Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_pd(fr->ic->k_rf);
124     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->rvdw_switch;
143     rswitch          = _mm_set1_pd(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = _mm_set1_pd(d_scalar);
147     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189         fix3             = _mm_setzero_pd();
190         fiy3             = _mm_setzero_pd();
191         fiz3             = _mm_setzero_pd();
192
193         /* Reset potential sums */
194         velecsum         = _mm_setzero_pd();
195         vvdwsum          = _mm_setzero_pd();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206
207             /* load j atom coordinates */
208             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_pd(ix0,jx0);
213             dy00             = _mm_sub_pd(iy0,jy0);
214             dz00             = _mm_sub_pd(iz0,jz0);
215             dx10             = _mm_sub_pd(ix1,jx0);
216             dy10             = _mm_sub_pd(iy1,jy0);
217             dz10             = _mm_sub_pd(iz1,jz0);
218             dx20             = _mm_sub_pd(ix2,jx0);
219             dy20             = _mm_sub_pd(iy2,jy0);
220             dz20             = _mm_sub_pd(iz2,jz0);
221             dx30             = _mm_sub_pd(ix3,jx0);
222             dy30             = _mm_sub_pd(iy3,jy0);
223             dz30             = _mm_sub_pd(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
230
231             rinv00           = gmx_mm_invsqrt_pd(rsq00);
232             rinv10           = gmx_mm_invsqrt_pd(rsq10);
233             rinv20           = gmx_mm_invsqrt_pd(rsq20);
234             rinv30           = gmx_mm_invsqrt_pd(rsq30);
235
236             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
237             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
238             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
239             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245
246             fjx0             = _mm_setzero_pd();
247             fjy0             = _mm_setzero_pd();
248             fjz0             = _mm_setzero_pd();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq00,rcutoff2))
255             {
256
257             r00              = _mm_mul_pd(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
267             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
269             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
270
271             d                = _mm_sub_pd(r00,rswitch);
272             d                = _mm_max_pd(d,_mm_setzero_pd());
273             d2               = _mm_mul_pd(d,d);
274             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
275
276             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
277
278             /* Evaluate switch function */
279             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
280             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
281             vvdw             = _mm_mul_pd(vvdw,sw);
282             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
286             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
287
288             fscal            = fvdw;
289
290             fscal            = _mm_and_pd(fscal,cutoff_mask);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_pd(fscal,dx00);
294             ty               = _mm_mul_pd(fscal,dy00);
295             tz               = _mm_mul_pd(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm_add_pd(fix0,tx);
299             fiy0             = _mm_add_pd(fiy0,ty);
300             fiz0             = _mm_add_pd(fiz0,tz);
301
302             fjx0             = _mm_add_pd(fjx0,tx);
303             fjy0             = _mm_add_pd(fjy0,ty);
304             fjz0             = _mm_add_pd(fjz0,tz);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq10,rcutoff2))
313             {
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_pd(iq1,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
320             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
321
322             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velec            = _mm_and_pd(velec,cutoff_mask);
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             fscal            = _mm_and_pd(fscal,cutoff_mask);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_pd(fscal,dx10);
334             ty               = _mm_mul_pd(fscal,dy10);
335             tz               = _mm_mul_pd(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_pd(fix1,tx);
339             fiy1             = _mm_add_pd(fiy1,ty);
340             fiz1             = _mm_add_pd(fiz1,tz);
341
342             fjx0             = _mm_add_pd(fjx0,tx);
343             fjy0             = _mm_add_pd(fjy0,ty);
344             fjz0             = _mm_add_pd(fjz0,tz);
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq20,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_pd(iq2,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
360             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
361
362             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_pd(velec,cutoff_mask);
