15d883a40bbec206397c8304191709a732224f9f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     krf              = _mm_set1_pd(fr->ic->k_rf);
105     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
106     crf              = _mm_set1_pd(fr->ic->c_rf);
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
114     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
115     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
116     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->rcoulomb;
120     rcutoff          = _mm_set1_pd(rcutoff_scalar);
121     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
122
123     rswitch_scalar   = fr->rvdw_switch;
124     rswitch          = _mm_set1_pd(rswitch_scalar);
125     /* Setup switch parameters */
126     d_scalar         = rcutoff_scalar-rswitch_scalar;
127     d                = _mm_set1_pd(d_scalar);
128     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
129     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
132     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _mm_setzero_pd();
162         fiy0             = _mm_setzero_pd();
163         fiz0             = _mm_setzero_pd();
164         fix1             = _mm_setzero_pd();
165         fiy1             = _mm_setzero_pd();
166         fiz1             = _mm_setzero_pd();
167         fix2             = _mm_setzero_pd();
168         fiy2             = _mm_setzero_pd();
169         fiz2             = _mm_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193             dx10             = _mm_sub_pd(ix1,jx0);
194             dy10             = _mm_sub_pd(iy1,jy0);
195             dz10             = _mm_sub_pd(iz1,jz0);
196             dx20             = _mm_sub_pd(ix2,jx0);
197             dy20             = _mm_sub_pd(iy2,jy0);
198             dz20             = _mm_sub_pd(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_pd(rsq00);
206             rinv10           = gmx_mm_invsqrt_pd(rsq10);
207             rinv20           = gmx_mm_invsqrt_pd(rsq20);
208
209             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
210             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
211             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217
218             fjx0             = _mm_setzero_pd();
219             fjy0             = _mm_setzero_pd();
220             fjz0             = _mm_setzero_pd();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm_any_lt(rsq00,rcutoff2))
227             {
228
229             r00              = _mm_mul_pd(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_pd(iq0,jq0);
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* REACTION-FIELD ELECTROSTATICS */
237             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
238             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
244             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
245             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
246             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
247
248             d                = _mm_sub_pd(r00,rswitch);
249             d                = _mm_max_pd(d,_mm_setzero_pd());
250             d2               = _mm_mul_pd(d,d);
251             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
252
253             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
254
255             /* Evaluate switch function */
256             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
257             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
258             vvdw             = _mm_mul_pd(vvdw,sw);
259             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm_and_pd(velec,cutoff_mask);
263             velecsum         = _mm_add_pd(velecsum,velec);
264             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm_add_pd(felec,fvdw);
268
269             fscal            = _mm_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_pd(fscal,dx00);
273             ty               = _mm_mul_pd(fscal,dy00);
274             tz               = _mm_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_pd(fix0,tx);
278             fiy0             = _mm_add_pd(fiy0,ty);
279             fiz0             = _mm_add_pd(fiz0,tz);
280
281             fjx0             = _mm_add_pd(fjx0,tx);
282             fjy0             = _mm_add_pd(fjy0,ty);
283             fjz0             = _mm_add_pd(fjz0,tz);
284
285             }
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_mm_any_lt(rsq10,rcutoff2))
292             {
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_pd(iq1,jq0);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
299             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
300
301             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velec            = _mm_and_pd(velec,cutoff_mask);
305             velecsum         = _mm_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             fscal            = _mm_and_pd(fscal,cutoff_mask);
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_pd(fscal,dx10);
313             ty               = _mm_mul_pd(fscal,dy10);
314             tz               = _mm_mul_pd(fscal,dz10);
315
316             /* Update vectorial force */
317             fix1             = _mm_add_pd(fix1,tx);
318             fiy1             = _mm_add_pd(fiy1,ty);
