b99bf778e829195982b1ecda1871d500190afcb5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_pd(fr->ic->k_rf);
108     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_pd(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_pd(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_pd(d_scalar);
131     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167         fix1             = _mm_setzero_pd();
168         fiy1             = _mm_setzero_pd();
169         fiz1             = _mm_setzero_pd();
170         fix2             = _mm_setzero_pd();
171         fiy2             = _mm_setzero_pd();
172         fiz2             = _mm_setzero_pd();
173         fix3             = _mm_setzero_pd();
174         fiy3             = _mm_setzero_pd();
175         fiz3             = _mm_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_pd();
179         vvdwsum          = _mm_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_pd(ix0,jx0);
197             dy00             = _mm_sub_pd(iy0,jy0);
198             dz00             = _mm_sub_pd(iz0,jz0);
199             dx10             = _mm_sub_pd(ix1,jx0);
200             dy10             = _mm_sub_pd(iy1,jy0);
201             dz10             = _mm_sub_pd(iz1,jz0);
202             dx20             = _mm_sub_pd(ix2,jx0);
203             dy20             = _mm_sub_pd(iy2,jy0);
204             dz20             = _mm_sub_pd(iz2,jz0);
205             dx30             = _mm_sub_pd(ix3,jx0);
206             dy30             = _mm_sub_pd(iy3,jy0);
207             dz30             = _mm_sub_pd(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
214
215             rinv00           = gmx_mm_invsqrt_pd(rsq00);
216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
218             rinv30           = gmx_mm_invsqrt_pd(rsq30);
219
220             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229
230             fjx0             = _mm_setzero_pd();
231             fjy0             = _mm_setzero_pd();
232             fjz0             = _mm_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm_any_lt(rsq00,rcutoff2))
239             {
240
241             r00              = _mm_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
251             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
252             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
253             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
254
255             d                = _mm_sub_pd(r00,rswitch);
256             d                = _mm_max_pd(d,_mm_setzero_pd());
257             d2               = _mm_mul_pd(d,d);
258             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
259
260             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
261
262             /* Evaluate switch function */
263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
264             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
265             vvdw             = _mm_mul_pd(vvdw,sw);
266             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
270             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
271
272             fscal            = fvdw;
273
274             fscal            = _mm_and_pd(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_pd(fscal,dx00);
278             ty               = _mm_mul_pd(fscal,dy00);
279             tz               = _mm_mul_pd(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm_add_pd(fix0,tx);
283             fiy0             = _mm_add_pd(fiy0,ty);
284             fiz0             = _mm_add_pd(fiz0,tz);
285
286             fjx0             = _mm_add_pd(fjx0,tx);
287             fjy0             = _mm_add_pd(fjy0,ty);
288             fjz0             = _mm_add_pd(fjz0,tz);
289
290             }
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm_any_lt(rsq10,rcutoff2))
297             {
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_pd(iq1,jq0);
301
302             /* REACTION-FIELD ELECTROSTATICS */
303             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
304             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
305
306             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velec            = _mm_and_pd(velec,cutoff_mask);
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             fscal            = _mm_and_pd(fscal,cutoff_mask);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_pd(fscal,dx10);
318             ty               = _mm_mul_pd(fscal,dy10);
319             tz               = _mm_mul_pd(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm_add_pd(fix1,tx);
323             fiy1             = _mm_add_pd(fiy1,ty);
324             fiz1             = _mm_add_pd(fiz1,tz);
325
326             fjx0             = _mm_add_pd(fjx0,tx);
327             fjy0             = _mm_add_pd(fjy0,ty);
328             fjz0             = _mm_add_pd(fjz0,tz);
329
330             }
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             if (gmx_mm_any_lt(rsq20,rcutoff2))
337             {
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm_mul_pd(iq2,jq0);
341
342             /* REACTION-FIELD ELECTROSTATICS */
343             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
344             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
345
346             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm_and_pd(velec,cutoff_mask);
350             velecsum         = _mm_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _mm_and_pd(fscal,cutoff_mask);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm_mul_pd(fscal,dx20);
358             ty               = _mm_mul_pd(fscal,dy20);
359             tz               = _mm_mul_pd(fscal,dz20);
360
361             /* Update vectorial force */
