255             r00              = _mm_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
265             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
266             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
267             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
268
269             d                = _mm_sub_pd(r00,rswitch);
270             d                = _mm_max_pd(d,_mm_setzero_pd());
271             d2               = _mm_mul_pd(d,d);
272             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
273
274             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
275
276             /* Evaluate switch function */
277             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
278             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
279             vvdw             = _mm_mul_pd(vvdw,sw);
280             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = fvdw;
287
288             fscal            = _mm_and_pd(fscal,cutoff_mask);
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm_mul_pd(fscal,dx00);
292             ty               = _mm_mul_pd(fscal,dy00);
293             tz               = _mm_mul_pd(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm_add_pd(fix0,tx);
297             fiy0             = _mm_add_pd(fiy0,ty);
298             fiz0             = _mm_add_pd(fiz0,tz);
299
300             fjx0             = _mm_add_pd(fjx0,tx);
301             fjy0             = _mm_add_pd(fjy0,ty);
302             fjz0             = _mm_add_pd(fjz0,tz);
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq10,rcutoff2))
311             {
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_pd(iq1,jq0);
315
316             /* REACTION-FIELD ELECTROSTATICS */
317             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
318             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
319
320             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velec            = _mm_and_pd(velec,cutoff_mask);
324             velecsum         = _mm_add_pd(velecsum,velec);
325
326             fscal            = felec;
327
328             fscal            = _mm_and_pd(fscal,cutoff_mask);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_pd(fscal,dx10);
332             ty               = _mm_mul_pd(fscal,dy10);
333             tz               = _mm_mul_pd(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_pd(fix1,tx);
337             fiy1             = _mm_add_pd(fiy1,ty);
338             fiz1             = _mm_add_pd(fiz1,tz);
339
340             fjx0             = _mm_add_pd(fjx0,tx);
341             fjy0             = _mm_add_pd(fjy0,ty);
342             fjz0             = _mm_add_pd(fjz0,tz);
343
344             }
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             if (gmx_mm_any_lt(rsq20,rcutoff2))
351             {
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_pd(iq2,jq0);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
358             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
359
360             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _mm_and_pd(velec,cutoff_mask);
364             velecsum         = _mm_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _mm_and_pd(fscal,cutoff_mask);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_pd(fscal,dx20);
372             ty               = _mm_mul_pd(fscal,dy20);
373             tz               = _mm_mul_pd(fscal,dz20);
374
375             /* Update vectorial force */
376             fix2             = _mm_add_pd(fix2,tx);
377             fiy2             = _mm_add_pd(fiy2,ty);
378             fiz2             = _mm_add_pd(fiz2,tz);
379
380             fjx0             = _mm_add_pd(fjx0,tx);
381             fjy0             = _mm_add_pd(fjy0,ty);
382             fjz0             = _mm_add_pd(fjz0,tz);
383
384             }
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             if (gmx_mm_any_lt(rsq30,rcutoff2))
391             {
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq30             = _mm_mul_pd(iq3,jq0);
395
396             /* REACTION-FIELD ELECTROSTATICS */
397             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
398             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
399
400             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _mm_and_pd(velec,cutoff_mask);
404             velecsum         = _mm_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _mm_and_pd(fscal,cutoff_mask);
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm_mul_pd(fscal,dx30);
412             ty               = _mm_mul_pd(fscal,dy30);
413             tz               = _mm_mul_pd(fscal,dz30);
414
415             /* Update vectorial force */
416             fix3             = _mm_add_pd(fix3,tx);
417             fiy3             = _mm_add_pd(fiy3,ty);
418             fiz3             = _mm_add_pd(fiz3,tz);
419
420             fjx0             = _mm_add_pd(fjx0,tx);
421             fjy0             = _mm_add_pd(fjy0,ty);
422             fjz0             = _mm_add_pd(fjz0,tz);