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_pd(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx20);
374             ty               = _mm_mul_pd(fscal,dy20);
375             tz               = _mm_mul_pd(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm_add_pd(fix2,tx);
379             fiy2             = _mm_add_pd(fiy2,ty);
380             fiz2             = _mm_add_pd(fiz2,tz);
381
382             fjx0             = _mm_add_pd(fjx0,tx);
383             fjy0             = _mm_add_pd(fjy0,ty);
384             fjz0             = _mm_add_pd(fjz0,tz);
385
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm_any_lt(rsq30,rcutoff2))
393             {
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq30             = _mm_mul_pd(iq3,jq0);
397
398             /* REACTION-FIELD ELECTROSTATICS */
399             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
400             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
401
402             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_and_pd(velec,cutoff_mask);
406             velecsum         = _mm_add_pd(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm_and_pd(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_pd(fscal,dx30);
414             ty               = _mm_mul_pd(fscal,dy30);
415             tz               = _mm_mul_pd(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_pd(fix3,tx);
419             fiy3             = _mm_add_pd(fiy3,ty);
420             fiz3             = _mm_add_pd(fiz3,tz);
421
422             fjx0             = _mm_add_pd(fjx0,tx);
423             fjy0             = _mm_add_pd(fjy0,ty);
424             fjz0             = _mm_add_pd(fjz0,tz);
425
426             }
427
428             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 170 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_pd(ix0,jx0);
445             dy00             = _mm_sub_pd(iy0,jy0);
446             dz00             = _mm_sub_pd(iz0,jz0);
447             dx10             = _mm_sub_pd(ix1,jx0);
448             dy10             = _mm_sub_pd(iy1,jy0);
449             dz10             = _mm_sub_pd(iz1,jz0);
450             dx20             = _mm_sub_pd(ix2,jx0);
451             dy20             = _mm_sub_pd(iy2,jy0);
452             dz20             = _mm_sub_pd(iz2,jz0);
453             dx30             = _mm_sub_pd(ix3,jx0);
454             dy30             = _mm_sub_pd(iy3,jy0);
455             dz30             = _mm_sub_pd(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
461             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
462
463             rinv00           = gmx_mm_invsqrt_pd(rsq00);
464             rinv10           = gmx_mm_invsqrt_pd(rsq10);
465             rinv20           = gmx_mm_invsqrt_pd(rsq20);
466             rinv30           = gmx_mm_invsqrt_pd(rsq30);
467
468             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
469             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
470             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
471             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
472
473             /* Load parameters for j particles */
474             jq0              = _mm_load_sd(charge+jnrA+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476
477             fjx0             = _mm_setzero_pd();
478             fjy0             = _mm_setzero_pd();
479             fjz0             = _mm_setzero_pd();
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             if (gmx_mm_any_lt(rsq00,rcutoff2))
486             {
487
488             r00              = _mm_mul_pd(rsq00,rinv00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
492
493             /* LENNARD-JONES DISPERSION/REPULSION */
494
495             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
496             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
497             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
498             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
499             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
500
501             d                = _mm_sub_pd(r00,rswitch);
502             d                = _mm_max_pd(d,_mm_setzero_pd());
503             d2               = _mm_mul_pd(d,d);
504             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
505
506             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
507
508             /* Evaluate switch function */
509             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
510             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
511             vvdw             = _mm_mul_pd(vvdw,sw);
512             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
516             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
517             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
518
519             fscal            = fvdw;
520
521             fscal            = _mm_and_pd(fscal,cutoff_mask);
522
523             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
524
525             /* Calculate temporary vectorial force */
526             tx               = _mm_mul_pd(fscal,dx00);
527             ty               = _mm_mul_pd(fscal,dy00);