362             fix2             = _mm_add_pd(fix2,tx);
363             fiy2             = _mm_add_pd(fiy2,ty);
364             fiz2             = _mm_add_pd(fiz2,tz);
365
366             fjx0             = _mm_add_pd(fjx0,tx);
367             fjy0             = _mm_add_pd(fjy0,ty);
368             fjz0             = _mm_add_pd(fjz0,tz);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm_any_lt(rsq30,rcutoff2))
377             {
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq30             = _mm_mul_pd(iq3,jq0);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
384             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
385
386             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm_and_pd(velec,cutoff_mask);
390             velecsum         = _mm_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             fscal            = _mm_and_pd(fscal,cutoff_mask);
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_pd(fscal,dx30);
398             ty               = _mm_mul_pd(fscal,dy30);
399             tz               = _mm_mul_pd(fscal,dz30);
400
401             /* Update vectorial force */
402             fix3             = _mm_add_pd(fix3,tx);
403             fiy3             = _mm_add_pd(fiy3,ty);
404             fiz3             = _mm_add_pd(fiz3,tz);
405
406             fjx0             = _mm_add_pd(fjx0,tx);
407             fjy0             = _mm_add_pd(fjy0,ty);
408             fjz0             = _mm_add_pd(fjz0,tz);
409
410             }
411
412             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
413
414             /* Inner loop uses 170 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             jnrA             = jjnr[jidx];
421             j_coord_offsetA  = DIM*jnrA;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_pd(ix0,jx0);
429             dy00             = _mm_sub_pd(iy0,jy0);
430             dz00             = _mm_sub_pd(iz0,jz0);
431             dx10             = _mm_sub_pd(ix1,jx0);
432             dy10             = _mm_sub_pd(iy1,jy0);
433             dz10             = _mm_sub_pd(iz1,jz0);
434             dx20             = _mm_sub_pd(ix2,jx0);
435             dy20             = _mm_sub_pd(iy2,jy0);
436             dz20             = _mm_sub_pd(iz2,jz0);
437             dx30             = _mm_sub_pd(ix3,jx0);
438             dy30             = _mm_sub_pd(iy3,jy0);
439             dz30             = _mm_sub_pd(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
443             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
444             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
445             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
446
447             rinv00           = gmx_mm_invsqrt_pd(rsq00);
448             rinv10           = gmx_mm_invsqrt_pd(rsq10);
449             rinv20           = gmx_mm_invsqrt_pd(rsq20);
450             rinv30           = gmx_mm_invsqrt_pd(rsq30);
451
452             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
453             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
454             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
455             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
456
457             /* Load parameters for j particles */
458             jq0              = _mm_load_sd(charge+jnrA+0);
459             vdwjidx0A        = 2*vdwtype[jnrA+0];
460
461             fjx0             = _mm_setzero_pd();
462             fjy0             = _mm_setzero_pd();
463             fjz0             = _mm_setzero_pd();
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             if (gmx_mm_any_lt(rsq00,rcutoff2))
470             {
471
472             r00              = _mm_mul_pd(rsq00,rinv00);
473
474             /* Compute parameters for interactions between i and j atoms */
475             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
476
477             /* LENNARD-JONES DISPERSION/REPULSION */
478
479             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
480             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
481             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
482             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
483             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
484
485             d                = _mm_sub_pd(r00,rswitch);
486             d                = _mm_max_pd(d,_mm_setzero_pd());
487             d2               = _mm_mul_pd(d,d);
488             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
489
490             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
491
492             /* Evaluate switch function */
493             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
494             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
495             vvdw             = _mm_mul_pd(vvdw,sw);
496             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
500             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
501             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
502
503             fscal            = fvdw;
504
505             fscal            = _mm_and_pd(fscal,cutoff_mask);
506
507             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_pd(fscal,dx00);
511             ty               = _mm_mul_pd(fscal,dy00);
512             tz               = _mm_mul_pd(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_pd(fix0,tx);
516             fiy0             = _mm_add_pd(fiy0,ty);
517             fiz0             = _mm_add_pd(fiz0,tz);
518
519             fjx0             = _mm_add_pd(fjx0,tx);
520             fjy0             = _mm_add_pd(fjy0,ty);
521             fjz0             = _mm_add_pd(fjz0,tz);
522
523             }