423
424             }
425
426             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
427
428             /* Inner loop uses 170 flops */
429         }
430
431         if(jidx<j_index_end)
432         {
433
434             jnrA             = jjnr[jidx];
435             j_coord_offsetA  = DIM*jnrA;
436
437             /* load j atom coordinates */
438             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_pd(ix0,jx0);
443             dy00             = _mm_sub_pd(iy0,jy0);
444             dz00             = _mm_sub_pd(iz0,jz0);
445             dx10             = _mm_sub_pd(ix1,jx0);
446             dy10             = _mm_sub_pd(iy1,jy0);
447             dz10             = _mm_sub_pd(iz1,jz0);
448             dx20             = _mm_sub_pd(ix2,jx0);
449             dy20             = _mm_sub_pd(iy2,jy0);
450             dz20             = _mm_sub_pd(iz2,jz0);
451             dx30             = _mm_sub_pd(ix3,jx0);
452             dy30             = _mm_sub_pd(iy3,jy0);
453             dz30             = _mm_sub_pd(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
459             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
460
461             rinv00           = gmx_mm_invsqrt_pd(rsq00);
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464             rinv30           = gmx_mm_invsqrt_pd(rsq30);
465
466             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
467             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
468             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
469             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
470
471             /* Load parameters for j particles */
472             jq0              = _mm_load_sd(charge+jnrA+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474
475             fjx0             = _mm_setzero_pd();
476             fjy0             = _mm_setzero_pd();
477             fjz0             = _mm_setzero_pd();
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             if (gmx_mm_any_lt(rsq00,rcutoff2))
484             {
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
490
491             /* LENNARD-JONES DISPERSION/REPULSION */
492
493             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
494             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
495             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
496             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
497             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
498
499             d                = _mm_sub_pd(r00,rswitch);
500             d                = _mm_max_pd(d,_mm_setzero_pd());
501             d2               = _mm_mul_pd(d,d);
502             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
503
504             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
505
506             /* Evaluate switch function */
507             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
508             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
509             vvdw             = _mm_mul_pd(vvdw,sw);
510             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
514             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
515             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
516
517             fscal            = fvdw;
518
519             fscal            = _mm_and_pd(fscal,cutoff_mask);
520
521             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_pd(fscal,dx00);
525             ty               = _mm_mul_pd(fscal,dy00);
526             tz               = _mm_mul_pd(fscal,dz00);
527
528             /* Update vectorial force */
529             fix0             = _mm_add_pd(fix0,tx);
530             fiy0             = _mm_add_pd(fiy0,ty);
531             fiz0             = _mm_add_pd(fiz0,tz);
532
533             fjx0             = _mm_add_pd(fjx0,tx);
534             fjy0             = _mm_add_pd(fjy0,ty);
535             fjz0             = _mm_add_pd(fjz0,tz);
536
537             }
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             if (gmx_mm_any_lt(rsq10,rcutoff2))
544             {
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq10             = _mm_mul_pd(iq1,jq0);
548
549             /* REACTION-FIELD ELECTROSTATICS */
550             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
551             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
552
553             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_and_pd(velec,cutoff_mask);
557             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
558             velecsum         = _mm_add_pd(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_and_pd(fscal,cutoff_mask);
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_pd(fscal,dx10);
568             ty               = _mm_mul_pd(fscal,dy10);
569             tz               = _mm_mul_pd(fscal,dz10);
570
571             /* Update vectorial force */
572             fix1             = _mm_add_pd(fix1,tx);