528             tz               = _mm_mul_pd(fscal,dz00);
529
530             /* Update vectorial force */
531             fix0             = _mm_add_pd(fix0,tx);
532             fiy0             = _mm_add_pd(fiy0,ty);
533             fiz0             = _mm_add_pd(fiz0,tz);
534
535             fjx0             = _mm_add_pd(fjx0,tx);
536             fjy0             = _mm_add_pd(fjy0,ty);
537             fjz0             = _mm_add_pd(fjz0,tz);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq10,rcutoff2))
546             {
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq10             = _mm_mul_pd(iq1,jq0);
550
551             /* REACTION-FIELD ELECTROSTATICS */
552             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
553             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
554
555             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_and_pd(velec,cutoff_mask);
559             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_and_pd(fscal,cutoff_mask);
565
566             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm_mul_pd(fscal,dx10);
570             ty               = _mm_mul_pd(fscal,dy10);
571             tz               = _mm_mul_pd(fscal,dz10);
572
573             /* Update vectorial force */
574             fix1             = _mm_add_pd(fix1,tx);
575             fiy1             = _mm_add_pd(fiy1,ty);
576             fiz1             = _mm_add_pd(fiz1,tz);
577
578             fjx0             = _mm_add_pd(fjx0,tx);
579             fjy0             = _mm_add_pd(fjy0,ty);
580             fjz0             = _mm_add_pd(fjz0,tz);
581
582             }
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (gmx_mm_any_lt(rsq20,rcutoff2))
589             {
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq20             = _mm_mul_pd(iq2,jq0);
593
594             /* REACTION-FIELD ELECTROSTATICS */
595             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
596             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
597
598             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_and_pd(velec,cutoff_mask);
602             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_and_pd(fscal,cutoff_mask);
608
609             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_pd(fscal,dx20);
613             ty               = _mm_mul_pd(fscal,dy20);
614             tz               = _mm_mul_pd(fscal,dz20);
615
616             /* Update vectorial force */
617             fix2             = _mm_add_pd(fix2,tx);
618             fiy2             = _mm_add_pd(fiy2,ty);
619             fiz2             = _mm_add_pd(fiz2,tz);
620
621             fjx0             = _mm_add_pd(fjx0,tx);
622             fjy0             = _mm_add_pd(fjy0,ty);
623             fjz0             = _mm_add_pd(fjz0,tz);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm_any_lt(rsq30,rcutoff2))
632             {
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq30             = _mm_mul_pd(iq3,jq0);
636
637             /* REACTION-FIELD ELECTROSTATICS */
638             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
639             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
640
641             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_and_pd(velec,cutoff_mask);
645             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
646             velecsum         = _mm_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_and_pd(fscal,cutoff_mask);
651
652             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_pd(fscal,dx30);
656             ty               = _mm_mul_pd(fscal,dy30);
657             tz               = _mm_mul_pd(fscal,dz30);
658
659             /* Update vectorial force */
660             fix3             = _mm_add_pd(fix3,tx);
661             fiy3             = _mm_add_pd(fiy3,ty);
662             fiz3             = _mm_add_pd(fiz3,tz);
663
664             fjx0             = _mm_add_pd(fjx0,tx);
665             fjy0             = _mm_add_pd(fjy0,ty);
666             fjz0             = _mm_add_pd(fjz0,tz);
667
668             }
669
670             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 170 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
678                                               f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 26 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
700  * Electrostatics interaction: ReactionField
701  * VdW interaction:            LennardJones
702  * Geometry:                   Water4-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
707                     (t_nblist                    * gmx_restrict       nlist,
708                      rvec                        * gmx_restrict          xx,
709                      rvec                        * gmx_restrict          ff,
710                      t_forcerec                  * gmx_restrict          fr,
711                      t_mdatoms                   * gmx_restrict     mdatoms,
712                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
713                      t_nrnb                      * gmx_restrict        nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
716      * just 0 for non-waters.
