Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm_set1_pd(fr->ic->k_rf);
119     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
120     crf              = _mm_set1_pd(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
128     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
129     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->ic->rcoulomb;
134     rcutoff          = _mm_set1_pd(rcutoff_scalar);
135     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
136
137     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
138     rvdw             = _mm_set1_pd(fr->ic->rvdw);
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207             dx30             = _mm_sub_pd(ix3,jx0);
208             dy30             = _mm_sub_pd(iy3,jy0);
209             dz30             = _mm_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv10           = sse41_invsqrt_d(rsq10);
218             rinv20           = sse41_invsqrt_d(rsq20);
219             rinv30           = sse41_invsqrt_d(rsq30);
220
221             rinvsq00         = sse41_inv_d(rsq00);
222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             if (gmx_mm_any_lt(rsq00,rcutoff2))
240             {
241
242             /* Compute parameters for interactions between i and j atoms */
243             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
249             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
250             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
251             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
252                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
253             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
254
255             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
259             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
260
261             fscal            = fvdw;
262
263             fscal            = _mm_and_pd(fscal,cutoff_mask);
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm_mul_pd(fscal,dx00);
267             ty               = _mm_mul_pd(fscal,dy00);
268             tz               = _mm_mul_pd(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm_add_pd(fix0,tx);
272             fiy0             = _mm_add_pd(fiy0,ty);
273             fiz0             = _mm_add_pd(fiz0,tz);
274
275             fjx0             = _mm_add_pd(fjx0,tx);
276             fjy0             = _mm_add_pd(fjy0,ty);
277             fjz0             = _mm_add_pd(fjz0,tz);
278
279             }
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             if (gmx_mm_any_lt(rsq10,rcutoff2))
286             {
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq10             = _mm_mul_pd(iq1,jq0);
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
293             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
294
295             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm_and_pd(velec,cutoff_mask);
299             velecsum         = _mm_add_pd(velecsum,velec);
300
301             fscal            = felec;
302
303             fscal            = _mm_and_pd(fscal,cutoff_mask);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_pd(fscal,dx10);
307             ty               = _mm_mul_pd(fscal,dy10);
308             tz               = _mm_mul_pd(fscal,dz10);
309
310             /* Update vectorial force */
311             fix1             = _mm_add_pd(fix1,tx);
312             fiy1             = _mm_add_pd(fiy1,ty);
313             fiz1             = _mm_add_pd(fiz1,tz);
314
315             fjx0             = _mm_add_pd(fjx0,tx);
316             fjy0             = _mm_add_pd(fjy0,ty);
317             fjz0             = _mm_add_pd(fjz0,tz);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq20,rcutoff2))
326             {
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq20             = _mm_mul_pd(iq2,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
333             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
334
335             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_and_pd(velec,cutoff_mask);
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             fscal            = _mm_and_pd(fscal,cutoff_mask);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx20);
347             ty               = _mm_mul_pd(fscal,dy20);
348             tz               = _mm_mul_pd(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm_add_pd(fix2,tx);
352             fiy2             = _mm_add_pd(fiy2,ty);
353             fiz2             = _mm_add_pd(fiz2,tz);
354
355             fjx0             = _mm_add_pd(fjx0,tx);
356             fjy0             = _mm_add_pd(fjy0,ty);
357             fjz0             = _mm_add_pd(fjz0,tz);
358
359             }
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq30,rcutoff2))
366             {
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq30             = _mm_mul_pd(iq3,jq0);
370
371             /* REACTION-FIELD ELECTROSTATICS */
372             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
373             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
374
375             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm_and_pd(velec,cutoff_mask);