573             fiy1             = _mm_add_pd(fiy1,ty);
574             fiz1             = _mm_add_pd(fiz1,tz);
575
576             fjx0             = _mm_add_pd(fjx0,tx);
577             fjy0             = _mm_add_pd(fjy0,ty);
578             fjz0             = _mm_add_pd(fjz0,tz);
579
580             }
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (gmx_mm_any_lt(rsq20,rcutoff2))
587             {
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq20             = _mm_mul_pd(iq2,jq0);
591
592             /* REACTION-FIELD ELECTROSTATICS */
593             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
594             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
595
596             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm_and_pd(velec,cutoff_mask);
600             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
601             velecsum         = _mm_add_pd(velecsum,velec);
602
603             fscal            = felec;
604
605             fscal            = _mm_and_pd(fscal,cutoff_mask);
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_pd(fscal,dx20);
611             ty               = _mm_mul_pd(fscal,dy20);
612             tz               = _mm_mul_pd(fscal,dz20);
613
614             /* Update vectorial force */
615             fix2             = _mm_add_pd(fix2,tx);
616             fiy2             = _mm_add_pd(fiy2,ty);
617             fiz2             = _mm_add_pd(fiz2,tz);
618
619             fjx0             = _mm_add_pd(fjx0,tx);
620             fjy0             = _mm_add_pd(fjy0,ty);
621             fjz0             = _mm_add_pd(fjz0,tz);
622
623             }
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             if (gmx_mm_any_lt(rsq30,rcutoff2))
630             {
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq30             = _mm_mul_pd(iq3,jq0);
634
635             /* REACTION-FIELD ELECTROSTATICS */
636             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
637             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
638
639             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm_and_pd(velec,cutoff_mask);
643             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
644             velecsum         = _mm_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm_and_pd(fscal,cutoff_mask);
649
650             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm_mul_pd(fscal,dx30);
654             ty               = _mm_mul_pd(fscal,dy30);
655             tz               = _mm_mul_pd(fscal,dz30);
656
657             /* Update vectorial force */
658             fix3             = _mm_add_pd(fix3,tx);
659             fiy3             = _mm_add_pd(fiy3,ty);
660             fiz3             = _mm_add_pd(fiz3,tz);
661
662             fjx0             = _mm_add_pd(fjx0,tx);
663             fjy0             = _mm_add_pd(fjy0,ty);
664             fjz0             = _mm_add_pd(fjz0,tz);
665
666             }
667
668             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
669
670             /* Inner loop uses 170 flops */
671         }
672
673         /* End of innermost loop */
674
675         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
676                                               f+i_coord_offset,fshift+i_shift_offset);
677
678         ggid                        = gid[iidx];
679         /* Update potential energies */
680         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
681         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
682
683         /* Increment number of inner iterations */
684         inneriter                  += j_index_end - j_index_start;
685
686         /* Outer loop uses 26 flops */
687     }
688
689     /* Increment number of outer iterations */
690     outeriter        += nri;
691
692     /* Update outer/inner flops */
693
694     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
695 }
696 /*
697  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
698  * Electrostatics interaction: ReactionField
699  * VdW interaction:            LennardJones
700  * Geometry:                   Water4-Particle
701  * Calculate force/pot:        Force
702  */
703 void
704 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
705                     (t_nblist                    * gmx_restrict       nlist,
706                      rvec                        * gmx_restrict          xx,
707                      rvec                        * gmx_restrict          ff,
708                      t_forcerec                  * gmx_restrict          fr,
709                      t_mdatoms                   * gmx_restrict     mdatoms,
710                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
711                      t_nrnb                      * gmx_restrict        nrnb)
712 {
713     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
714      * just 0 for non-waters.
715      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
716      * jnr indices corresponding to data put in the four positions in the SIMD register.