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (gmx_mm_any_lt(rsq10,rcutoff2))
530             {
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_pd(iq1,jq0);
534
535             /* REACTION-FIELD ELECTROSTATICS */
536             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
537             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
538
539             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm_and_pd(velec,cutoff_mask);
543             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
544             velecsum         = _mm_add_pd(velecsum,velec);
545
546             fscal            = felec;
547
548             fscal            = _mm_and_pd(fscal,cutoff_mask);
549
550             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_pd(fscal,dx10);
554             ty               = _mm_mul_pd(fscal,dy10);
555             tz               = _mm_mul_pd(fscal,dz10);
556
557             /* Update vectorial force */
558             fix1             = _mm_add_pd(fix1,tx);
559             fiy1             = _mm_add_pd(fiy1,ty);
560             fiz1             = _mm_add_pd(fiz1,tz);
561
562             fjx0             = _mm_add_pd(fjx0,tx);
563             fjy0             = _mm_add_pd(fjy0,ty);
564             fjz0             = _mm_add_pd(fjz0,tz);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq20,rcutoff2))
573             {
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq20             = _mm_mul_pd(iq2,jq0);
577
578             /* REACTION-FIELD ELECTROSTATICS */
579             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
580             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
581
582             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_and_pd(velec,cutoff_mask);
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_and_pd(fscal,cutoff_mask);
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx20);
597             ty               = _mm_mul_pd(fscal,dy20);
598             tz               = _mm_mul_pd(fscal,dz20);
599
600             /* Update vectorial force */
601             fix2             = _mm_add_pd(fix2,tx);
602             fiy2             = _mm_add_pd(fiy2,ty);
603             fiz2             = _mm_add_pd(fiz2,tz);
604
605             fjx0             = _mm_add_pd(fjx0,tx);
606             fjy0             = _mm_add_pd(fjy0,ty);
607             fjz0             = _mm_add_pd(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq30,rcutoff2))
616             {
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq30             = _mm_mul_pd(iq3,jq0);
620
621             /* REACTION-FIELD ELECTROSTATICS */
622             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
623             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
624
625             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm_and_pd(velec,cutoff_mask);
629             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
630             velecsum         = _mm_add_pd(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm_and_pd(fscal,cutoff_mask);
635
636             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm_mul_pd(fscal,dx30);
640             ty               = _mm_mul_pd(fscal,dy30);
641             tz               = _mm_mul_pd(fscal,dz30);
642
643             /* Update vectorial force */
644             fix3             = _mm_add_pd(fix3,tx);
645             fiy3             = _mm_add_pd(fiy3,ty);
646             fiz3             = _mm_add_pd(fiz3,tz);
647
648             fjx0             = _mm_add_pd(fjx0,tx);
649             fjy0             = _mm_add_pd(fjy0,ty);
650             fjz0             = _mm_add_pd(fjz0,tz);
651
652             }
653
654             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
655
656             /* Inner loop uses 170 flops */
657         }
658
659         /* End of innermost loop */
660
661         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
662                                               f+i_coord_offset,fshift+i_shift_offset);
663
664         ggid                        = gid[iidx];
665         /* Update potential energies */
666         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
667         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
668
669         /* Increment number of inner iterations */
670         inneriter                  += j_index_end - j_index_start;
671
672         /* Outer loop uses 26 flops */
673     }
674
675     /* Increment number of outer iterations */
676     outeriter        += nri;
677
678     /* Update outer/inner flops */
679
680     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
681 }
682 /*
683  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
684  * Electrostatics interaction: ReactionField
685  * VdW interaction:            LennardJones
686  * Geometry:                   Water4-Particle
687  * Calculate force/pot:        Force
688  */
689 void
690 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse4_1_double
691                     (t_nblist * gmx_restrict                nlist,
692                      rvec * gmx_restrict                    xx,
693                      rvec * gmx_restrict                    ff,
694                      t_forcerec * gmx_restrict              fr,
695                      t_mdatoms * gmx_restrict               mdatoms,
696                      nb_kernel_data_t * gmx_restrict        kernel_data,
697                      t_nrnb * gmx_restrict                  nrnb)
698 {
699     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
700      * just 0 for non-waters.
701      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
702      * jnr indices corresponding to data put in the four positions in the SIMD register.
