Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_pd(fr->ic->k_rf);
120     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
129     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
130     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_pd(rcutoff_scalar);
136     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_pd(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm_setzero_pd();
168         fiy0             = _mm_setzero_pd();
169         fiz0             = _mm_setzero_pd();
170         fix1             = _mm_setzero_pd();
171         fiy1             = _mm_setzero_pd();
172         fiz1             = _mm_setzero_pd();
173         fix2             = _mm_setzero_pd();
174         fiy2             = _mm_setzero_pd();
175         fiz2             = _mm_setzero_pd();
176         fix3             = _mm_setzero_pd();
177         fiy3             = _mm_setzero_pd();
178         fiz3             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182         vvdwsum          = _mm_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_pd(ix0,jx0);
200             dy00             = _mm_sub_pd(iy0,jy0);
201             dz00             = _mm_sub_pd(iz0,jz0);
202             dx10             = _mm_sub_pd(ix1,jx0);
203             dy10             = _mm_sub_pd(iy1,jy0);
204             dz10             = _mm_sub_pd(iz1,jz0);
205             dx20             = _mm_sub_pd(ix2,jx0);
206             dy20             = _mm_sub_pd(iy2,jy0);
207             dz20             = _mm_sub_pd(iz2,jz0);
208             dx30             = _mm_sub_pd(ix3,jx0);
209             dy30             = _mm_sub_pd(iy3,jy0);
210             dz30             = _mm_sub_pd(iz3,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
216             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
217
218             rinv10           = gmx_mm_invsqrt_pd(rsq10);
219             rinv20           = gmx_mm_invsqrt_pd(rsq20);
220             rinv30           = gmx_mm_invsqrt_pd(rsq30);
221
222             rinvsq00         = gmx_mm_inv_pd(rsq00);
223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
225             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231
232             fjx0             = _mm_setzero_pd();
233             fjy0             = _mm_setzero_pd();
234             fjz0             = _mm_setzero_pd();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm_any_lt(rsq00,rcutoff2))
241             {
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
251             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
252             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
253                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
254             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
255
256             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = fvdw;
263
264             fscal            = _mm_and_pd(fscal,cutoff_mask);
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm_mul_pd(fscal,dx00);
268             ty               = _mm_mul_pd(fscal,dy00);
269             tz               = _mm_mul_pd(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm_add_pd(fix0,tx);
273             fiy0             = _mm_add_pd(fiy0,ty);
274             fiz0             = _mm_add_pd(fiz0,tz);
275
276             fjx0             = _mm_add_pd(fjx0,tx);
277             fjy0             = _mm_add_pd(fjy0,ty);
278             fjz0             = _mm_add_pd(fjz0,tz);
279
280             }
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (gmx_mm_any_lt(rsq10,rcutoff2))
287             {
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq10             = _mm_mul_pd(iq1,jq0);
291
292             /* REACTION-FIELD ELECTROSTATICS */
293             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
294             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
295
296             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm_and_pd(velec,cutoff_mask);
300             velecsum         = _mm_add_pd(velecsum,velec);
301
302             fscal            = felec;
303
304             fscal            = _mm_and_pd(fscal,cutoff_mask);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_pd(fscal,dx10);
308             ty               = _mm_mul_pd(fscal,dy10);
309             tz               = _mm_mul_pd(fscal,dz10);
310
311             /* Update vectorial force */
312             fix1             = _mm_add_pd(fix1,tx);
313             fiy1             = _mm_add_pd(fiy1,ty);
314             fiz1             = _mm_add_pd(fiz1,tz);
315
316             fjx0             = _mm_add_pd(fjx0,tx);
317             fjy0             = _mm_add_pd(fjy0,ty);
318             fjz0             = _mm_add_pd(fjz0,tz);
319
320             }
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq20,rcutoff2))
327             {
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq20             = _mm_mul_pd(iq2,jq0);
331
332             /* REACTION-FIELD ELECTROSTATICS */
333             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
334             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
335
336             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_and_pd(velec,cutoff_mask);
340             velecsum         = _mm_add_pd(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm_and_pd(fscal,cutoff_mask);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq30,rcutoff2))
367             {
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq30             = _mm_mul_pd(iq3,jq0);
371
372             /* REACTION-FIELD ELECTROSTATICS */
373             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
374             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
375