717      */
718     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
719     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
720     int              jnrA,jnrB;
721     int              j_coord_offsetA,j_coord_offsetB;
722     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
723     real             rcutoff_scalar;
724     real             *shiftvec,*fshift,*x,*f;
725     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
726     int              vdwioffset0;
727     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
728     int              vdwioffset1;
729     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
730     int              vdwioffset2;
731     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
732     int              vdwioffset3;
733     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
734     int              vdwjidx0A,vdwjidx0B;
735     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
736     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
737     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
738     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
739     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
740     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
741     real             *charge;
742     int              nvdwtype;
743     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
744     int              *vdwtype;
745     real             *vdwparam;
746     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
747     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
748     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
749     real             rswitch_scalar,d_scalar;
750     __m128d          dummy_mask,cutoff_mask;
751     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
752     __m128d          one     = _mm_set1_pd(1.0);
753     __m128d          two     = _mm_set1_pd(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_pd(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     krf              = _mm_set1_pd(fr->ic->k_rf);
768     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
769     crf              = _mm_set1_pd(fr->ic->c_rf);
770     nvdwtype         = fr->ntype;
771     vdwparam         = fr->nbfp;
772     vdwtype          = mdatoms->typeA;
773
774     /* Setup water-specific parameters */
775     inr              = nlist->iinr[0];
776     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
777     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
778     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
779     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
780
781     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
782     rcutoff_scalar   = fr->rcoulomb;
783     rcutoff          = _mm_set1_pd(rcutoff_scalar);
784     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
785
786     rswitch_scalar   = fr->rvdw_switch;
787     rswitch          = _mm_set1_pd(rswitch_scalar);
788     /* Setup switch parameters */
789     d_scalar         = rcutoff_scalar-rswitch_scalar;
790     d                = _mm_set1_pd(d_scalar);
791     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
792     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
793     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
794     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
795     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
796     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
797
798     /* Avoid stupid compiler warnings */
799     jnrA = jnrB = 0;
800     j_coord_offsetA = 0;
801     j_coord_offsetB = 0;
802
803     outeriter        = 0;
804     inneriter        = 0;
805
806     /* Start outer loop over neighborlists */
807     for(iidx=0; iidx<nri; iidx++)
808     {
809         /* Load shift vector for this list */
810         i_shift_offset   = DIM*shiftidx[iidx];
811
812         /* Load limits for loop over neighbors */
813         j_index_start    = jindex[iidx];
814         j_index_end      = jindex[iidx+1];
815
816         /* Get outer coordinate index */
817         inr              = iinr[iidx];
818         i_coord_offset   = DIM*inr;
819
820         /* Load i particle coords and add shift vector */
821         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
822                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
823
824         fix0             = _mm_setzero_pd();
825         fiy0             = _mm_setzero_pd();
826         fiz0             = _mm_setzero_pd();
827         fix1             = _mm_setzero_pd();
828         fiy1             = _mm_setzero_pd();
829         fiz1             = _mm_setzero_pd();
830         fix2             = _mm_setzero_pd();
831         fiy2             = _mm_setzero_pd();
832         fiz2             = _mm_setzero_pd();
833         fix3             = _mm_setzero_pd();
834         fiy3             = _mm_setzero_pd();
835         fiz3             = _mm_setzero_pd();
836
837         /* Start inner kernel loop */
838         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
839         {
840
841             /* Get j neighbor index, and coordinate index */
842             jnrA             = jjnr[jidx];
843             jnrB             = jjnr[jidx+1];
844             j_coord_offsetA  = DIM*jnrA;