319             fiz1             = _mm_add_pd(fiz1,tz);
320
321             fjx0             = _mm_add_pd(fjx0,tx);
322             fjy0             = _mm_add_pd(fjy0,ty);
323             fjz0             = _mm_add_pd(fjz0,tz);
324
325             }
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm_any_lt(rsq20,rcutoff2))
332             {
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_pd(iq2,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
339             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
340
341             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_and_pd(velec,cutoff_mask);
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_pd(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_pd(fscal,dx20);
353             ty               = _mm_mul_pd(fscal,dy20);
354             tz               = _mm_mul_pd(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm_add_pd(fix2,tx);
358             fiy2             = _mm_add_pd(fiy2,ty);
359             fiz2             = _mm_add_pd(fiz2,tz);
360
361             fjx0             = _mm_add_pd(fjx0,tx);
362             fjy0             = _mm_add_pd(fjy0,ty);
363             fjz0             = _mm_add_pd(fjz0,tz);
364
365             }
366
367             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
368
369             /* Inner loop uses 145 flops */
370         }
371
372         if(jidx<j_index_end)
373         {
374
375             jnrA             = jjnr[jidx];
376             j_coord_offsetA  = DIM*jnrA;
377
378             /* load j atom coordinates */
379             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
380                                               &jx0,&jy0,&jz0);
381
382             /* Calculate displacement vector */
383             dx00             = _mm_sub_pd(ix0,jx0);
384             dy00             = _mm_sub_pd(iy0,jy0);
385             dz00             = _mm_sub_pd(iz0,jz0);
386             dx10             = _mm_sub_pd(ix1,jx0);
387             dy10             = _mm_sub_pd(iy1,jy0);
388             dz10             = _mm_sub_pd(iz1,jz0);
389             dx20             = _mm_sub_pd(ix2,jx0);
390             dy20             = _mm_sub_pd(iy2,jy0);
391             dz20             = _mm_sub_pd(iz2,jz0);
392
393             /* Calculate squared distance and things based on it */
394             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
395             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
396             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
397
398             rinv00           = gmx_mm_invsqrt_pd(rsq00);
399             rinv10           = gmx_mm_invsqrt_pd(rsq10);
400             rinv20           = gmx_mm_invsqrt_pd(rsq20);
401
402             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
403             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
404             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
405
406             /* Load parameters for j particles */
407             jq0              = _mm_load_sd(charge+jnrA+0);
408             vdwjidx0A        = 2*vdwtype[jnrA+0];
409
410             fjx0             = _mm_setzero_pd();
411             fjy0             = _mm_setzero_pd();
412             fjz0             = _mm_setzero_pd();
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             if (gmx_mm_any_lt(rsq00,rcutoff2))
419             {
420
421             r00              = _mm_mul_pd(rsq00,rinv00);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq00             = _mm_mul_pd(iq0,jq0);
425             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
426
427             /* REACTION-FIELD ELECTROSTATICS */
428             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
429             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
430
431             /* LENNARD-JONES DISPERSION/REPULSION */
432
433             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
434             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
435             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
436             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
437             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
438
439             d                = _mm_sub_pd(r00,rswitch);
440             d                = _mm_max_pd(d,_mm_setzero_pd());
441             d2               = _mm_mul_pd(d,d);
442             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
443
444             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
445
446             /* Evaluate switch function */
447             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
448             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
449             vvdw             = _mm_mul_pd(vvdw,sw);
450             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_and_pd(velec,cutoff_mask);
454             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
455             velecsum         = _mm_add_pd(velecsum,velec);
456             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
457             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
458             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
459
460             fscal            = _mm_add_pd(felec,fvdw);
461
462             fscal            = _mm_and_pd(fscal,cutoff_mask);
463