376             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velec            = _mm_and_pd(velec,cutoff_mask);
380             velecsum         = _mm_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             fscal            = _mm_and_pd(fscal,cutoff_mask);
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm_mul_pd(fscal,dx30);
388             ty               = _mm_mul_pd(fscal,dy30);
389             tz               = _mm_mul_pd(fscal,dz30);
390
391             /* Update vectorial force */
392             fix3             = _mm_add_pd(fix3,tx);
393             fiy3             = _mm_add_pd(fiy3,ty);
394             fiz3             = _mm_add_pd(fiz3,tz);
395
396             fjx0             = _mm_add_pd(fjx0,tx);
397             fjy0             = _mm_add_pd(fjy0,ty);
398             fjz0             = _mm_add_pd(fjz0,tz);
399
400             }
401
402             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
403
404             /* Inner loop uses 152 flops */
405         }
406
407         if(jidx<j_index_end)
408         {
409
410             jnrA             = jjnr[jidx];
411             j_coord_offsetA  = DIM*jnrA;
412
413             /* load j atom coordinates */
414             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
415                                               &jx0,&jy0,&jz0);
416
417             /* Calculate displacement vector */
418             dx00             = _mm_sub_pd(ix0,jx0);
419             dy00             = _mm_sub_pd(iy0,jy0);
420             dz00             = _mm_sub_pd(iz0,jz0);
421             dx10             = _mm_sub_pd(ix1,jx0);
422             dy10             = _mm_sub_pd(iy1,jy0);
423             dz10             = _mm_sub_pd(iz1,jz0);
424             dx20             = _mm_sub_pd(ix2,jx0);
425             dy20             = _mm_sub_pd(iy2,jy0);
426             dz20             = _mm_sub_pd(iz2,jz0);
427             dx30             = _mm_sub_pd(ix3,jx0);
428             dy30             = _mm_sub_pd(iy3,jy0);
429             dz30             = _mm_sub_pd(iz3,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
433             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
434             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
435             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
436
437             rinv10           = gmx_mm_invsqrt_pd(rsq10);
438             rinv20           = gmx_mm_invsqrt_pd(rsq20);
439             rinv30           = gmx_mm_invsqrt_pd(rsq30);
440
441             rinvsq00         = gmx_mm_inv_pd(rsq00);
442             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
443             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
444             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
445
446             /* Load parameters for j particles */
447             jq0              = _mm_load_sd(charge+jnrA+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449
450             fjx0             = _mm_setzero_pd();
451             fjy0             = _mm_setzero_pd();
452             fjz0             = _mm_setzero_pd();
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             if (gmx_mm_any_lt(rsq00,rcutoff2))
459             {
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
463
464             /* LENNARD-JONES DISPERSION/REPULSION */
465
466             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
467             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
468             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
469             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
470                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
471             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
472
473             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
477             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
478             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
479
480             fscal            = fvdw;
481
482             fscal            = _mm_and_pd(fscal,cutoff_mask);
483
484             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_pd(fscal,dx00);
488             ty               = _mm_mul_pd(fscal,dy00);
489             tz               = _mm_mul_pd(fscal,dz00);
490
491             /* Update vectorial force */
492             fix0             = _mm_add_pd(fix0,tx);
493             fiy0             = _mm_add_pd(fiy0,ty);
494             fiz0             = _mm_add_pd(fiz0,tz);
495
496             fjx0             = _mm_add_pd(fjx0,tx);
497             fjy0             = _mm_add_pd(fjy0,ty);
498             fjz0             = _mm_add_pd(fjz0,tz);
499
500             }
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq10,rcutoff2))
507             {
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq10             = _mm_mul_pd(iq1,jq0);
511
512             /* REACTION-FIELD ELECTROSTATICS */
513             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
514             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
515
516             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_pd(velec,cutoff_mask);
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_and_pd(fscal,cutoff_mask);
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx10);
531             ty               = _mm_mul_pd(fscal,dy10);
532             tz               = _mm_mul_pd(fscal,dz10);
533
534             /* Update vectorial force */
535             fix1             = _mm_add_pd(fix1,tx);
536             fiy1             = _mm_add_pd(fiy1,ty);
537             fiz1             = _mm_add_pd(fiz1,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq20,rcutoff2))
550             {