845             j_coord_offsetB  = DIM*jnrB;
846
847             /* load j atom coordinates */
848             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_pd(ix0,jx0);
853             dy00             = _mm_sub_pd(iy0,jy0);
854             dz00             = _mm_sub_pd(iz0,jz0);
855             dx10             = _mm_sub_pd(ix1,jx0);
856             dy10             = _mm_sub_pd(iy1,jy0);
857             dz10             = _mm_sub_pd(iz1,jz0);
858             dx20             = _mm_sub_pd(ix2,jx0);
859             dy20             = _mm_sub_pd(iy2,jy0);
860             dz20             = _mm_sub_pd(iz2,jz0);
861             dx30             = _mm_sub_pd(ix3,jx0);
862             dy30             = _mm_sub_pd(iy3,jy0);
863             dz30             = _mm_sub_pd(iz3,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
867             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
868             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
869             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
870
871             rinv00           = gmx_mm_invsqrt_pd(rsq00);
872             rinv10           = gmx_mm_invsqrt_pd(rsq10);
873             rinv20           = gmx_mm_invsqrt_pd(rsq20);
874             rinv30           = gmx_mm_invsqrt_pd(rsq30);
875
876             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
877             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
878             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
879             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885
886             fjx0             = _mm_setzero_pd();
887             fjy0             = _mm_setzero_pd();
888             fjz0             = _mm_setzero_pd();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm_any_lt(rsq00,rcutoff2))
895             {
896
897             r00              = _mm_mul_pd(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
901                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
902
903             /* LENNARD-JONES DISPERSION/REPULSION */
904
905             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
906             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
907             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
908             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
909             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
910
911             d                = _mm_sub_pd(r00,rswitch);
912             d                = _mm_max_pd(d,_mm_setzero_pd());
913             d2               = _mm_mul_pd(d,d);
914             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
915
916             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
917
918             /* Evaluate switch function */
919             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
920             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
921             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
922
923             fscal            = fvdw;
924
925             fscal            = _mm_and_pd(fscal,cutoff_mask);
926
927             /* Calculate temporary vectorial force */
928             tx               = _mm_mul_pd(fscal,dx00);
929             ty               = _mm_mul_pd(fscal,dy00);
930             tz               = _mm_mul_pd(fscal,dz00);
931
932             /* Update vectorial force */
933             fix0             = _mm_add_pd(fix0,tx);
934             fiy0             = _mm_add_pd(fiy0,ty);
935             fiz0             = _mm_add_pd(fiz0,tz);
936
937             fjx0             = _mm_add_pd(fjx0,tx);
938             fjy0             = _mm_add_pd(fjy0,ty);
939             fjz0             = _mm_add_pd(fjz0,tz);
940
941             }
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             if (gmx_mm_any_lt(rsq10,rcutoff2))
948             {
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _mm_mul_pd(iq1,jq0);
952
953             /* REACTION-FIELD ELECTROSTATICS */
954             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
955
956             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
957
958             fscal            = felec;
959
960             fscal            = _mm_and_pd(fscal,cutoff_mask);
961
962             /* Calculate temporary vectorial force */
963             tx               = _mm_mul_pd(fscal,dx10);
964             ty               = _mm_mul_pd(fscal,dy10);
965             tz               = _mm_mul_pd(fscal,dz10);
966
967             /* Update vectorial force */
968             fix1             = _mm_add_pd(fix1,tx);
969             fiy1             = _mm_add_pd(fiy1,ty);
970             fiz1             = _mm_add_pd(fiz1,tz);
971
972             fjx0             = _mm_add_pd(fjx0,tx);
973             fjy0             = _mm_add_pd(fjy0,ty);
974             fjz0             = _mm_add_pd(fjz0,tz);
975
976             }
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             if (gmx_mm_any_lt(rsq20,rcutoff2))
983             {
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq20             = _mm_mul_pd(iq2,jq0);
987
988             /* REACTION-FIELD ELECTROSTATICS */
989             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
