10843298b318ae8489223c03b416f2d0f0aa3b43
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
94     real             rswitch_scalar,d_scalar;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->rcoulomb;
121     rcutoff          = _mm_set1_pd(rcutoff_scalar);
122     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
123
124     rswitch_scalar   = fr->rvdw_switch;
125     rswitch          = _mm_set1_pd(rswitch_scalar);
126     /* Setup switch parameters */
127     d_scalar         = rcutoff_scalar-rswitch_scalar;
128     d                = _mm_set1_pd(d_scalar);
129     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
130     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
133     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm_setzero_pd();
162         fiy0             = _mm_setzero_pd();
163         fiz0             = _mm_setzero_pd();
164
165         /* Load parameters for i particles */
166         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
167         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_pd(rsq00);
196
197             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             if (gmx_mm_any_lt(rsq00,rcutoff2))
209             {
210
211             r00              = _mm_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_pd(iq0,jq0);
215             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
217
218             /* REACTION-FIELD ELECTROSTATICS */
219             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
220             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
221
222             /* LENNARD-JONES DISPERSION/REPULSION */
223
224             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
225             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
226             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
227             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
228             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
229
230             d                = _mm_sub_pd(r00,rswitch);
231             d                = _mm_max_pd(d,_mm_setzero_pd());
232             d2               = _mm_mul_pd(d,d);
233             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
234
235             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
236
237             /* Evaluate switch function */
238             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
239             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
240             vvdw             = _mm_mul_pd(vvdw,sw);
241             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_pd(velec,cutoff_mask);
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
247             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
248
249             fscal            = _mm_add_pd(felec,fvdw);
250
251             fscal            = _mm_and_pd(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_pd(fscal,dx00);
255             ty               = _mm_mul_pd(fscal,dy00);
256             tz               = _mm_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_pd(fix0,tx);
260             fiy0             = _mm_add_pd(fiy0,ty);
261             fiz0             = _mm_add_pd(fiz0,tz);
262
263             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
264
265             }
266
267             /* Inner loop uses 70 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             jnrA             = jjnr[jidx];
274             j_coord_offsetA  = DIM*jnrA;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_pd(ix0,jx0);
282             dy00             = _mm_sub_pd(iy0,jy0);
283             dz00             = _mm_sub_pd(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
287
288             rinv00           = gmx_mm_invsqrt_pd(rsq00);
289
290             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
291
292             /* Load parameters for j particles */
293             jq0              = _mm_load_sd(charge+jnrA+0);
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq00,rcutoff2))
301             {
302
303             r00              = _mm_mul_pd(rsq00,rinv00);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq00             = _mm_mul_pd(iq0,jq0);
307             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
308
309             /* REACTION-FIELD ELECTROSTATICS */
310             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
311             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
312
313             /* LENNARD-JONES DISPERSION/REPULSION */
314
315             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
316             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
317             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
318             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
319             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
320
321             d                = _mm_sub_pd(r00,rswitch);
322             d                = _mm_max_pd(d,_mm_setzero_pd());
323             d2               = _mm_mul_pd(d,d);
324             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
325
326             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
327
328             /* Evaluate switch function */
329             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
330             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
331             vvdw             = _mm_mul_pd(vvdw,sw);
332             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velec            = _mm_and_pd(velec,cutoff_mask);
336             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
337             velecsum         = _mm_add_pd(velecsum,velec);
338             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
339             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
340             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
341
342             fscal            = _mm_add_pd(felec,fvdw);
343
344             fscal            = _mm_and_pd(fscal,cutoff_mask);
345
346             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx00);
350             ty               = _mm_mul_pd(fscal,dy00);
351             tz               = _mm_mul_pd(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm_add_pd(fix0,tx);
355             fiy0             = _mm_add_pd(fiy0,ty);
356             fiz0             = _mm_add_pd(fiz0,tz);
357
358             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
359
360             }
361
362             /* Inner loop uses 70 flops */
363         }
364
365         /* End of innermost loop */
366
367         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
368                                               f+i_coord_offset,fshift+i_shift_offset);
369
370         ggid                        = gid[iidx];
371         /* Update potential energies */
372         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
373         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
374
375         /* Increment number of inner iterations */
376         inneriter                  += j_index_end - j_index_start;
377
378         /* Outer loop uses 9 flops */
379     }
380
381     /* Increment number of outer iterations */
382     outeriter        += nri;
383
384     /* Update outer/inner flops */
385
386     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
387 }
388 /*
389  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_double
390  * Electrostatics interaction: ReactionField
391  * VdW interaction:            LennardJones
392  * Geometry:                   Particle-Particle
393  * Calculate force/pot:        Force
394  */
395 void
396 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_double
397                     (t_nblist                    * gmx_restrict       nlist,
398                      rvec                        * gmx_restrict          xx,
399                      rvec                        * gmx_restrict          ff,
400                      t_forcerec                  * gmx_restrict          fr,
401                      t_mdatoms                   * gmx_restrict     mdatoms,
402                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
403                      t_nrnb                      * gmx_restrict        nrnb)
404 {
405     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
406      * just 0 for non-waters.