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq20             = _mm_mul_pd(iq2,jq0);
554
555             /* REACTION-FIELD ELECTROSTATICS */
556             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
557             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
558
559             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_and_pd(velec,cutoff_mask);
563             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
564             velecsum         = _mm_add_pd(velecsum,velec);
565
566             fscal            = felec;
567
568             fscal            = _mm_and_pd(fscal,cutoff_mask);
569
570             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_pd(fscal,dx20);
574             ty               = _mm_mul_pd(fscal,dy20);
575             tz               = _mm_mul_pd(fscal,dz20);
576
577             /* Update vectorial force */
578             fix2             = _mm_add_pd(fix2,tx);
579             fiy2             = _mm_add_pd(fiy2,ty);
580             fiz2             = _mm_add_pd(fiz2,tz);
581
582             fjx0             = _mm_add_pd(fjx0,tx);
583             fjy0             = _mm_add_pd(fjy0,ty);
584             fjz0             = _mm_add_pd(fjz0,tz);
585
586             }
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq30,rcutoff2))
593             {
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq30             = _mm_mul_pd(iq3,jq0);
597
598             /* REACTION-FIELD ELECTROSTATICS */
599             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
600             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
601
602             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_and_pd(velec,cutoff_mask);
606             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_and_pd(fscal,cutoff_mask);
612
613             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm_mul_pd(fscal,dx30);
617             ty               = _mm_mul_pd(fscal,dy30);
618             tz               = _mm_mul_pd(fscal,dz30);
619
620             /* Update vectorial force */
621             fix3             = _mm_add_pd(fix3,tx);
622             fiy3             = _mm_add_pd(fiy3,ty);
623             fiz3             = _mm_add_pd(fiz3,tz);
624
625             fjx0             = _mm_add_pd(fjx0,tx);
626             fjy0             = _mm_add_pd(fjy0,ty);
627             fjz0             = _mm_add_pd(fjz0,tz);
628
629             }
630
631             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
632
633             /* Inner loop uses 152 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
639                                               f+i_coord_offset,fshift+i_shift_offset);
640
641         ggid                        = gid[iidx];
642         /* Update potential energies */
643         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
644         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 26 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
658 }
659 /*
660  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
661  * Electrostatics interaction: ReactionField
662  * VdW interaction:            LennardJones
663  * Geometry:                   Water4-Particle
664  * Calculate force/pot:        Force
665  */
666 void
667 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
668                     (t_nblist                    * gmx_restrict       nlist,
669                      rvec                        * gmx_restrict          xx,
670                      rvec                        * gmx_restrict          ff,
671                      t_forcerec                  * gmx_restrict          fr,
672                      t_mdatoms                   * gmx_restrict     mdatoms,
673                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
674                      t_nrnb                      * gmx_restrict        nrnb)
675 {
676     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
677      * just 0 for non-waters.
678      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
679      * jnr indices corresponding to data put in the four positions in the SIMD register.
680      */
681     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
682     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683     int              jnrA,jnrB;
684     int              j_coord_offsetA,j_coord_offsetB;
685     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
686     real             rcutoff_scalar;
687     real             *shiftvec,*fshift,*x,*f;
688     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
689     int              vdwioffset0;
690     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
691     int              vdwioffset1;
692     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
693     int              vdwioffset2;
694     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
695     int              vdwioffset3;
696     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
697     int              vdwjidx0A,vdwjidx0B;
698     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
703     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
704     real             *charge;
705     int              nvdwtype;
706     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
707     int              *vdwtype;
708     real             *vdwparam;
709     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
710     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
711     __m128d          dummy_mask,cutoff_mask;
712     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
713     __m128d          one     = _mm_set1_pd(1.0);
714     __m128d          two     = _mm_set1_pd(2.0);
715     x                = xx[0];