990
991             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
992
993             fscal            = felec;
994
995             fscal            = _mm_and_pd(fscal,cutoff_mask);
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm_mul_pd(fscal,dx20);
999             ty               = _mm_mul_pd(fscal,dy20);
1000             tz               = _mm_mul_pd(fscal,dz20);
1001
1002             /* Update vectorial force */
1003             fix2             = _mm_add_pd(fix2,tx);
1004             fiy2             = _mm_add_pd(fiy2,ty);
1005             fiz2             = _mm_add_pd(fiz2,tz);
1006
1007             fjx0             = _mm_add_pd(fjx0,tx);
1008             fjy0             = _mm_add_pd(fjy0,ty);
1009             fjz0             = _mm_add_pd(fjz0,tz);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq30,rcutoff2))
1018             {
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq30             = _mm_mul_pd(iq3,jq0);
1022
1023             /* REACTION-FIELD ELECTROSTATICS */
1024             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1025
1026             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1027
1028             fscal            = felec;
1029
1030             fscal            = _mm_and_pd(fscal,cutoff_mask);
1031
1032             /* Calculate temporary vectorial force */
1033             tx               = _mm_mul_pd(fscal,dx30);
1034             ty               = _mm_mul_pd(fscal,dy30);
1035             tz               = _mm_mul_pd(fscal,dz30);
1036
1037             /* Update vectorial force */
1038             fix3             = _mm_add_pd(fix3,tx);
1039             fiy3             = _mm_add_pd(fiy3,ty);
1040             fiz3             = _mm_add_pd(fiz3,tz);
1041
1042             fjx0             = _mm_add_pd(fjx0,tx);
1043             fjy0             = _mm_add_pd(fjy0,ty);
1044             fjz0             = _mm_add_pd(fjz0,tz);
1045
1046             }
1047
1048             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1049
1050             /* Inner loop uses 149 flops */
1051         }
1052
1053         if(jidx<j_index_end)
1054         {
1055
1056             jnrA             = jjnr[jidx];
1057             j_coord_offsetA  = DIM*jnrA;
1058
1059             /* load j atom coordinates */
1060             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1061                                               &jx0,&jy0,&jz0);
1062
1063             /* Calculate displacement vector */
1064             dx00             = _mm_sub_pd(ix0,jx0);
1065             dy00             = _mm_sub_pd(iy0,jy0);
1066             dz00             = _mm_sub_pd(iz0,jz0);
1067             dx10             = _mm_sub_pd(ix1,jx0);
1068             dy10             = _mm_sub_pd(iy1,jy0);
1069             dz10             = _mm_sub_pd(iz1,jz0);
1070             dx20             = _mm_sub_pd(ix2,jx0);
1071             dy20             = _mm_sub_pd(iy2,jy0);
1072             dz20             = _mm_sub_pd(iz2,jz0);
1073             dx30             = _mm_sub_pd(ix3,jx0);
1074             dy30             = _mm_sub_pd(iy3,jy0);
1075             dz30             = _mm_sub_pd(iz3,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1079             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1080             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1081             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1082
1083             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1084             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1085             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1086             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1087
1088             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1089             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1090             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1091             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1092
1093             /* Load parameters for j particles */
1094             jq0              = _mm_load_sd(charge+jnrA+0);
1095             vdwjidx0A        = 2*vdwtype[jnrA+0];
1096
1097             fjx0             = _mm_setzero_pd();
1098             fjy0             = _mm_setzero_pd();
1099             fjz0             = _mm_setzero_pd();
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (gmx_mm_any_lt(rsq00,rcutoff2))
1106             {
1107
1108             r00              = _mm_mul_pd(rsq00,rinv00);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1112
1113             /* LENNARD-JONES DISPERSION/REPULSION */
1114
1115             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1116             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1117             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1118             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1119             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1120
1121             d                = _mm_sub_pd(r00,rswitch);
1122             d                = _mm_max_pd(d,_mm_setzero_pd());
1123             d2               = _mm_mul_pd(d,d);
1124             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1125
1126             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1127