717      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB;
723     int              j_coord_offsetA,j_coord_offsetB;
724     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
725     real             rcutoff_scalar;
726     real             *shiftvec,*fshift,*x,*f;
727     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
728     int              vdwioffset0;
729     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
730     int              vdwioffset1;
731     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
732     int              vdwioffset2;
733     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
734     int              vdwioffset3;
735     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
736     int              vdwjidx0A,vdwjidx0B;
737     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
738     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
739     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
740     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
741     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
742     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
743     real             *charge;
744     int              nvdwtype;
745     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
746     int              *vdwtype;
747     real             *vdwparam;
748     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
749     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
750     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
751     real             rswitch_scalar,d_scalar;
752     __m128d          dummy_mask,cutoff_mask;
753     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
754     __m128d          one     = _mm_set1_pd(1.0);
755     __m128d          two     = _mm_set1_pd(2.0);
756     x                = xx[0];
757     f                = ff[0];
758
759     nri              = nlist->nri;
760     iinr             = nlist->iinr;
761     jindex           = nlist->jindex;
762     jjnr             = nlist->jjnr;
763     shiftidx         = nlist->shift;
764     gid              = nlist->gid;
765     shiftvec         = fr->shift_vec[0];
766     fshift           = fr->fshift[0];
767     facel            = _mm_set1_pd(fr->epsfac);
768     charge           = mdatoms->chargeA;
769     krf              = _mm_set1_pd(fr->ic->k_rf);
770     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
771     crf              = _mm_set1_pd(fr->ic->c_rf);
772     nvdwtype         = fr->ntype;
773     vdwparam         = fr->nbfp;
774     vdwtype          = mdatoms->typeA;
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
779     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
780     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
781     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
782
783     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
784     rcutoff_scalar   = fr->rcoulomb;
785     rcutoff          = _mm_set1_pd(rcutoff_scalar);
786     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
787
788     rswitch_scalar   = fr->rvdw_switch;
789     rswitch          = _mm_set1_pd(rswitch_scalar);
790     /* Setup switch parameters */
791     d_scalar         = rcutoff_scalar-rswitch_scalar;
792     d                = _mm_set1_pd(d_scalar);
793     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
794     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
795     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
796     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
797     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
798     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     /* Start outer loop over neighborlists */
809     for(iidx=0; iidx<nri; iidx++)
810     {
811         /* Load shift vector for this list */
812         i_shift_offset   = DIM*shiftidx[iidx];
813
814         /* Load limits for loop over neighbors */
815         j_index_start    = jindex[iidx];
816         j_index_end      = jindex[iidx+1];
817
818         /* Get outer coordinate index */
819         inr              = iinr[iidx];
820         i_coord_offset   = DIM*inr;
821
822         /* Load i particle coords and add shift vector */
823         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
824                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
825
826         fix0             = _mm_setzero_pd();
827         fiy0             = _mm_setzero_pd();
828         fiz0             = _mm_setzero_pd();
829         fix1             = _mm_setzero_pd();
830         fiy1             = _mm_setzero_pd();
831         fiz1             = _mm_setzero_pd();
832         fix2             = _mm_setzero_pd();
833         fiy2             = _mm_setzero_pd();
834         fiz2             = _mm_setzero_pd();
835         fix3             = _mm_setzero_pd();
836         fiy3             = _mm_setzero_pd();
837         fiz3             = _mm_setzero_pd();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             j_coord_offsetA  = DIM*jnrA;
847             j_coord_offsetB  = DIM*jnrB;
848
849             /* load j atom coordinates */
850             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
851                                               &jx0,&jy0,&jz0);
852
853             /* Calculate displacement vector */