703      */
704     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
705     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
706     int              jnrA,jnrB;
707     int              j_coord_offsetA,j_coord_offsetB;
708     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
709     real             rcutoff_scalar;
710     real             *shiftvec,*fshift,*x,*f;
711     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
712     int              vdwioffset0;
713     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
714     int              vdwioffset1;
715     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
716     int              vdwioffset2;
717     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
718     int              vdwioffset3;
719     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
720     int              vdwjidx0A,vdwjidx0B;
721     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
722     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
723     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
724     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
725     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
726     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
727     real             *charge;
728     int              nvdwtype;
729     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
730     int              *vdwtype;
731     real             *vdwparam;
732     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
733     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
734     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
735     real             rswitch_scalar,d_scalar;
736     __m128d          dummy_mask,cutoff_mask;
737     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
738     __m128d          one     = _mm_set1_pd(1.0);
739     __m128d          two     = _mm_set1_pd(2.0);
740     x                = xx[0];
741     f                = ff[0];
742
743     nri              = nlist->nri;
744     iinr             = nlist->iinr;
745     jindex           = nlist->jindex;
746     jjnr             = nlist->jjnr;
747     shiftidx         = nlist->shift;
748     gid              = nlist->gid;
749     shiftvec         = fr->shift_vec[0];
750     fshift           = fr->fshift[0];
751     facel            = _mm_set1_pd(fr->epsfac);
752     charge           = mdatoms->chargeA;
753     krf              = _mm_set1_pd(fr->ic->k_rf);
754     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
755     crf              = _mm_set1_pd(fr->ic->c_rf);
756     nvdwtype         = fr->ntype;
757     vdwparam         = fr->nbfp;
758     vdwtype          = mdatoms->typeA;
759
760     /* Setup water-specific parameters */
761     inr              = nlist->iinr[0];
762     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
763     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
764     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
765     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
766
767     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
768     rcutoff_scalar   = fr->rcoulomb;
769     rcutoff          = _mm_set1_pd(rcutoff_scalar);
770     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
771
772     rswitch_scalar   = fr->rvdw_switch;
773     rswitch          = _mm_set1_pd(rswitch_scalar);
774     /* Setup switch parameters */
775     d_scalar         = rcutoff_scalar-rswitch_scalar;
776     d                = _mm_set1_pd(d_scalar);
777     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
778     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
779     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
780     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
781     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
782     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
783
784     /* Avoid stupid compiler warnings */
785     jnrA = jnrB = 0;
786     j_coord_offsetA = 0;
787     j_coord_offsetB = 0;
788
789     outeriter        = 0;
790     inneriter        = 0;
791
792     /* Start outer loop over neighborlists */
793     for(iidx=0; iidx<nri; iidx++)
794     {
795         /* Load shift vector for this list */
796         i_shift_offset   = DIM*shiftidx[iidx];
797
798         /* Load limits for loop over neighbors */
799         j_index_start    = jindex[iidx];
800         j_index_end      = jindex[iidx+1];
801
802         /* Get outer coordinate index */
803         inr              = iinr[iidx];
804         i_coord_offset   = DIM*inr;
805
806         /* Load i particle coords and add shift vector */
807         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
808                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
809
810         fix0             = _mm_setzero_pd();
811         fiy0             = _mm_setzero_pd();
812         fiz0             = _mm_setzero_pd();
813         fix1             = _mm_setzero_pd();
814         fiy1             = _mm_setzero_pd();
815         fiz1             = _mm_setzero_pd();
816         fix2             = _mm_setzero_pd();
817         fiy2             = _mm_setzero_pd();
818         fiz2             = _mm_setzero_pd();
819         fix3             = _mm_setzero_pd();
820         fiy3             = _mm_setzero_pd();
821         fiz3             = _mm_setzero_pd();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             j_coord_offsetA  = DIM*jnrA;
831             j_coord_offsetB  = DIM*jnrB;
832
833             /* load j atom coordinates */
834             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
835                                               &jx0,&jy0,&jz0);