1128             /* Evaluate switch function */
1129             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1130             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1131             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1132
1133             fscal            = fvdw;
1134
1135             fscal            = _mm_and_pd(fscal,cutoff_mask);
1136
1137             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_pd(fscal,dx00);
1141             ty               = _mm_mul_pd(fscal,dy00);
1142             tz               = _mm_mul_pd(fscal,dz00);
1143
1144             /* Update vectorial force */
1145             fix0             = _mm_add_pd(fix0,tx);
1146             fiy0             = _mm_add_pd(fiy0,ty);
1147             fiz0             = _mm_add_pd(fiz0,tz);
1148
1149             fjx0             = _mm_add_pd(fjx0,tx);
1150             fjy0             = _mm_add_pd(fjy0,ty);
1151             fjz0             = _mm_add_pd(fjz0,tz);
1152
1153             }
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             if (gmx_mm_any_lt(rsq10,rcutoff2))
1160             {
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq10             = _mm_mul_pd(iq1,jq0);
1164
1165             /* REACTION-FIELD ELECTROSTATICS */
1166             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1167
1168             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1169
1170             fscal            = felec;
1171
1172             fscal            = _mm_and_pd(fscal,cutoff_mask);
1173
1174             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1175
1176             /* Calculate temporary vectorial force */
1177             tx               = _mm_mul_pd(fscal,dx10);
1178             ty               = _mm_mul_pd(fscal,dy10);
1179             tz               = _mm_mul_pd(fscal,dz10);
1180
1181             /* Update vectorial force */
1182             fix1             = _mm_add_pd(fix1,tx);
1183             fiy1             = _mm_add_pd(fiy1,ty);
1184             fiz1             = _mm_add_pd(fiz1,tz);
1185
1186             fjx0             = _mm_add_pd(fjx0,tx);
1187             fjy0             = _mm_add_pd(fjy0,ty);
1188             fjz0             = _mm_add_pd(fjz0,tz);
1189
1190             }
1191
1192             /**************************
1193              * CALCULATE INTERACTIONS *
1194              **************************/
1195
1196             if (gmx_mm_any_lt(rsq20,rcutoff2))
1197             {
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq20             = _mm_mul_pd(iq2,jq0);
1201
1202             /* REACTION-FIELD ELECTROSTATICS */
1203             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1204
1205             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_and_pd(fscal,cutoff_mask);
1210
1211             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm_mul_pd(fscal,dx20);
1215             ty               = _mm_mul_pd(fscal,dy20);
1216             tz               = _mm_mul_pd(fscal,dz20);
1217
1218             /* Update vectorial force */
1219             fix2             = _mm_add_pd(fix2,tx);
1220             fiy2             = _mm_add_pd(fiy2,ty);
1221             fiz2             = _mm_add_pd(fiz2,tz);
1222
1223             fjx0             = _mm_add_pd(fjx0,tx);
1224             fjy0             = _mm_add_pd(fjy0,ty);
1225             fjz0             = _mm_add_pd(fjz0,tz);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm_any_lt(rsq30,rcutoff2))
1234             {
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq30             = _mm_mul_pd(iq3,jq0);
1238
1239             /* REACTION-FIELD ELECTROSTATICS */
1240             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1241
1242             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_and_pd(fscal,cutoff_mask);
1247
1248             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm_mul_pd(fscal,dx30);
1252             ty               = _mm_mul_pd(fscal,dy30);
1253             tz               = _mm_mul_pd(fscal,dz30);
1254
1255             /* Update vectorial force */
1256             fix3             = _mm_add_pd(fix3,tx);
1257             fiy3             = _mm_add_pd(fiy3,ty);
1258             fiz3             = _mm_add_pd(fiz3,tz);
1259
1260             fjx0             = _mm_add_pd(fjx0,tx);
1261             fjy0             = _mm_add_pd(fjy0,ty);
1262             fjz0             = _mm_add_pd(fjz0,tz);
1263
1264             }
1265
1266             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1267
1268             /* Inner loop uses 149 flops */
1269         }
1270
1271         /* End of innermost loop */
1272
1273         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1274                                               f+i_coord_offset,fshift+i_shift_offset);
1275
1276         /* Increment number of inner iterations */
1277         inneriter                  += j_index_end - j_index_start;
1278
1279         /* Outer loop uses 24 flops */
1280     }
1281
1282     /* Increment number of outer iterations */
1283     outeriter        += nri;
1284
1285     /* Update outer/inner flops */
1286
1287     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*149);
1288 }