716     f                = ff[0];
717
718     nri              = nlist->nri;
719     iinr             = nlist->iinr;
720     jindex           = nlist->jindex;
721     jjnr             = nlist->jjnr;
722     shiftidx         = nlist->shift;
723     gid              = nlist->gid;
724     shiftvec         = fr->shift_vec[0];
725     fshift           = fr->fshift[0];
726     facel            = _mm_set1_pd(fr->epsfac);
727     charge           = mdatoms->chargeA;
728     krf              = _mm_set1_pd(fr->ic->k_rf);
729     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
730     crf              = _mm_set1_pd(fr->ic->c_rf);
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     /* Setup water-specific parameters */
736     inr              = nlist->iinr[0];
737     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
738     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
739     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
740     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
741
742     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
743     rcutoff_scalar   = fr->rcoulomb;
744     rcutoff          = _mm_set1_pd(rcutoff_scalar);
745     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
746
747     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
748     rvdw             = _mm_set1_pd(fr->rvdw);
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754
755     outeriter        = 0;
756     inneriter        = 0;
757
758     /* Start outer loop over neighborlists */
759     for(iidx=0; iidx<nri; iidx++)
760     {
761         /* Load shift vector for this list */
762         i_shift_offset   = DIM*shiftidx[iidx];
763
764         /* Load limits for loop over neighbors */
765         j_index_start    = jindex[iidx];
766         j_index_end      = jindex[iidx+1];
767
768         /* Get outer coordinate index */
769         inr              = iinr[iidx];
770         i_coord_offset   = DIM*inr;
771
772         /* Load i particle coords and add shift vector */
773         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
774                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
775
776         fix0             = _mm_setzero_pd();
777         fiy0             = _mm_setzero_pd();
778         fiz0             = _mm_setzero_pd();
779         fix1             = _mm_setzero_pd();
780         fiy1             = _mm_setzero_pd();
781         fiz1             = _mm_setzero_pd();
782         fix2             = _mm_setzero_pd();
783         fiy2             = _mm_setzero_pd();
784         fiz2             = _mm_setzero_pd();
785         fix3             = _mm_setzero_pd();
786         fiy3             = _mm_setzero_pd();
787         fiz3             = _mm_setzero_pd();
788
789         /* Start inner kernel loop */
790         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrA             = jjnr[jidx];
795             jnrB             = jjnr[jidx+1];
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798
799             /* load j atom coordinates */
800             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_pd(ix0,jx0);
805             dy00             = _mm_sub_pd(iy0,jy0);
806             dz00             = _mm_sub_pd(iz0,jz0);
807             dx10             = _mm_sub_pd(ix1,jx0);
808             dy10             = _mm_sub_pd(iy1,jy0);
809             dz10             = _mm_sub_pd(iz1,jz0);
810             dx20             = _mm_sub_pd(ix2,jx0);
811             dy20             = _mm_sub_pd(iy2,jy0);
812             dz20             = _mm_sub_pd(iz2,jz0);
813             dx30             = _mm_sub_pd(ix3,jx0);
814             dy30             = _mm_sub_pd(iy3,jy0);
815             dz30             = _mm_sub_pd(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
819             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
820             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
821             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
822
823             rinv10           = gmx_mm_invsqrt_pd(rsq10);
824             rinv20           = gmx_mm_invsqrt_pd(rsq20);
825             rinv30           = gmx_mm_invsqrt_pd(rsq30);
826
827             rinvsq00         = gmx_mm_inv_pd(rsq00);
828             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
829             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
830             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
831
832             /* Load parameters for j particles */
833             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836
837             fjx0             = _mm_setzero_pd();
838             fjy0             = _mm_setzero_pd();
839             fjz0             = _mm_setzero_pd();
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             if (gmx_mm_any_lt(rsq00,rcutoff2))
846             {
847
848             /* Compute parameters for interactions between i and j atoms */
849             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
850                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
851
852             /* LENNARD-JONES DISPERSION/REPULSION */
853
854             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
855             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
856
857             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
858
859             fscal            = fvdw;
860
861             fscal            = _mm_and_pd(fscal,cutoff_mask);
862
863             /* Calculate temporary vectorial force */
864             tx               = _mm_mul_pd(fscal,dx00);
865             ty               = _mm_mul_pd(fscal,dy00);
866             tz               = _mm_mul_pd(fscal,dz00);
867
868             /* Update vectorial force */