379             velecsum         = _mm_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm_and_pd(fscal,cutoff_mask);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_pd(fscal,dx30);
387             ty               = _mm_mul_pd(fscal,dy30);
388             tz               = _mm_mul_pd(fscal,dz30);
389
390             /* Update vectorial force */
391             fix3             = _mm_add_pd(fix3,tx);
392             fiy3             = _mm_add_pd(fiy3,ty);
393             fiz3             = _mm_add_pd(fiz3,tz);
394
395             fjx0             = _mm_add_pd(fjx0,tx);
396             fjy0             = _mm_add_pd(fjy0,ty);
397             fjz0             = _mm_add_pd(fjz0,tz);
398
399             }
400
401             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 152 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             jnrA             = jjnr[jidx];
410             j_coord_offsetA  = DIM*jnrA;
411
412             /* load j atom coordinates */
413             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_pd(ix0,jx0);
418             dy00             = _mm_sub_pd(iy0,jy0);
419             dz00             = _mm_sub_pd(iz0,jz0);
420             dx10             = _mm_sub_pd(ix1,jx0);
421             dy10             = _mm_sub_pd(iy1,jy0);
422             dz10             = _mm_sub_pd(iz1,jz0);
423             dx20             = _mm_sub_pd(ix2,jx0);
424             dy20             = _mm_sub_pd(iy2,jy0);
425             dz20             = _mm_sub_pd(iz2,jz0);
426             dx30             = _mm_sub_pd(ix3,jx0);
427             dy30             = _mm_sub_pd(iy3,jy0);
428             dz30             = _mm_sub_pd(iz3,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
432             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
433             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
434             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
435
436             rinv10           = sse41_invsqrt_d(rsq10);
437             rinv20           = sse41_invsqrt_d(rsq20);
438             rinv30           = sse41_invsqrt_d(rsq30);
439
440             rinvsq00         = sse41_inv_d(rsq00);
441             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
442             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
443             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
444
445             /* Load parameters for j particles */
446             jq0              = _mm_load_sd(charge+jnrA+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448
449             fjx0             = _mm_setzero_pd();
450             fjy0             = _mm_setzero_pd();
451             fjz0             = _mm_setzero_pd();
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             if (gmx_mm_any_lt(rsq00,rcutoff2))
458             {
459
460             /* Compute parameters for interactions between i and j atoms */
461             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
462
463             /* LENNARD-JONES DISPERSION/REPULSION */
464
465             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
466             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
467             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
468             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
469                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
470             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
471
472             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
476             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
477             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
478
479             fscal            = fvdw;
480
481             fscal            = _mm_and_pd(fscal,cutoff_mask);
482
483             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm_mul_pd(fscal,dx00);
487             ty               = _mm_mul_pd(fscal,dy00);
488             tz               = _mm_mul_pd(fscal,dz00);
489
490             /* Update vectorial force */
491             fix0             = _mm_add_pd(fix0,tx);
492             fiy0             = _mm_add_pd(fiy0,ty);
493             fiz0             = _mm_add_pd(fiz0,tz);
494
495             fjx0             = _mm_add_pd(fjx0,tx);
496             fjy0             = _mm_add_pd(fjy0,ty);
497             fjz0             = _mm_add_pd(fjz0,tz);
498
499             }
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             if (gmx_mm_any_lt(rsq10,rcutoff2))
506             {
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq10             = _mm_mul_pd(iq1,jq0);
510
511             /* REACTION-FIELD ELECTROSTATICS */
512             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
513             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
514
515             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _mm_and_pd(velec,cutoff_mask);
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_and_pd(fscal,cutoff_mask);
525
526             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_pd(fscal,dx10);