407      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
408      * jnr indices corresponding to data put in the four positions in the SIMD register.
409      */
410     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
411     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
412     int              jnrA,jnrB;
413     int              j_coord_offsetA,j_coord_offsetB;
414     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
415     real             rcutoff_scalar;
416     real             *shiftvec,*fshift,*x,*f;
417     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
418     int              vdwioffset0;
419     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
420     int              vdwjidx0A,vdwjidx0B;
421     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
422     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
423     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
424     real             *charge;
425     int              nvdwtype;
426     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
427     int              *vdwtype;
428     real             *vdwparam;
429     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
430     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
431     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
432     real             rswitch_scalar,d_scalar;
433     __m128d          dummy_mask,cutoff_mask;
434     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
435     __m128d          one     = _mm_set1_pd(1.0);
436     __m128d          two     = _mm_set1_pd(2.0);
437     x                = xx[0];
438     f                = ff[0];
439
440     nri              = nlist->nri;
441     iinr             = nlist->iinr;
442     jindex           = nlist->jindex;
443     jjnr             = nlist->jjnr;
444     shiftidx         = nlist->shift;
445     gid              = nlist->gid;
446     shiftvec         = fr->shift_vec[0];
447     fshift           = fr->fshift[0];
448     facel            = _mm_set1_pd(fr->epsfac);
449     charge           = mdatoms->chargeA;
450     krf              = _mm_set1_pd(fr->ic->k_rf);
451     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
452     crf              = _mm_set1_pd(fr->ic->c_rf);
453     nvdwtype         = fr->ntype;
454     vdwparam         = fr->nbfp;
455     vdwtype          = mdatoms->typeA;
456
457     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
458     rcutoff_scalar   = fr->rcoulomb;
459     rcutoff          = _mm_set1_pd(rcutoff_scalar);
460     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
461
462     rswitch_scalar   = fr->rvdw_switch;
463     rswitch          = _mm_set1_pd(rswitch_scalar);
464     /* Setup switch parameters */
465     d_scalar         = rcutoff_scalar-rswitch_scalar;
466     d                = _mm_set1_pd(d_scalar);
467     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
468     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
469     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
470     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
471     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
472     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
473
474     /* Avoid stupid compiler warnings */
475     jnrA = jnrB = 0;
476     j_coord_offsetA = 0;
477     j_coord_offsetB = 0;
478
479     outeriter        = 0;
480     inneriter        = 0;
481
482     /* Start outer loop over neighborlists */
483     for(iidx=0; iidx<nri; iidx++)
484     {
485         /* Load shift vector for this list */
486         i_shift_offset   = DIM*shiftidx[iidx];
487
488         /* Load limits for loop over neighbors */
489         j_index_start    = jindex[iidx];
490         j_index_end      = jindex[iidx+1];
491
492         /* Get outer coordinate index */
493         inr              = iinr[iidx];
494         i_coord_offset   = DIM*inr;
495
496         /* Load i particle coords and add shift vector */
497         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
498
499         fix0             = _mm_setzero_pd();
500         fiy0             = _mm_setzero_pd();
501         fiz0             = _mm_setzero_pd();
502
503         /* Load parameters for i particles */
504         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
505         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516
517             /* load j atom coordinates */
518             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
519                                               &jx0,&jy0,&jz0);
520
521             /* Calculate displacement vector */
522             dx00             = _mm_sub_pd(ix0,jx0);
523             dy00             = _mm_sub_pd(iy0,jy0);
524             dz00             = _mm_sub_pd(iz0,jz0);
525
526             /* Calculate squared distance and things based on it */
527             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
528
529             rinv00           = gmx_mm_invsqrt_pd(rsq00);
530
531             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
535             vdwjidx0A        = 2*vdwtype[jnrA+0];
536             vdwjidx0B        = 2*vdwtype[jnrB+0];
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             if (gmx_mm_any_lt(rsq00,rcutoff2))
543             {
544
545             r00              = _mm_mul_pd(rsq00,rinv00);