869             fix0             = _mm_add_pd(fix0,tx);
870             fiy0             = _mm_add_pd(fiy0,ty);
871             fiz0             = _mm_add_pd(fiz0,tz);
872
873             fjx0             = _mm_add_pd(fjx0,tx);
874             fjy0             = _mm_add_pd(fjy0,ty);
875             fjz0             = _mm_add_pd(fjz0,tz);
876
877             }
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             if (gmx_mm_any_lt(rsq10,rcutoff2))
884             {
885
886             /* Compute parameters for interactions between i and j atoms */
887             qq10             = _mm_mul_pd(iq1,jq0);
888
889             /* REACTION-FIELD ELECTROSTATICS */
890             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
891
892             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
893
894             fscal            = felec;
895
896             fscal            = _mm_and_pd(fscal,cutoff_mask);
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm_mul_pd(fscal,dx10);
900             ty               = _mm_mul_pd(fscal,dy10);
901             tz               = _mm_mul_pd(fscal,dz10);
902
903             /* Update vectorial force */
904             fix1             = _mm_add_pd(fix1,tx);
905             fiy1             = _mm_add_pd(fiy1,ty);
906             fiz1             = _mm_add_pd(fiz1,tz);
907
908             fjx0             = _mm_add_pd(fjx0,tx);
909             fjy0             = _mm_add_pd(fjy0,ty);
910             fjz0             = _mm_add_pd(fjz0,tz);
911
912             }
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             if (gmx_mm_any_lt(rsq20,rcutoff2))
919             {
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq20             = _mm_mul_pd(iq2,jq0);
923
924             /* REACTION-FIELD ELECTROSTATICS */
925             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
926
927             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
928
929             fscal            = felec;
930
931             fscal            = _mm_and_pd(fscal,cutoff_mask);
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm_mul_pd(fscal,dx20);
935             ty               = _mm_mul_pd(fscal,dy20);
936             tz               = _mm_mul_pd(fscal,dz20);
937
938             /* Update vectorial force */
939             fix2             = _mm_add_pd(fix2,tx);
940             fiy2             = _mm_add_pd(fiy2,ty);
941             fiz2             = _mm_add_pd(fiz2,tz);
942
943             fjx0             = _mm_add_pd(fjx0,tx);
944             fjy0             = _mm_add_pd(fjy0,ty);
945             fjz0             = _mm_add_pd(fjz0,tz);
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq30,rcutoff2))
954             {
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq30             = _mm_mul_pd(iq3,jq0);
958
959             /* REACTION-FIELD ELECTROSTATICS */
960             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
961
962             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
963
964             fscal            = felec;
965
966             fscal            = _mm_and_pd(fscal,cutoff_mask);
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_pd(fscal,dx30);
970             ty               = _mm_mul_pd(fscal,dy30);
971             tz               = _mm_mul_pd(fscal,dz30);
972
973             /* Update vectorial force */
974             fix3             = _mm_add_pd(fix3,tx);
975             fiy3             = _mm_add_pd(fiy3,ty);
976             fiz3             = _mm_add_pd(fiz3,tz);
977
978             fjx0             = _mm_add_pd(fjx0,tx);
979             fjy0             = _mm_add_pd(fjy0,ty);
980             fjz0             = _mm_add_pd(fjz0,tz);
981
982             }
983
984             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
985
986             /* Inner loop uses 123 flops */
987         }
988
989         if(jidx<j_index_end)
990         {
991
992             jnrA             = jjnr[jidx];
993             j_coord_offsetA  = DIM*jnrA;
994
995             /* load j atom coordinates */
996             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
997                                               &jx0,&jy0,&jz0);
998
999             /* Calculate displacement vector */
1000             dx00             = _mm_sub_pd(ix0,jx0);
1001             dy00             = _mm_sub_pd(iy0,jy0);
1002             dz00             = _mm_sub_pd(iz0,jz0);
1003             dx10             = _mm_sub_pd(ix1,jx0);
1004             dy10             = _mm_sub_pd(iy1,jy0);
1005             dz10             = _mm_sub_pd(iz1,jz0);
1006             dx20             = _mm_sub_pd(ix2,jx0);
1007             dy20             = _mm_sub_pd(iy2,jy0);
1008             dz20             = _mm_sub_pd(iz2,jz0);
1009             dx30             = _mm_sub_pd(ix3,jx0);
1010             dy30             = _mm_sub_pd(iy3,jy0);
1011             dz30             = _mm_sub_pd(iz3,jz0);
1012
1013             /* Calculate squared distance and things based on it */
1014             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1015             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1016             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1017             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1018
1019             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1020             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1021             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1022
1023             rinvsq00         = gmx_mm_inv_pd(rsq00);
1024             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1025             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1026             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1027