464             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm_mul_pd(fscal,dx00);
468             ty               = _mm_mul_pd(fscal,dy00);
469             tz               = _mm_mul_pd(fscal,dz00);
470
471             /* Update vectorial force */
472             fix0             = _mm_add_pd(fix0,tx);
473             fiy0             = _mm_add_pd(fiy0,ty);
474             fiz0             = _mm_add_pd(fiz0,tz);
475
476             fjx0             = _mm_add_pd(fjx0,tx);
477             fjy0             = _mm_add_pd(fjy0,ty);
478             fjz0             = _mm_add_pd(fjz0,tz);
479
480             }
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             if (gmx_mm_any_lt(rsq10,rcutoff2))
487             {
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq10             = _mm_mul_pd(iq1,jq0);
491
492             /* REACTION-FIELD ELECTROSTATICS */
493             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
494             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
495
496             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm_and_pd(velec,cutoff_mask);
500             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
501             velecsum         = _mm_add_pd(velecsum,velec);
502
503             fscal            = felec;
504
505             fscal            = _mm_and_pd(fscal,cutoff_mask);
506
507             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_pd(fscal,dx10);
511             ty               = _mm_mul_pd(fscal,dy10);
512             tz               = _mm_mul_pd(fscal,dz10);
513
514             /* Update vectorial force */
515             fix1             = _mm_add_pd(fix1,tx);
516             fiy1             = _mm_add_pd(fiy1,ty);
517             fiz1             = _mm_add_pd(fiz1,tz);
518
519             fjx0             = _mm_add_pd(fjx0,tx);
520             fjy0             = _mm_add_pd(fjy0,ty);
521             fjz0             = _mm_add_pd(fjz0,tz);
522
523             }
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (gmx_mm_any_lt(rsq20,rcutoff2))
530             {
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq20             = _mm_mul_pd(iq2,jq0);
534
535             /* REACTION-FIELD ELECTROSTATICS */
536             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
537             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
538
539             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm_and_pd(velec,cutoff_mask);
543             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
544             velecsum         = _mm_add_pd(velecsum,velec);
545
546             fscal            = felec;
547
548             fscal            = _mm_and_pd(fscal,cutoff_mask);
549
550             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_pd(fscal,dx20);
554             ty               = _mm_mul_pd(fscal,dy20);
555             tz               = _mm_mul_pd(fscal,dz20);
556
557             /* Update vectorial force */
558             fix2             = _mm_add_pd(fix2,tx);
559             fiy2             = _mm_add_pd(fiy2,ty);
560             fiz2             = _mm_add_pd(fiz2,tz);
561
562             fjx0             = _mm_add_pd(fjx0,tx);
563             fjy0             = _mm_add_pd(fjy0,ty);
564             fjz0             = _mm_add_pd(fjz0,tz);
565
566             }
567
568             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
569
570             /* Inner loop uses 145 flops */
571         }
572
573         /* End of innermost loop */
574
575         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
576                                               f+i_coord_offset,fshift+i_shift_offset);
577
578         ggid                        = gid[iidx];
579         /* Update potential energies */
580         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
581         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
582
583         /* Increment number of inner iterations */
584         inneriter                  += j_index_end - j_index_start;
585
586         /* Outer loop uses 20 flops */
587     }
588
589     /* Increment number of outer iterations */
590     outeriter        += nri;
591
592     /* Update outer/inner flops */
593
594     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
595 }
596 /*
597  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_double
598  * Electrostatics interaction: ReactionField
599  * VdW interaction:            LennardJones
600  * Geometry:                   Water3-Particle
601  * Calculate force/pot:        Force
602  */
603 void
604 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_double
605                     (t_nblist * gmx_restrict                nlist,
606                      rvec * gmx_restrict                    xx,
607                      rvec * gmx_restrict                    ff,
608                      t_forcerec * gmx_restrict              fr,
609                      t_mdatoms * gmx_restrict               mdatoms,
610                      nb_kernel_data_t * gmx_restrict        kernel_data,
611                      t_nrnb * gmx_restrict                  nrnb)
612 {
613     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
614      * just 0 for non-waters.
615      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
616      * jnr indices corresponding to data put in the four positions in the SIMD register.