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq00             = _mm_mul_pd(iq0,jq0);
549             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
550                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
551
552             /* REACTION-FIELD ELECTROSTATICS */
553             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
554
555             /* LENNARD-JONES DISPERSION/REPULSION */
556
557             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
558             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
559             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
560             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
561             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
562
563             d                = _mm_sub_pd(r00,rswitch);
564             d                = _mm_max_pd(d,_mm_setzero_pd());
565             d2               = _mm_mul_pd(d,d);
566             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
567
568             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
569
570             /* Evaluate switch function */
571             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
572             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
573             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
574
575             fscal            = _mm_add_pd(felec,fvdw);
576
577             fscal            = _mm_and_pd(fscal,cutoff_mask);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_pd(fscal,dx00);
581             ty               = _mm_mul_pd(fscal,dy00);
582             tz               = _mm_mul_pd(fscal,dz00);
583
584             /* Update vectorial force */
585             fix0             = _mm_add_pd(fix0,tx);
586             fiy0             = _mm_add_pd(fiy0,ty);
587             fiz0             = _mm_add_pd(fiz0,tz);
588
589             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
590
591             }
592
593             /* Inner loop uses 61 flops */
594         }
595
596         if(jidx<j_index_end)
597         {
598
599             jnrA             = jjnr[jidx];
600             j_coord_offsetA  = DIM*jnrA;
601
602             /* load j atom coordinates */
603             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
604                                               &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm_sub_pd(ix0,jx0);
608             dy00             = _mm_sub_pd(iy0,jy0);
609             dz00             = _mm_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinv00           = gmx_mm_invsqrt_pd(rsq00);
615
616             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = _mm_load_sd(charge+jnrA+0);
620             vdwjidx0A        = 2*vdwtype[jnrA+0];
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm_any_lt(rsq00,rcutoff2))
627             {
628
629             r00              = _mm_mul_pd(rsq00,rinv00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq00             = _mm_mul_pd(iq0,jq0);
633             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
634
635             /* REACTION-FIELD ELECTROSTATICS */
636             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
637
638             /* LENNARD-JONES DISPERSION/REPULSION */
639
640             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
641             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
642             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
643             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
644             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
645
646             d                = _mm_sub_pd(r00,rswitch);
647             d                = _mm_max_pd(d,_mm_setzero_pd());
648             d2               = _mm_mul_pd(d,d);
649             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
650
651             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
652
653             /* Evaluate switch function */
654             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
655             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
656             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
657
658             fscal            = _mm_add_pd(felec,fvdw);
659
660             fscal            = _mm_and_pd(fscal,cutoff_mask);
661
662             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm_mul_pd(fscal,dx00);
666             ty               = _mm_mul_pd(fscal,dy00);
667             tz               = _mm_mul_pd(fscal,dz00);
668
669             /* Update vectorial force */
670             fix0             = _mm_add_pd(fix0,tx);
671             fiy0             = _mm_add_pd(fiy0,ty);
672             fiz0             = _mm_add_pd(fiz0,tz);
673
674             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
675
676             }
677
678             /* Inner loop uses 61 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         /* Increment number of inner iterations */
687         inneriter                  += j_index_end - j_index_start;
688
689         /* Outer loop uses 7 flops */
690     }
691
692     /* Increment number of outer iterations */
693     outeriter        += nri;
694
695     /* Update outer/inner flops */
696
697     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
698 }