854             dx00             = _mm_sub_pd(ix0,jx0);
855             dy00             = _mm_sub_pd(iy0,jy0);
856             dz00             = _mm_sub_pd(iz0,jz0);
857             dx10             = _mm_sub_pd(ix1,jx0);
858             dy10             = _mm_sub_pd(iy1,jy0);
859             dz10             = _mm_sub_pd(iz1,jz0);
860             dx20             = _mm_sub_pd(ix2,jx0);
861             dy20             = _mm_sub_pd(iy2,jy0);
862             dz20             = _mm_sub_pd(iz2,jz0);
863             dx30             = _mm_sub_pd(ix3,jx0);
864             dy30             = _mm_sub_pd(iy3,jy0);
865             dz30             = _mm_sub_pd(iz3,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
872
873             rinv00           = gmx_mm_invsqrt_pd(rsq00);
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876             rinv30           = gmx_mm_invsqrt_pd(rsq30);
877
878             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
879             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
881             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887
888             fjx0             = _mm_setzero_pd();
889             fjy0             = _mm_setzero_pd();
890             fjz0             = _mm_setzero_pd();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm_any_lt(rsq00,rcutoff2))
897             {
898
899             r00              = _mm_mul_pd(rsq00,rinv00);
900
901             /* Compute parameters for interactions between i and j atoms */
902             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
903                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
904
905             /* LENNARD-JONES DISPERSION/REPULSION */
906
907             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
908             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
909             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
910             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
911             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
912
913             d                = _mm_sub_pd(r00,rswitch);
914             d                = _mm_max_pd(d,_mm_setzero_pd());
915             d2               = _mm_mul_pd(d,d);
916             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
917
918             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
919
920             /* Evaluate switch function */
921             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
922             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
923             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
924
925             fscal            = fvdw;
926
927             fscal            = _mm_and_pd(fscal,cutoff_mask);
928
929             /* Calculate temporary vectorial force */
930             tx               = _mm_mul_pd(fscal,dx00);
931             ty               = _mm_mul_pd(fscal,dy00);
932             tz               = _mm_mul_pd(fscal,dz00);
933
934             /* Update vectorial force */
935             fix0             = _mm_add_pd(fix0,tx);
936             fiy0             = _mm_add_pd(fiy0,ty);
937             fiz0             = _mm_add_pd(fiz0,tz);
938
939             fjx0             = _mm_add_pd(fjx0,tx);
940             fjy0             = _mm_add_pd(fjy0,ty);
941             fjz0             = _mm_add_pd(fjz0,tz);
942
943             }
944
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             if (gmx_mm_any_lt(rsq10,rcutoff2))
950             {
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _mm_mul_pd(iq1,jq0);
954
955             /* REACTION-FIELD ELECTROSTATICS */
956             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
957
958             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
959
960             fscal            = felec;
961
962             fscal            = _mm_and_pd(fscal,cutoff_mask);
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm_mul_pd(fscal,dx10);
966             ty               = _mm_mul_pd(fscal,dy10);
967             tz               = _mm_mul_pd(fscal,dz10);
968
969             /* Update vectorial force */
970             fix1             = _mm_add_pd(fix1,tx);
971             fiy1             = _mm_add_pd(fiy1,ty);
972             fiz1             = _mm_add_pd(fiz1,tz);
973
974             fjx0             = _mm_add_pd(fjx0,tx);
975             fjy0             = _mm_add_pd(fjy0,ty);
976             fjz0             = _mm_add_pd(fjz0,tz);
977
978             }
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             if (gmx_mm_any_lt(rsq20,rcutoff2))
985             {
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq20             = _mm_mul_pd(iq2,jq0);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
992
993             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
994
995             fscal            = felec;
996
997             fscal            = _mm_and_pd(fscal,cutoff_mask);
998
999             /* Calculate temporary vectorial force */
1000             tx               = _mm_mul_pd(fscal,dx20);
1001             ty               = _mm_mul_pd(fscal,dy20);
1002             tz               = _mm_mul_pd(fscal,dz20);
1003
1004             /* Update vectorial force */
1005             fix2             = _mm_add_pd(fix2,tx);