836
837             /* Calculate displacement vector */
838             dx00             = _mm_sub_pd(ix0,jx0);
839             dy00             = _mm_sub_pd(iy0,jy0);
840             dz00             = _mm_sub_pd(iz0,jz0);
841             dx10             = _mm_sub_pd(ix1,jx0);
842             dy10             = _mm_sub_pd(iy1,jy0);
843             dz10             = _mm_sub_pd(iz1,jz0);
844             dx20             = _mm_sub_pd(ix2,jx0);
845             dy20             = _mm_sub_pd(iy2,jy0);
846             dz20             = _mm_sub_pd(iz2,jz0);
847             dx30             = _mm_sub_pd(ix3,jx0);
848             dy30             = _mm_sub_pd(iy3,jy0);
849             dz30             = _mm_sub_pd(iz3,jz0);
850
851             /* Calculate squared distance and things based on it */
852             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
853             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
854             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
855             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
856
857             rinv00           = gmx_mm_invsqrt_pd(rsq00);
858             rinv10           = gmx_mm_invsqrt_pd(rsq10);
859             rinv20           = gmx_mm_invsqrt_pd(rsq20);
860             rinv30           = gmx_mm_invsqrt_pd(rsq30);
861
862             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
863             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
864             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
865             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
866
867             /* Load parameters for j particles */
868             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
869             vdwjidx0A        = 2*vdwtype[jnrA+0];
870             vdwjidx0B        = 2*vdwtype[jnrB+0];
871
872             fjx0             = _mm_setzero_pd();
873             fjy0             = _mm_setzero_pd();
874             fjz0             = _mm_setzero_pd();
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             if (gmx_mm_any_lt(rsq00,rcutoff2))
881             {
882
883             r00              = _mm_mul_pd(rsq00,rinv00);
884
885             /* Compute parameters for interactions between i and j atoms */
886             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
887                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
888
889             /* LENNARD-JONES DISPERSION/REPULSION */
890
891             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
892             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
893             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
894             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
895             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
896
897             d                = _mm_sub_pd(r00,rswitch);
898             d                = _mm_max_pd(d,_mm_setzero_pd());
899             d2               = _mm_mul_pd(d,d);
900             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
901
902             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
903
904             /* Evaluate switch function */
905             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
906             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
907             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
908
909             fscal            = fvdw;
910
911             fscal            = _mm_and_pd(fscal,cutoff_mask);
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_pd(fscal,dx00);
915             ty               = _mm_mul_pd(fscal,dy00);
916             tz               = _mm_mul_pd(fscal,dz00);
917
918             /* Update vectorial force */
919             fix0             = _mm_add_pd(fix0,tx);
920             fiy0             = _mm_add_pd(fiy0,ty);
921             fiz0             = _mm_add_pd(fiz0,tz);
922
923             fjx0             = _mm_add_pd(fjx0,tx);
924             fjy0             = _mm_add_pd(fjy0,ty);
925             fjz0             = _mm_add_pd(fjz0,tz);
926
927             }
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             if (gmx_mm_any_lt(rsq10,rcutoff2))
934             {
935
936             /* Compute parameters for interactions between i and j atoms */
937             qq10             = _mm_mul_pd(iq1,jq0);
938
939             /* REACTION-FIELD ELECTROSTATICS */
940             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
941
942             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
943
944             fscal            = felec;
945
946             fscal            = _mm_and_pd(fscal,cutoff_mask);
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_pd(fscal,dx10);
950             ty               = _mm_mul_pd(fscal,dy10);
951             tz               = _mm_mul_pd(fscal,dz10);
952
953             /* Update vectorial force */
954             fix1             = _mm_add_pd(fix1,tx);
955             fiy1             = _mm_add_pd(fiy1,ty);
956             fiz1             = _mm_add_pd(fiz1,tz);
957
958             fjx0             = _mm_add_pd(fjx0,tx);
959             fjy0             = _mm_add_pd(fjy0,ty);
960             fjz0             = _mm_add_pd(fjz0,tz);
961
962             }
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             if (gmx_mm_any_lt(rsq20,rcutoff2))
969             {
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq20             = _mm_mul_pd(iq2,jq0);
973
974             /* REACTION-FIELD ELECTROSTATICS */
975             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