1028             /* Load parameters for j particles */
1029             jq0              = _mm_load_sd(charge+jnrA+0);
1030             vdwjidx0A        = 2*vdwtype[jnrA+0];
1031
1032             fjx0             = _mm_setzero_pd();
1033             fjy0             = _mm_setzero_pd();
1034             fjz0             = _mm_setzero_pd();
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             if (gmx_mm_any_lt(rsq00,rcutoff2))
1041             {
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1045
1046             /* LENNARD-JONES DISPERSION/REPULSION */
1047
1048             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1049             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1050
1051             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1052
1053             fscal            = fvdw;
1054
1055             fscal            = _mm_and_pd(fscal,cutoff_mask);
1056
1057             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_pd(fscal,dx00);
1061             ty               = _mm_mul_pd(fscal,dy00);
1062             tz               = _mm_mul_pd(fscal,dz00);
1063
1064             /* Update vectorial force */
1065             fix0             = _mm_add_pd(fix0,tx);
1066             fiy0             = _mm_add_pd(fiy0,ty);
1067             fiz0             = _mm_add_pd(fiz0,tz);
1068
1069             fjx0             = _mm_add_pd(fjx0,tx);
1070             fjy0             = _mm_add_pd(fjy0,ty);
1071             fjz0             = _mm_add_pd(fjz0,tz);
1072
1073             }
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             if (gmx_mm_any_lt(rsq10,rcutoff2))
1080             {
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq10             = _mm_mul_pd(iq1,jq0);
1084
1085             /* REACTION-FIELD ELECTROSTATICS */
1086             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1087
1088             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm_and_pd(fscal,cutoff_mask);
1093
1094             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm_mul_pd(fscal,dx10);
1098             ty               = _mm_mul_pd(fscal,dy10);
1099             tz               = _mm_mul_pd(fscal,dz10);
1100
1101             /* Update vectorial force */
1102             fix1             = _mm_add_pd(fix1,tx);
1103             fiy1             = _mm_add_pd(fiy1,ty);
1104             fiz1             = _mm_add_pd(fiz1,tz);
1105
1106             fjx0             = _mm_add_pd(fjx0,tx);
1107             fjy0             = _mm_add_pd(fjy0,ty);
1108             fjz0             = _mm_add_pd(fjz0,tz);
1109
1110             }
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             if (gmx_mm_any_lt(rsq20,rcutoff2))
1117             {
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             qq20             = _mm_mul_pd(iq2,jq0);
1121
1122             /* REACTION-FIELD ELECTROSTATICS */
1123             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1124
1125             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1126
1127             fscal            = felec;
1128
1129             fscal            = _mm_and_pd(fscal,cutoff_mask);
1130
1131             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm_mul_pd(fscal,dx20);
1135             ty               = _mm_mul_pd(fscal,dy20);
1136             tz               = _mm_mul_pd(fscal,dz20);
1137
1138             /* Update vectorial force */
1139             fix2             = _mm_add_pd(fix2,tx);
1140             fiy2             = _mm_add_pd(fiy2,ty);
1141             fiz2             = _mm_add_pd(fiz2,tz);
1142
1143             fjx0             = _mm_add_pd(fjx0,tx);
1144             fjy0             = _mm_add_pd(fjy0,ty);
1145             fjz0             = _mm_add_pd(fjz0,tz);
1146
1147             }
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             if (gmx_mm_any_lt(rsq30,rcutoff2))
1154             {
1155
1156             /* Compute parameters for interactions between i and j atoms */
1157             qq30             = _mm_mul_pd(iq3,jq0);
1158
1159             /* REACTION-FIELD ELECTROSTATICS */
1160             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1161
1162             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_and_pd(fscal,cutoff_mask);
1167
1168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm_mul_pd(fscal,dx30);
1172             ty               = _mm_mul_pd(fscal,dy30);
1173             tz               = _mm_mul_pd(fscal,dz30);
1174
1175             /* Update vectorial force */
1176             fix3             = _mm_add_pd(fix3,tx);
1177             fiy3             = _mm_add_pd(fiy3,ty);
1178             fiz3             = _mm_add_pd(fiz3,tz);
1179
1180             fjx0             = _mm_add_pd(fjx0,tx);
1181             fjy0             = _mm_add_pd(fjy0,ty);
1182             fjz0             = _mm_add_pd(fjz0,tz);
1183
1184             }
1185
1186             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1187
1188             /* Inner loop uses 123 flops */
1189         }
1190
1191         /* End of innermost loop */
1192
1193         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1194                                               f+i_coord_offset,fshift+i_shift_offset);
1195
1196         /* Increment number of inner iterations */
1197         inneriter                  += j_index_end - j_index_start;
1198
1199         /* Outer loop uses 24 flops */
1200     }
1201
1202     /* Increment number of outer iterations */
1203     outeriter        += nri;
1204
1205     /* Update outer/inner flops */
1206
1207     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1208 }