1006             fiy2             = _mm_add_pd(fiy2,ty);
1007             fiz2             = _mm_add_pd(fiz2,tz);
1008
1009             fjx0             = _mm_add_pd(fjx0,tx);
1010             fjy0             = _mm_add_pd(fjy0,ty);
1011             fjz0             = _mm_add_pd(fjz0,tz);
1012
1013             }
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             if (gmx_mm_any_lt(rsq30,rcutoff2))
1020             {
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq30             = _mm_mul_pd(iq3,jq0);
1024
1025             /* REACTION-FIELD ELECTROSTATICS */
1026             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1027
1028             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1029
1030             fscal            = felec;
1031
1032             fscal            = _mm_and_pd(fscal,cutoff_mask);
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm_mul_pd(fscal,dx30);
1036             ty               = _mm_mul_pd(fscal,dy30);
1037             tz               = _mm_mul_pd(fscal,dz30);
1038
1039             /* Update vectorial force */
1040             fix3             = _mm_add_pd(fix3,tx);
1041             fiy3             = _mm_add_pd(fiy3,ty);
1042             fiz3             = _mm_add_pd(fiz3,tz);
1043
1044             fjx0             = _mm_add_pd(fjx0,tx);
1045             fjy0             = _mm_add_pd(fjy0,ty);
1046             fjz0             = _mm_add_pd(fjz0,tz);
1047
1048             }
1049
1050             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1051
1052             /* Inner loop uses 149 flops */
1053         }
1054
1055         if(jidx<j_index_end)
1056         {
1057
1058             jnrA             = jjnr[jidx];
1059             j_coord_offsetA  = DIM*jnrA;
1060
1061             /* load j atom coordinates */
1062             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1063                                               &jx0,&jy0,&jz0);
1064
1065             /* Calculate displacement vector */
1066             dx00             = _mm_sub_pd(ix0,jx0);
1067             dy00             = _mm_sub_pd(iy0,jy0);
1068             dz00             = _mm_sub_pd(iz0,jz0);
1069             dx10             = _mm_sub_pd(ix1,jx0);
1070             dy10             = _mm_sub_pd(iy1,jy0);
1071             dz10             = _mm_sub_pd(iz1,jz0);
1072             dx20             = _mm_sub_pd(ix2,jx0);
1073             dy20             = _mm_sub_pd(iy2,jy0);
1074             dz20             = _mm_sub_pd(iz2,jz0);
1075             dx30             = _mm_sub_pd(ix3,jx0);
1076             dy30             = _mm_sub_pd(iy3,jy0);
1077             dz30             = _mm_sub_pd(iz3,jz0);
1078
1079             /* Calculate squared distance and things based on it */
1080             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1081             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1082             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1083             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1084
1085             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1086             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1087             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1088             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1089
1090             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1091             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1092             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1093             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1094
1095             /* Load parameters for j particles */
1096             jq0              = _mm_load_sd(charge+jnrA+0);
1097             vdwjidx0A        = 2*vdwtype[jnrA+0];
1098
1099             fjx0             = _mm_setzero_pd();
1100             fjy0             = _mm_setzero_pd();
1101             fjz0             = _mm_setzero_pd();
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             if (gmx_mm_any_lt(rsq00,rcutoff2))
1108             {
1109
1110             r00              = _mm_mul_pd(rsq00,rinv00);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1114
1115             /* LENNARD-JONES DISPERSION/REPULSION */
1116
1117             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1118             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1119             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1120             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1121             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1122
1123             d                = _mm_sub_pd(r00,rswitch);
1124             d                = _mm_max_pd(d,_mm_setzero_pd());
1125             d2               = _mm_mul_pd(d,d);
1126             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1127
1128             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1129
1130             /* Evaluate switch function */
1131             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1132             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1133             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1134
1135             fscal            = fvdw;
1136
1137             fscal            = _mm_and_pd(fscal,cutoff_mask);