976
977             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
978
979             fscal            = felec;
980
981             fscal            = _mm_and_pd(fscal,cutoff_mask);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_pd(fscal,dx20);
985             ty               = _mm_mul_pd(fscal,dy20);
986             tz               = _mm_mul_pd(fscal,dz20);
987
988             /* Update vectorial force */
989             fix2             = _mm_add_pd(fix2,tx);
990             fiy2             = _mm_add_pd(fiy2,ty);
991             fiz2             = _mm_add_pd(fiz2,tz);
992
993             fjx0             = _mm_add_pd(fjx0,tx);
994             fjy0             = _mm_add_pd(fjy0,ty);
995             fjz0             = _mm_add_pd(fjz0,tz);
996
997             }
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm_any_lt(rsq30,rcutoff2))
1004             {
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq30             = _mm_mul_pd(iq3,jq0);
1008
1009             /* REACTION-FIELD ELECTROSTATICS */
1010             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1011
1012             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1013
1014             fscal            = felec;
1015
1016             fscal            = _mm_and_pd(fscal,cutoff_mask);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_pd(fscal,dx30);
1020             ty               = _mm_mul_pd(fscal,dy30);
1021             tz               = _mm_mul_pd(fscal,dz30);
1022
1023             /* Update vectorial force */
1024             fix3             = _mm_add_pd(fix3,tx);
1025             fiy3             = _mm_add_pd(fiy3,ty);
1026             fiz3             = _mm_add_pd(fiz3,tz);
1027
1028             fjx0             = _mm_add_pd(fjx0,tx);
1029             fjy0             = _mm_add_pd(fjy0,ty);
1030             fjz0             = _mm_add_pd(fjz0,tz);
1031
1032             }
1033
1034             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1035
1036             /* Inner loop uses 149 flops */
1037         }
1038
1039         if(jidx<j_index_end)
1040         {
1041
1042             jnrA             = jjnr[jidx];
1043             j_coord_offsetA  = DIM*jnrA;
1044
1045             /* load j atom coordinates */
1046             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1047                                               &jx0,&jy0,&jz0);
1048
1049             /* Calculate displacement vector */
1050             dx00             = _mm_sub_pd(ix0,jx0);
1051             dy00             = _mm_sub_pd(iy0,jy0);
1052             dz00             = _mm_sub_pd(iz0,jz0);
1053             dx10             = _mm_sub_pd(ix1,jx0);
1054             dy10             = _mm_sub_pd(iy1,jy0);
1055             dz10             = _mm_sub_pd(iz1,jz0);
1056             dx20             = _mm_sub_pd(ix2,jx0);
1057             dy20             = _mm_sub_pd(iy2,jy0);
1058             dz20             = _mm_sub_pd(iz2,jz0);
1059             dx30             = _mm_sub_pd(ix3,jx0);
1060             dy30             = _mm_sub_pd(iy3,jy0);
1061             dz30             = _mm_sub_pd(iz3,jz0);
1062
1063             /* Calculate squared distance and things based on it */
1064             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1065             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1066             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1067             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1068
1069             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1070             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1071             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1072             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1073
1074             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1075             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1076             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1077             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1078
1079             /* Load parameters for j particles */
1080             jq0              = _mm_load_sd(charge+jnrA+0);
1081             vdwjidx0A        = 2*vdwtype[jnrA+0];
1082
1083             fjx0             = _mm_setzero_pd();
1084             fjy0             = _mm_setzero_pd();
1085             fjz0             = _mm_setzero_pd();
1086
1087             /**************************
1088              * CALCULATE INTERACTIONS *
1089              **************************/
1090
1091             if (gmx_mm_any_lt(rsq00,rcutoff2))
1092             {
1093
1094             r00              = _mm_mul_pd(rsq00,rinv00);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1098
1099             /* LENNARD-JONES DISPERSION/REPULSION */
1100
1101             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1102             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1103             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1104             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1105             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1106
1107             d                = _mm_sub_pd(r00,rswitch);
1108             d                = _mm_max_pd(d,_mm_setzero_pd());
1109             d2               = _mm_mul_pd(d,d);
1110             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1111
1112             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1113
1114             /* Evaluate switch function */