530             ty               = _mm_mul_pd(fscal,dy10);
531             tz               = _mm_mul_pd(fscal,dz10);
532
533             /* Update vectorial force */
534             fix1             = _mm_add_pd(fix1,tx);
535             fiy1             = _mm_add_pd(fiy1,ty);
536             fiz1             = _mm_add_pd(fiz1,tz);
537
538             fjx0             = _mm_add_pd(fjx0,tx);
539             fjy0             = _mm_add_pd(fjy0,ty);
540             fjz0             = _mm_add_pd(fjz0,tz);
541
542             }
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             if (gmx_mm_any_lt(rsq20,rcutoff2))
549             {
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq20             = _mm_mul_pd(iq2,jq0);
553
554             /* REACTION-FIELD ELECTROSTATICS */
555             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
556             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
557
558             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm_and_pd(velec,cutoff_mask);
562             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             fscal            = _mm_and_pd(fscal,cutoff_mask);
568
569             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm_mul_pd(fscal,dx20);
573             ty               = _mm_mul_pd(fscal,dy20);
574             tz               = _mm_mul_pd(fscal,dz20);
575
576             /* Update vectorial force */
577             fix2             = _mm_add_pd(fix2,tx);
578             fiy2             = _mm_add_pd(fiy2,ty);
579             fiz2             = _mm_add_pd(fiz2,tz);
580
581             fjx0             = _mm_add_pd(fjx0,tx);
582             fjy0             = _mm_add_pd(fjy0,ty);
583             fjz0             = _mm_add_pd(fjz0,tz);
584
585             }
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             if (gmx_mm_any_lt(rsq30,rcutoff2))
592             {
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq30             = _mm_mul_pd(iq3,jq0);
596
597             /* REACTION-FIELD ELECTROSTATICS */
598             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
599             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
600
601             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm_and_pd(velec,cutoff_mask);
605             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
606             velecsum         = _mm_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_and_pd(fscal,cutoff_mask);
611
612             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm_mul_pd(fscal,dx30);
616             ty               = _mm_mul_pd(fscal,dy30);
617             tz               = _mm_mul_pd(fscal,dz30);
618
619             /* Update vectorial force */
620             fix3             = _mm_add_pd(fix3,tx);
621             fiy3             = _mm_add_pd(fiy3,ty);
622             fiz3             = _mm_add_pd(fiz3,tz);
623
624             fjx0             = _mm_add_pd(fjx0,tx);
625             fjy0             = _mm_add_pd(fjy0,ty);
626             fjz0             = _mm_add_pd(fjz0,tz);
627
628             }
629
630             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
631
632             /* Inner loop uses 152 flops */
633         }
634
635         /* End of innermost loop */
636
637         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
638                                               f+i_coord_offset,fshift+i_shift_offset);
639
640         ggid                        = gid[iidx];
641         /* Update potential energies */
642         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
643         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
644
645         /* Increment number of inner iterations */
646         inneriter                  += j_index_end - j_index_start;
647
648         /* Outer loop uses 26 flops */
649     }
650
651     /* Increment number of outer iterations */
652     outeriter        += nri;
653
654     /* Update outer/inner flops */
655
656     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
657 }
658 /*
659  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
660  * Electrostatics interaction: ReactionField
661  * VdW interaction:            LennardJones
662  * Geometry:                   Water4-Particle
663  * Calculate force/pot:        Force
664  */
665 void
666 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
667                     (t_nblist                    * gmx_restrict       nlist,
668                      rvec                        * gmx_restrict          xx,
669                      rvec                        * gmx_restrict          ff,
670                      struct t_forcerec           * gmx_restrict          fr,
671                      t_mdatoms                   * gmx_restrict     mdatoms,
672                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
673                      t_nrnb                      * gmx_restrict        nrnb)
674 {
675     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
676      * just 0 for non-waters.
677      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
678      * jnr indices corresponding to data put in the four positions in the SIMD register.