617      */
618     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
619     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
620     int              jnrA,jnrB;
621     int              j_coord_offsetA,j_coord_offsetB;
622     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
623     real             rcutoff_scalar;
624     real             *shiftvec,*fshift,*x,*f;
625     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
626     int              vdwioffset0;
627     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
628     int              vdwioffset1;
629     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
630     int              vdwioffset2;
631     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
632     int              vdwjidx0A,vdwjidx0B;
633     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
634     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
635     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
636     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
637     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
638     real             *charge;
639     int              nvdwtype;
640     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
641     int              *vdwtype;
642     real             *vdwparam;
643     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
644     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
645     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
646     real             rswitch_scalar,d_scalar;
647     __m128d          dummy_mask,cutoff_mask;
648     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
649     __m128d          one     = _mm_set1_pd(1.0);
650     __m128d          two     = _mm_set1_pd(2.0);
651     x                = xx[0];
652     f                = ff[0];
653
654     nri              = nlist->nri;
655     iinr             = nlist->iinr;
656     jindex           = nlist->jindex;
657     jjnr             = nlist->jjnr;
658     shiftidx         = nlist->shift;
659     gid              = nlist->gid;
660     shiftvec         = fr->shift_vec[0];
661     fshift           = fr->fshift[0];
662     facel            = _mm_set1_pd(fr->epsfac);
663     charge           = mdatoms->chargeA;
664     krf              = _mm_set1_pd(fr->ic->k_rf);
665     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
666     crf              = _mm_set1_pd(fr->ic->c_rf);
667     nvdwtype         = fr->ntype;
668     vdwparam         = fr->nbfp;
669     vdwtype          = mdatoms->typeA;
670
671     /* Setup water-specific parameters */
672     inr              = nlist->iinr[0];
673     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
674     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
675     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
676     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
677
678     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
679     rcutoff_scalar   = fr->rcoulomb;
680     rcutoff          = _mm_set1_pd(rcutoff_scalar);
681     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
682
683     rswitch_scalar   = fr->rvdw_switch;
684     rswitch          = _mm_set1_pd(rswitch_scalar);
685     /* Setup switch parameters */
686     d_scalar         = rcutoff_scalar-rswitch_scalar;
687     d                = _mm_set1_pd(d_scalar);
688     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
689     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
690     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
691     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
692     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
693     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
694
695     /* Avoid stupid compiler warnings */
696     jnrA = jnrB = 0;
697     j_coord_offsetA = 0;
698     j_coord_offsetB = 0;
699
700     outeriter        = 0;
701     inneriter        = 0;
702
703     /* Start outer loop over neighborlists */
704     for(iidx=0; iidx<nri; iidx++)
705     {
706         /* Load shift vector for this list */
707         i_shift_offset   = DIM*shiftidx[iidx];
708
709         /* Load limits for loop over neighbors */
710         j_index_start    = jindex[iidx];
711         j_index_end      = jindex[iidx+1];
712
713         /* Get outer coordinate index */
714         inr              = iinr[iidx];
715         i_coord_offset   = DIM*inr;
716
717         /* Load i particle coords and add shift vector */
718         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
719                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
720
721         fix0             = _mm_setzero_pd();
722         fiy0             = _mm_setzero_pd();
723         fiz0             = _mm_setzero_pd();
724         fix1             = _mm_setzero_pd();
725         fiy1             = _mm_setzero_pd();
726         fiz1             = _mm_setzero_pd();
727         fix2             = _mm_setzero_pd();
728         fiy2             = _mm_setzero_pd();
729         fiz2             = _mm_setzero_pd();
730
731         /* Start inner kernel loop */
732         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
733         {
734
735             /* Get j neighbor index, and coordinate index */
736             jnrA             = jjnr[jidx];
737             jnrB             = jjnr[jidx+1];
738             j_coord_offsetA  = DIM*jnrA;
739             j_coord_offsetB  = DIM*jnrB;
740
741             /* load j atom coordinates */
742             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
743                                               &jx0,&jy0,&jz0);
744
745             /* Calculate displacement vector */
746             dx00             = _mm_sub_pd(ix0,jx0);
747             dy00             = _mm_sub_pd(iy0,jy0);
748             dz00             = _mm_sub_pd(iz0,jz0);
749             dx10             = _mm_sub_pd(ix1,jx0);
750             dy10             = _mm_sub_pd(iy1,jy0);
751             dz10             = _mm_sub_pd(iz1,jz0);
752             dx20             = _mm_sub_pd(ix2,jx0);
753             dy20             = _mm_sub_pd(iy2,jy0);
754             dz20             = _mm_sub_pd(iz2,jz0);
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
758             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