1115             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1116             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1117             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1118
1119             fscal            = fvdw;
1120
1121             fscal            = _mm_and_pd(fscal,cutoff_mask);
1122
1123             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm_mul_pd(fscal,dx00);
1127             ty               = _mm_mul_pd(fscal,dy00);
1128             tz               = _mm_mul_pd(fscal,dz00);
1129
1130             /* Update vectorial force */
1131             fix0             = _mm_add_pd(fix0,tx);
1132             fiy0             = _mm_add_pd(fiy0,ty);
1133             fiz0             = _mm_add_pd(fiz0,tz);
1134
1135             fjx0             = _mm_add_pd(fjx0,tx);
1136             fjy0             = _mm_add_pd(fjy0,ty);
1137             fjz0             = _mm_add_pd(fjz0,tz);
1138
1139             }
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             if (gmx_mm_any_lt(rsq10,rcutoff2))
1146             {
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq10             = _mm_mul_pd(iq1,jq0);
1150
1151             /* REACTION-FIELD ELECTROSTATICS */
1152             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1153
1154             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1155
1156             fscal            = felec;
1157
1158             fscal            = _mm_and_pd(fscal,cutoff_mask);
1159
1160             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm_mul_pd(fscal,dx10);
1164             ty               = _mm_mul_pd(fscal,dy10);
1165             tz               = _mm_mul_pd(fscal,dz10);
1166
1167             /* Update vectorial force */
1168             fix1             = _mm_add_pd(fix1,tx);
1169             fiy1             = _mm_add_pd(fiy1,ty);
1170             fiz1             = _mm_add_pd(fiz1,tz);
1171
1172             fjx0             = _mm_add_pd(fjx0,tx);
1173             fjy0             = _mm_add_pd(fjy0,ty);
1174             fjz0             = _mm_add_pd(fjz0,tz);
1175
1176             }
1177
1178             /**************************
1179              * CALCULATE INTERACTIONS *
1180              **************************/
1181
1182             if (gmx_mm_any_lt(rsq20,rcutoff2))
1183             {
1184
1185             /* Compute parameters for interactions between i and j atoms */
1186             qq20             = _mm_mul_pd(iq2,jq0);
1187
1188             /* REACTION-FIELD ELECTROSTATICS */
1189             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1190
1191             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1192
1193             fscal            = felec;
1194
1195             fscal            = _mm_and_pd(fscal,cutoff_mask);
1196
1197             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1198
1199             /* Calculate temporary vectorial force */
1200             tx               = _mm_mul_pd(fscal,dx20);
1201             ty               = _mm_mul_pd(fscal,dy20);
1202             tz               = _mm_mul_pd(fscal,dz20);
1203
1204             /* Update vectorial force */
1205             fix2             = _mm_add_pd(fix2,tx);
1206             fiy2             = _mm_add_pd(fiy2,ty);
1207             fiz2             = _mm_add_pd(fiz2,tz);
1208
1209             fjx0             = _mm_add_pd(fjx0,tx);
1210             fjy0             = _mm_add_pd(fjy0,ty);
1211             fjz0             = _mm_add_pd(fjz0,tz);
1212
1213             }
1214
1215             /**************************
1216              * CALCULATE INTERACTIONS *
1217              **************************/
1218
1219             if (gmx_mm_any_lt(rsq30,rcutoff2))
1220             {
1221
1222             /* Compute parameters for interactions between i and j atoms */
1223             qq30             = _mm_mul_pd(iq3,jq0);
1224
1225             /* REACTION-FIELD ELECTROSTATICS */
1226             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1227
1228             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1229
1230             fscal            = felec;
1231
1232             fscal            = _mm_and_pd(fscal,cutoff_mask);
1233
1234             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1235
1236             /* Calculate temporary vectorial force */
1237             tx               = _mm_mul_pd(fscal,dx30);
1238             ty               = _mm_mul_pd(fscal,dy30);
1239             tz               = _mm_mul_pd(fscal,dz30);
1240
1241             /* Update vectorial force */
1242             fix3             = _mm_add_pd(fix3,tx);
1243             fiy3             = _mm_add_pd(fiy3,ty);
1244             fiz3             = _mm_add_pd(fiz3,tz);
1245
1246             fjx0             = _mm_add_pd(fjx0,tx);
1247             fjy0             = _mm_add_pd(fjy0,ty);
1248             fjz0             = _mm_add_pd(fjz0,tz);
1249
1250             }
1251
1252             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1253
1254             /* Inner loop uses 149 flops */
1255         }
1256
1257         /* End of innermost loop */
1258
1259         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1260                                               f+i_coord_offset,fshift+i_shift_offset);
1261
1262         /* Increment number of inner iterations */
1263         inneriter                  += j_index_end - j_index_start;
1264
1265         /* Outer loop uses 24 flops */
1266     }
1267
1268     /* Increment number of outer iterations */
1269     outeriter        += nri;
1270
1271     /* Update outer/inner flops */
1272
1273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*149);
1274 }