679      */
680     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
681     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
682     int              jnrA,jnrB;
683     int              j_coord_offsetA,j_coord_offsetB;
684     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
685     real             rcutoff_scalar;
686     real             *shiftvec,*fshift,*x,*f;
687     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
688     int              vdwioffset0;
689     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
690     int              vdwioffset1;
691     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
692     int              vdwioffset2;
693     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
694     int              vdwioffset3;
695     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
696     int              vdwjidx0A,vdwjidx0B;
697     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
698     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
699     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
700     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
701     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
702     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
703     real             *charge;
704     int              nvdwtype;
705     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
706     int              *vdwtype;
707     real             *vdwparam;
708     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
709     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
710     __m128d          dummy_mask,cutoff_mask;
711     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
712     __m128d          one     = _mm_set1_pd(1.0);
713     __m128d          two     = _mm_set1_pd(2.0);
714     x                = xx[0];
715     f                = ff[0];
716
717     nri              = nlist->nri;
718     iinr             = nlist->iinr;
719     jindex           = nlist->jindex;
720     jjnr             = nlist->jjnr;
721     shiftidx         = nlist->shift;
722     gid              = nlist->gid;
723     shiftvec         = fr->shift_vec[0];
724     fshift           = fr->fshift[0];
725     facel            = _mm_set1_pd(fr->ic->epsfac);
726     charge           = mdatoms->chargeA;
727     krf              = _mm_set1_pd(fr->ic->k_rf);
728     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
729     crf              = _mm_set1_pd(fr->ic->c_rf);
730     nvdwtype         = fr->ntype;
731     vdwparam         = fr->nbfp;
732     vdwtype          = mdatoms->typeA;
733
734     /* Setup water-specific parameters */
735     inr              = nlist->iinr[0];
736     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
737     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
738     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
739     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
740
741     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
742     rcutoff_scalar   = fr->ic->rcoulomb;
743     rcutoff          = _mm_set1_pd(rcutoff_scalar);
744     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
745
746     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
747     rvdw             = _mm_set1_pd(fr->ic->rvdw);
748
749     /* Avoid stupid compiler warnings */
750     jnrA = jnrB = 0;
751     j_coord_offsetA = 0;
752     j_coord_offsetB = 0;
753
754     outeriter        = 0;
755     inneriter        = 0;
756
757     /* Start outer loop over neighborlists */
758     for(iidx=0; iidx<nri; iidx++)
759     {
760         /* Load shift vector for this list */
761         i_shift_offset   = DIM*shiftidx[iidx];
762
763         /* Load limits for loop over neighbors */
764         j_index_start    = jindex[iidx];
765         j_index_end      = jindex[iidx+1];
766
767         /* Get outer coordinate index */
768         inr              = iinr[iidx];
769         i_coord_offset   = DIM*inr;
770
771         /* Load i particle coords and add shift vector */
772         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
773                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
774
775         fix0             = _mm_setzero_pd();
776         fiy0             = _mm_setzero_pd();
777         fiz0             = _mm_setzero_pd();
778         fix1             = _mm_setzero_pd();
779         fiy1             = _mm_setzero_pd();
780         fiz1             = _mm_setzero_pd();
781         fix2             = _mm_setzero_pd();
782         fiy2             = _mm_setzero_pd();
783         fiz2             = _mm_setzero_pd();
784         fix3             = _mm_setzero_pd();
785         fiy3             = _mm_setzero_pd();
786         fiz3             = _mm_setzero_pd();
787
788         /* Start inner kernel loop */
789         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
790         {
791