1138
1139             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1140
1141             /* Calculate temporary vectorial force */
1142             tx               = _mm_mul_pd(fscal,dx00);
1143             ty               = _mm_mul_pd(fscal,dy00);
1144             tz               = _mm_mul_pd(fscal,dz00);
1145
1146             /* Update vectorial force */
1147             fix0             = _mm_add_pd(fix0,tx);
1148             fiy0             = _mm_add_pd(fiy0,ty);
1149             fiz0             = _mm_add_pd(fiz0,tz);
1150
1151             fjx0             = _mm_add_pd(fjx0,tx);
1152             fjy0             = _mm_add_pd(fjy0,ty);
1153             fjz0             = _mm_add_pd(fjz0,tz);
1154
1155             }
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             if (gmx_mm_any_lt(rsq10,rcutoff2))
1162             {
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm_mul_pd(iq1,jq0);
1166
1167             /* REACTION-FIELD ELECTROSTATICS */
1168             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1169
1170             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1171
1172             fscal            = felec;
1173
1174             fscal            = _mm_and_pd(fscal,cutoff_mask);
1175
1176             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1177
1178             /* Calculate temporary vectorial force */
1179             tx               = _mm_mul_pd(fscal,dx10);
1180             ty               = _mm_mul_pd(fscal,dy10);
1181             tz               = _mm_mul_pd(fscal,dz10);
1182
1183             /* Update vectorial force */
1184             fix1             = _mm_add_pd(fix1,tx);
1185             fiy1             = _mm_add_pd(fiy1,ty);
1186             fiz1             = _mm_add_pd(fiz1,tz);
1187
1188             fjx0             = _mm_add_pd(fjx0,tx);
1189             fjy0             = _mm_add_pd(fjy0,ty);
1190             fjz0             = _mm_add_pd(fjz0,tz);
1191
1192             }
1193
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             if (gmx_mm_any_lt(rsq20,rcutoff2))
1199             {
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             qq20             = _mm_mul_pd(iq2,jq0);
1203
1204             /* REACTION-FIELD ELECTROSTATICS */
1205             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1206
1207             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1208
1209             fscal            = felec;
1210
1211             fscal            = _mm_and_pd(fscal,cutoff_mask);
1212
1213             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1214
1215             /* Calculate temporary vectorial force */
1216             tx               = _mm_mul_pd(fscal,dx20);
1217             ty               = _mm_mul_pd(fscal,dy20);
1218             tz               = _mm_mul_pd(fscal,dz20);
1219
1220             /* Update vectorial force */
1221             fix2             = _mm_add_pd(fix2,tx);
1222             fiy2             = _mm_add_pd(fiy2,ty);
1223             fiz2             = _mm_add_pd(fiz2,tz);
1224
1225             fjx0             = _mm_add_pd(fjx0,tx);
1226             fjy0             = _mm_add_pd(fjy0,ty);
1227             fjz0             = _mm_add_pd(fjz0,tz);
1228
1229             }
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             if (gmx_mm_any_lt(rsq30,rcutoff2))
1236             {
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             qq30             = _mm_mul_pd(iq3,jq0);
1240
1241             /* REACTION-FIELD ELECTROSTATICS */
1242             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1243
1244             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1245
1246             fscal            = felec;
1247
1248             fscal            = _mm_and_pd(fscal,cutoff_mask);
1249
1250             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1251
1252             /* Calculate temporary vectorial force */
1253             tx               = _mm_mul_pd(fscal,dx30);
1254             ty               = _mm_mul_pd(fscal,dy30);
1255             tz               = _mm_mul_pd(fscal,dz30);
1256
1257             /* Update vectorial force */
1258             fix3             = _mm_add_pd(fix3,tx);
1259             fiy3             = _mm_add_pd(fiy3,ty);
1260             fiz3             = _mm_add_pd(fiz3,tz);
1261
1262             fjx0             = _mm_add_pd(fjx0,tx);
1263             fjy0             = _mm_add_pd(fjy0,ty);
1264             fjz0             = _mm_add_pd(fjz0,tz);
1265
1266             }
1267
1268             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1269
1270             /* Inner loop uses 149 flops */
1271         }
1272
1273         /* End of innermost loop */
1274
1275         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1276                                               f+i_coord_offset,fshift+i_shift_offset);
1277
1278         /* Increment number of inner iterations */
1279         inneriter                  += j_index_end - j_index_start;
1280
1281         /* Outer loop uses 24 flops */
1282     }
1283
1284     /* Increment number of outer iterations */
1285     outeriter        += nri;
1286
1287     /* Update outer/inner flops */
1288
1289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*149);
1290 }