759             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
760
761             rinv00           = gmx_mm_invsqrt_pd(rsq00);
762             rinv10           = gmx_mm_invsqrt_pd(rsq10);
763             rinv20           = gmx_mm_invsqrt_pd(rsq20);
764
765             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
766             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
767             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
768
769             /* Load parameters for j particles */
770             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
771             vdwjidx0A        = 2*vdwtype[jnrA+0];
772             vdwjidx0B        = 2*vdwtype[jnrB+0];
773
774             fjx0             = _mm_setzero_pd();
775             fjy0             = _mm_setzero_pd();
776             fjz0             = _mm_setzero_pd();
777
778             /**************************
779              * CALCULATE INTERACTIONS *
780              **************************/
781
782             if (gmx_mm_any_lt(rsq00,rcutoff2))
783             {
784
785             r00              = _mm_mul_pd(rsq00,rinv00);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq00             = _mm_mul_pd(iq0,jq0);
789             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
790                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
791
792             /* REACTION-FIELD ELECTROSTATICS */
793             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
794
795             /* LENNARD-JONES DISPERSION/REPULSION */
796
797             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
798             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
799             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
800             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
801             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
802
803             d                = _mm_sub_pd(r00,rswitch);
804             d                = _mm_max_pd(d,_mm_setzero_pd());
805             d2               = _mm_mul_pd(d,d);
806             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
807
808             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
809
810             /* Evaluate switch function */
811             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
812             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
813             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
814
815             fscal            = _mm_add_pd(felec,fvdw);
816
817             fscal            = _mm_and_pd(fscal,cutoff_mask);
818
819             /* Calculate temporary vectorial force */
820             tx               = _mm_mul_pd(fscal,dx00);
821             ty               = _mm_mul_pd(fscal,dy00);
822             tz               = _mm_mul_pd(fscal,dz00);
823
824             /* Update vectorial force */
825             fix0             = _mm_add_pd(fix0,tx);
826             fiy0             = _mm_add_pd(fiy0,ty);
827             fiz0             = _mm_add_pd(fiz0,tz);
828
829             fjx0             = _mm_add_pd(fjx0,tx);
830             fjy0             = _mm_add_pd(fjy0,ty);
831             fjz0             = _mm_add_pd(fjz0,tz);
832
833             }
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             if (gmx_mm_any_lt(rsq10,rcutoff2))
840             {
841
842             /* Compute parameters for interactions between i and j atoms */
843             qq10             = _mm_mul_pd(iq1,jq0);
844
845             /* REACTION-FIELD ELECTROSTATICS */
846             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
847
848             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
849
850             fscal            = felec;
851
852             fscal            = _mm_and_pd(fscal,cutoff_mask);
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm_mul_pd(fscal,dx10);
856             ty               = _mm_mul_pd(fscal,dy10);
857             tz               = _mm_mul_pd(fscal,dz10);
858
859             /* Update vectorial force */
860             fix1             = _mm_add_pd(fix1,tx);
861             fiy1             = _mm_add_pd(fiy1,ty);
862             fiz1             = _mm_add_pd(fiz1,tz);
863
864             fjx0             = _mm_add_pd(fjx0,tx);
865             fjy0             = _mm_add_pd(fjy0,ty);
866             fjz0             = _mm_add_pd(fjz0,tz);
867
868             }
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             if (gmx_mm_any_lt(rsq20,rcutoff2))
875             {
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq20             = _mm_mul_pd(iq2,jq0);
879
880             /* REACTION-FIELD ELECTROSTATICS */
881             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
882
883             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
884
885             fscal            = felec;
886
887             fscal            = _mm_and_pd(fscal,cutoff_mask);
888
889             /* Calculate temporary vectorial force */
890             tx               = _mm_mul_pd(fscal,dx20);
891             ty               = _mm_mul_pd(fscal,dy20);
892             tz               = _mm_mul_pd(fscal,dz20);
893
894             /* Update vectorial force */
895             fix2             = _mm_add_pd(fix2,tx);
896             fiy2             = _mm_add_pd(fiy2,ty);
897             fiz2             = _mm_add_pd(fiz2,tz);
898
899             fjx0             = _mm_add_pd(fjx0,tx);
900             fjy0             = _mm_add_pd(fjy0,ty);
901             fjz0             = _mm_add_pd(fjz0,tz);
902
903             }
904
905             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
906
907             /* Inner loop uses 124 flops */
908         }
909
910         if(jidx<j_index_end)
911         {
912
913             jnrA             = jjnr[jidx];
914             j_coord_offsetA  = DIM*jnrA;
915
916             /* load j atom coordinates */
917             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
918                                               &jx0,&jy0,&jz0);
919
920             /* Calculate displacement vector */
921             dx00             = _mm_sub_pd(ix0,jx0);
922             dy00             = _mm_sub_pd(iy0,jy0);