792             /* Get j neighbor index, and coordinate index */
793             jnrA             = jjnr[jidx];
794             jnrB             = jjnr[jidx+1];
795             j_coord_offsetA  = DIM*jnrA;
796             j_coord_offsetB  = DIM*jnrB;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
800                                               &jx0,&jy0,&jz0);
801
802             /* Calculate displacement vector */
803             dx00             = _mm_sub_pd(ix0,jx0);
804             dy00             = _mm_sub_pd(iy0,jy0);
805             dz00             = _mm_sub_pd(iz0,jz0);
806             dx10             = _mm_sub_pd(ix1,jx0);
807             dy10             = _mm_sub_pd(iy1,jy0);
808             dz10             = _mm_sub_pd(iz1,jz0);
809             dx20             = _mm_sub_pd(ix2,jx0);
810             dy20             = _mm_sub_pd(iy2,jy0);
811             dz20             = _mm_sub_pd(iz2,jz0);
812             dx30             = _mm_sub_pd(ix3,jx0);
813             dy30             = _mm_sub_pd(iy3,jy0);
814             dz30             = _mm_sub_pd(iz3,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
818             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
819             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
820             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
821
822             rinv10           = sse41_invsqrt_d(rsq10);
823             rinv20           = sse41_invsqrt_d(rsq20);
824             rinv30           = sse41_invsqrt_d(rsq30);
825
826             rinvsq00         = sse41_inv_d(rsq00);
827             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
828             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
829             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
830
831             /* Load parameters for j particles */
832             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
833             vdwjidx0A        = 2*vdwtype[jnrA+0];
834             vdwjidx0B        = 2*vdwtype[jnrB+0];
835
836             fjx0             = _mm_setzero_pd();
837             fjy0             = _mm_setzero_pd();
838             fjz0             = _mm_setzero_pd();
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             if (gmx_mm_any_lt(rsq00,rcutoff2))
845             {
846
847             /* Compute parameters for interactions between i and j atoms */
848             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
849                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
850
851             /* LENNARD-JONES DISPERSION/REPULSION */
852
853             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
854             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
855
856             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
857
858             fscal            = fvdw;
859
860             fscal            = _mm_and_pd(fscal,cutoff_mask);
861
862             /* Calculate temporary vectorial force */
863             tx               = _mm_mul_pd(fscal,dx00);
864             ty               = _mm_mul_pd(fscal,dy00);
865             tz               = _mm_mul_pd(fscal,dz00);
866
867             /* Update vectorial force */
868             fix0             = _mm_add_pd(fix0,tx);
869             fiy0             = _mm_add_pd(fiy0,ty);
870             fiz0             = _mm_add_pd(fiz0,tz);
871
872             fjx0             = _mm_add_pd(fjx0,tx);
873             fjy0             = _mm_add_pd(fjy0,ty);
874             fjz0             = _mm_add_pd(fjz0,tz);
875
876             }
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             if (gmx_mm_any_lt(rsq10,rcutoff2))
883             {
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _mm_mul_pd(iq1,jq0);
887
888             /* REACTION-FIELD ELECTROSTATICS */
889             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
890
891             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
892
893             fscal            = felec;
894
895             fscal            = _mm_and_pd(fscal,cutoff_mask);
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_pd(fscal,dx10);
899             ty               = _mm_mul_pd(fscal,dy10);
900             tz               = _mm_mul_pd(fscal,dz10);
901
902             /* Update vectorial force */
903             fix1             = _mm_add_pd(fix1,tx);
904             fiy1             = _mm_add_pd(fiy1,ty);
905             fiz1             = _mm_add_pd(fiz1,tz);
906
907             fjx0             = _mm_add_pd(fjx0,tx);
908             fjy0             = _mm_add_pd(fjy0,ty);
909             fjz0             = _mm_add_pd(fjz0,tz);
910
911             }
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             if (gmx_mm_any_lt(rsq20,rcutoff2))
918             {
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq20             = _mm_mul_pd(iq2,jq0);
922
923             /* REACTION-FIELD ELECTROSTATICS */