923             dz00             = _mm_sub_pd(iz0,jz0);
924             dx10             = _mm_sub_pd(ix1,jx0);
925             dy10             = _mm_sub_pd(iy1,jy0);
926             dz10             = _mm_sub_pd(iz1,jz0);
927             dx20             = _mm_sub_pd(ix2,jx0);
928             dy20             = _mm_sub_pd(iy2,jy0);
929             dz20             = _mm_sub_pd(iz2,jz0);
930
931             /* Calculate squared distance and things based on it */
932             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
933             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
934             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
935
936             rinv00           = gmx_mm_invsqrt_pd(rsq00);
937             rinv10           = gmx_mm_invsqrt_pd(rsq10);
938             rinv20           = gmx_mm_invsqrt_pd(rsq20);
939
940             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
941             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
942             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
943
944             /* Load parameters for j particles */
945             jq0              = _mm_load_sd(charge+jnrA+0);
946             vdwjidx0A        = 2*vdwtype[jnrA+0];
947
948             fjx0             = _mm_setzero_pd();
949             fjy0             = _mm_setzero_pd();
950             fjz0             = _mm_setzero_pd();
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm_any_lt(rsq00,rcutoff2))
957             {
958
959             r00              = _mm_mul_pd(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq00             = _mm_mul_pd(iq0,jq0);
963             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
964
965             /* REACTION-FIELD ELECTROSTATICS */
966             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
967
968             /* LENNARD-JONES DISPERSION/REPULSION */
969
970             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
971             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
972             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
973             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
974             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
975
976             d                = _mm_sub_pd(r00,rswitch);
977             d                = _mm_max_pd(d,_mm_setzero_pd());
978             d2               = _mm_mul_pd(d,d);
979             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
980
981             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
982
983             /* Evaluate switch function */
984             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
985             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
986             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
987
988             fscal            = _mm_add_pd(felec,fvdw);
989
990             fscal            = _mm_and_pd(fscal,cutoff_mask);
991
992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx00);
996             ty               = _mm_mul_pd(fscal,dy00);
997             tz               = _mm_mul_pd(fscal,dz00);
998
999             /* Update vectorial force */
1000             fix0             = _mm_add_pd(fix0,tx);
1001             fiy0             = _mm_add_pd(fiy0,ty);
1002             fiz0             = _mm_add_pd(fiz0,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             }
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             if (gmx_mm_any_lt(rsq10,rcutoff2))
1015             {
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq10             = _mm_mul_pd(iq1,jq0);
1019
1020             /* REACTION-FIELD ELECTROSTATICS */
1021             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1022
1023             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm_and_pd(fscal,cutoff_mask);
1028
1029             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_pd(fscal,dx10);
1033             ty               = _mm_mul_pd(fscal,dy10);
1034             tz               = _mm_mul_pd(fscal,dz10);
1035
1036             /* Update vectorial force */
1037             fix1             = _mm_add_pd(fix1,tx);
1038             fiy1             = _mm_add_pd(fiy1,ty);
1039             fiz1             = _mm_add_pd(fiz1,tz);
1040
1041             fjx0             = _mm_add_pd(fjx0,tx);
1042             fjy0             = _mm_add_pd(fjy0,ty);
1043             fjz0             = _mm_add_pd(fjz0,tz);
1044
1045             }
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             if (gmx_mm_any_lt(rsq20,rcutoff2))
1052             {
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq20             = _mm_mul_pd(iq2,jq0);
1056
1057             /* REACTION-FIELD ELECTROSTATICS */
1058             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1059
1060             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_and_pd(fscal,cutoff_mask);
1065
1066             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm_mul_pd(fscal,dx20);
1070             ty               = _mm_mul_pd(fscal,dy20);
1071             tz               = _mm_mul_pd(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm_add_pd(fix2,tx);
1075             fiy2             = _mm_add_pd(fiy2,ty);
1076             fiz2             = _mm_add_pd(fiz2,tz);
1077
1078             fjx0             = _mm_add_pd(fjx0,tx);
1079             fjy0             = _mm_add_pd(fjy0,ty);
1080             fjz0             = _mm_add_pd(fjz0,tz);
1081
1082             }
1083
1084             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 124 flops */
1087         }
1088
1089         /* End of innermost loop */
1090
1091         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1092                                               f+i_coord_offset,fshift+i_shift_offset);
1093
1094         /* Increment number of inner iterations */
1095         inneriter                  += j_index_end - j_index_start;
1096
1097         /* Outer loop uses 18 flops */
1098     }
1099
1100     /* Increment number of outer iterations */
1101     outeriter        += nri;
1102
1103     /* Update outer/inner flops */
1104
1105     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*124);
1106 }