924             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
925
926             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
927
928             fscal            = felec;
929
930             fscal            = _mm_and_pd(fscal,cutoff_mask);
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx20);
934             ty               = _mm_mul_pd(fscal,dy20);
935             tz               = _mm_mul_pd(fscal,dz20);
936
937             /* Update vectorial force */
938             fix2             = _mm_add_pd(fix2,tx);
939             fiy2             = _mm_add_pd(fiy2,ty);
940             fiz2             = _mm_add_pd(fiz2,tz);
941
942             fjx0             = _mm_add_pd(fjx0,tx);
943             fjy0             = _mm_add_pd(fjy0,ty);
944             fjz0             = _mm_add_pd(fjz0,tz);
945
946             }
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             if (gmx_mm_any_lt(rsq30,rcutoff2))
953             {
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq30             = _mm_mul_pd(iq3,jq0);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
960
961             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
962
963             fscal            = felec;
964
965             fscal            = _mm_and_pd(fscal,cutoff_mask);
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_pd(fscal,dx30);
969             ty               = _mm_mul_pd(fscal,dy30);
970             tz               = _mm_mul_pd(fscal,dz30);
971
972             /* Update vectorial force */
973             fix3             = _mm_add_pd(fix3,tx);
974             fiy3             = _mm_add_pd(fiy3,ty);
975             fiz3             = _mm_add_pd(fiz3,tz);
976
977             fjx0             = _mm_add_pd(fjx0,tx);
978             fjy0             = _mm_add_pd(fjy0,ty);
979             fjz0             = _mm_add_pd(fjz0,tz);
980
981             }
982
983             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
984
985             /* Inner loop uses 123 flops */
986         }
987
988         if(jidx<j_index_end)
989         {
990
991             jnrA             = jjnr[jidx];
992             j_coord_offsetA  = DIM*jnrA;
993
994             /* load j atom coordinates */
995             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
996                                               &jx0,&jy0,&jz0);
997
998             /* Calculate displacement vector */
999             dx00             = _mm_sub_pd(ix0,jx0);
1000             dy00             = _mm_sub_pd(iy0,jy0);
1001             dz00             = _mm_sub_pd(iz0,jz0);
1002             dx10             = _mm_sub_pd(ix1,jx0);
1003             dy10             = _mm_sub_pd(iy1,jy0);
1004             dz10             = _mm_sub_pd(iz1,jz0);
1005             dx20             = _mm_sub_pd(ix2,jx0);
1006             dy20             = _mm_sub_pd(iy2,jy0);
1007             dz20             = _mm_sub_pd(iz2,jz0);
1008             dx30             = _mm_sub_pd(ix3,jx0);
1009             dy30             = _mm_sub_pd(iy3,jy0);
1010             dz30             = _mm_sub_pd(iz3,jz0);
1011
1012             /* Calculate squared distance and things based on it */
1013             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1014             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1015             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1016             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1017
1018             rinv10           = sse41_invsqrt_d(rsq10);
1019             rinv20           = sse41_invsqrt_d(rsq20);
1020             rinv30           = sse41_invsqrt_d(rsq30);
1021
1022             rinvsq00         = sse41_inv_d(rsq00);
1023             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1024             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1025             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1026
1027             /* Load parameters for j particles */
1028             jq0              = _mm_load_sd(charge+jnrA+0);
1029             vdwjidx0A        = 2*vdwtype[jnrA+0];
1030
1031             fjx0             = _mm_setzero_pd();
1032             fjy0             = _mm_setzero_pd();
1033             fjz0             = _mm_setzero_pd();
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             if (gmx_mm_any_lt(rsq00,rcutoff2))
1040             {
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1044
1045             /* LENNARD-JONES DISPERSION/REPULSION */
1046
1047             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1048             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1049
1050             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1051
1052             fscal            = fvdw;
1053
1054             fscal            = _mm_and_pd(fscal,cutoff_mask);
1055
1056             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1057
1058             /* Calculate temporary vectorial force */
1059             tx               = _mm_mul_pd(fscal,dx00);
1060             ty               = _mm_mul_pd(fscal,dy00);
1061             tz               = _mm_mul_pd(fscal,dz00);
1062
1063             /* Update vectorial force */
1064             fix0             = _mm_add_pd(fix0,tx);
1065             fiy0             = _mm_add_pd(fiy0,ty);
1066             fiz0             = _mm_add_pd(fiz0,tz);
1067
1068             fjx0             = _mm_add_pd(fjx0,tx);
1069             fjy0             = _mm_add_pd(fjy0,ty);
1070             fjz0             = _mm_add_pd(fjz0,tz);
1071
1072             }
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             if (gmx_mm_any_lt(rsq10,rcutoff2))
1079             {
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq10             = _mm_mul_pd(iq1,jq0);
1083
1084             /* REACTION-FIELD ELECTROSTATICS */
1085             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1086
1087             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_and_pd(fscal,cutoff_mask);
1092
1093             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_pd(fscal,dx10);
1097             ty               = _mm_mul_pd(fscal,dy10);
1098             tz               = _mm_mul_pd(fscal,dz10);
1099
1100             /* Update vectorial force */
1101             fix1             = _mm_add_pd(fix1,tx);
1102             fiy1             = _mm_add_pd(fiy1,ty);
1103             fiz1             = _mm_add_pd(fiz1,tz);
1104
1105             fjx0             = _mm_add_pd(fjx0,tx);
1106             fjy0             = _mm_add_pd(fjy0,ty);
1107             fjz0             = _mm_add_pd(fjz0,tz);
1108
1109             }
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             if (gmx_mm_any_lt(rsq20,rcutoff2))
1116             {
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq20             = _mm_mul_pd(iq2,jq0);
1120
1121             /* REACTION-FIELD ELECTROSTATICS */
1122             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1123
1124             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_and_pd(fscal,cutoff_mask);
1129
1130             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1131
1132             /* Calculate temporary vectorial force */
1133             tx               = _mm_mul_pd(fscal,dx20);
1134             ty               = _mm_mul_pd(fscal,dy20);
1135             tz               = _mm_mul_pd(fscal,dz20);
1136
1137             /* Update vectorial force */
1138             fix2             = _mm_add_pd(fix2,tx);
1139             fiy2             = _mm_add_pd(fiy2,ty);
1140             fiz2             = _mm_add_pd(fiz2,tz);
1141
1142             fjx0             = _mm_add_pd(fjx0,tx);
1143             fjy0             = _mm_add_pd(fjy0,ty);
1144             fjz0             = _mm_add_pd(fjz0,tz);
1145
1146             }
1147
1148             /**************************
1149              * CALCULATE INTERACTIONS *
1150              **************************/
1151
1152             if (gmx_mm_any_lt(rsq30,rcutoff2))
1153             {
1154
1155             /* Compute parameters for interactions between i and j atoms */
1156             qq30             = _mm_mul_pd(iq3,jq0);
1157
1158             /* REACTION-FIELD ELECTROSTATICS */
1159             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1160
1161             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_and_pd(fscal,cutoff_mask);
1166
1167             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm_mul_pd(fscal,dx30);
1171             ty               = _mm_mul_pd(fscal,dy30);
1172             tz               = _mm_mul_pd(fscal,dz30);
1173
1174             /* Update vectorial force */
1175             fix3             = _mm_add_pd(fix3,tx);
1176             fiy3             = _mm_add_pd(fiy3,ty);
1177             fiz3             = _mm_add_pd(fiz3,tz);
1178
1179             fjx0             = _mm_add_pd(fjx0,tx);
1180             fjy0             = _mm_add_pd(fjy0,ty);
1181             fjz0             = _mm_add_pd(fjz0,tz);
1182
1183             }
1184
1185             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1186
1187             /* Inner loop uses 123 flops */
1188         }
1189
1190         /* End of innermost loop */
1191
1192         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1193                                               f+i_coord_offset,fshift+i_shift_offset);
1194
1195         /* Increment number of inner iterations */
1196         inneriter                  += j_index_end - j_index_start;
1197
1198         /* Outer loop uses 24 flops */
1199     }
1200
1201     /* Increment number of outer iterations */
1202     outeriter        += nri;
1203
1204     /* Update outer/inner flops */
1205
1206     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1207 }