Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_pd(fr->ic->k_rf);
116     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_pd(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->ic->rcoulomb;
131     rcutoff          = _mm_set1_pd(rcutoff_scalar);
132     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
133
134     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
135     rvdw             = _mm_set1_pd(fr->ic->rvdw);
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_pd();
175         vvdwsum          = _mm_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_pd(ix0,jx0);
193             dy00             = _mm_sub_pd(iy0,jy0);
194             dz00             = _mm_sub_pd(iz0,jz0);
195             dx10             = _mm_sub_pd(ix1,jx0);
196             dy10             = _mm_sub_pd(iy1,jy0);
197             dz10             = _mm_sub_pd(iz1,jz0);
198             dx20             = _mm_sub_pd(ix2,jx0);
199             dy20             = _mm_sub_pd(iy2,jy0);
200             dz20             = _mm_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = sse41_invsqrt_d(rsq00);
208             rinv10           = sse41_invsqrt_d(rsq10);
209             rinv20           = sse41_invsqrt_d(rsq20);
210
211             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _mm_setzero_pd();
221             fjy0             = _mm_setzero_pd();
222             fjz0             = _mm_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             if (gmx_mm_any_lt(rsq00,rcutoff2))
229             {
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_pd(iq0,jq0);
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* REACTION-FIELD ELECTROSTATICS */
237             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
238             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
244             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
245             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
246                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
247             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
248
249             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velec            = _mm_and_pd(velec,cutoff_mask);
253             velecsum         = _mm_add_pd(velecsum,velec);
254             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
255             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
256
257             fscal            = _mm_add_pd(felec,fvdw);
258
259             fscal            = _mm_and_pd(fscal,cutoff_mask);
260
261             /* Calculate temporary vectorial force */
262             tx               = _mm_mul_pd(fscal,dx00);
263             ty               = _mm_mul_pd(fscal,dy00);
264             tz               = _mm_mul_pd(fscal,dz00);
265
266             /* Update vectorial force */
267             fix0             = _mm_add_pd(fix0,tx);
268             fiy0             = _mm_add_pd(fiy0,ty);
269             fiz0             = _mm_add_pd(fiz0,tz);
270
271             fjx0             = _mm_add_pd(fjx0,tx);
272             fjy0             = _mm_add_pd(fjy0,ty);
273             fjz0             = _mm_add_pd(fjz0,tz);
274
275             }
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             if (gmx_mm_any_lt(rsq10,rcutoff2))
282             {
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq10             = _mm_mul_pd(iq1,jq0);
286
287             /* REACTION-FIELD ELECTROSTATICS */
288             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
289             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
290
291             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm_and_pd(velec,cutoff_mask);
295             velecsum         = _mm_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             fscal            = _mm_and_pd(fscal,cutoff_mask);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_pd(fscal,dx10);
303             ty               = _mm_mul_pd(fscal,dy10);
304             tz               = _mm_mul_pd(fscal,dz10);
305
306             /* Update vectorial force */
307             fix1             = _mm_add_pd(fix1,tx);
308             fiy1             = _mm_add_pd(fiy1,ty);
309             fiz1             = _mm_add_pd(fiz1,tz);
310
311             fjx0             = _mm_add_pd(fjx0,tx);
312             fjy0             = _mm_add_pd(fjy0,ty);
313             fjz0             = _mm_add_pd(fjz0,tz);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm_any_lt(rsq20,rcutoff2))
322             {
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq20             = _mm_mul_pd(iq2,jq0);
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
329             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
330
331             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velec            = _mm_and_pd(velec,cutoff_mask);
335             velecsum         = _mm_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             fscal            = _mm_and_pd(fscal,cutoff_mask);
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm_mul_pd(fscal,dx20);
343             ty               = _mm_mul_pd(fscal,dy20);
344             tz               = _mm_mul_pd(fscal,dz20);
345
346             /* Update vectorial force */
347             fix2             = _mm_add_pd(fix2,tx);
348             fiy2             = _mm_add_pd(fiy2,ty);
349             fiz2             = _mm_add_pd(fiz2,tz);
350
351             fjx0             = _mm_add_pd(fjx0,tx);
352             fjy0             = _mm_add_pd(fjy0,ty);
353             fjz0             = _mm_add_pd(fjz0,tz);
354
355             }
356
357             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
358
359             /* Inner loop uses 129 flops */
360         }
361
362         if(jidx<j_index_end)
363         {
364
365             jnrA             = jjnr[jidx];
366             j_coord_offsetA  = DIM*jnrA;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
370                                               &jx0,&jy0,&jz0);
371
372             /* Calculate displacement vector */
373             dx00             = _mm_sub_pd(ix0,jx0);
374             dy00             = _mm_sub_pd(iy0,jy0);
375             dz00             = _mm_sub_pd(iz0,jz0);
376             dx10             = _mm_sub_pd(ix1,jx0);
377             dy10             = _mm_sub_pd(iy1,jy0);
378             dz10             = _mm_sub_pd(iz1,jz0);
379             dx20             = _mm_sub_pd(ix2,jx0);
380             dy20             = _mm_sub_pd(iy2,jy0);
381             dz20             = _mm_sub_pd(iz2,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
385             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
386             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
387
388             rinv00           = sse41_invsqrt_d(rsq00);
389             rinv10           = sse41_invsqrt_d(rsq10);
390             rinv20           = sse41_invsqrt_d(rsq20);
391
392             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
393             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
394             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
395
396             /* Load parameters for j particles */
397             jq0              = _mm_load_sd(charge+jnrA+0);
398             vdwjidx0A        = 2*vdwtype[jnrA+0];
399
400             fjx0             = _mm_setzero_pd();
401             fjy0             = _mm_setzero_pd();
402             fjz0             = _mm_setzero_pd();
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             if (gmx_mm_any_lt(rsq00,rcutoff2))
409             {
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq00             = _mm_mul_pd(iq0,jq0);
413             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
414
415             /* REACTION-FIELD ELECTROSTATICS */
416             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
417             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
418
419             /* LENNARD-JONES DISPERSION/REPULSION */
420
421             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
422             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
423             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
424             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
425                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
426             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
427
428             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm_and_pd(velec,cutoff_mask);
432             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
433             velecsum         = _mm_add_pd(velecsum,velec);
434             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
435             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
436             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
437
438             fscal            = _mm_add_pd(felec,fvdw);
439
440             fscal            = _mm_and_pd(fscal,cutoff_mask);
441
442             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm_mul_pd(fscal,dx00);
446             ty               = _mm_mul_pd(fscal,dy00);
447             tz               = _mm_mul_pd(fscal,dz00);
448
449             /* Update vectorial force */
450             fix0             = _mm_add_pd(fix0,tx);
451             fiy0             = _mm_add_pd(fiy0,ty);
452             fiz0             = _mm_add_pd(fiz0,tz);
453
454             fjx0             = _mm_add_pd(fjx0,tx);
455             fjy0             = _mm_add_pd(fjy0,ty);
456             fjz0             = _mm_add_pd(fjz0,tz);
457
458             }
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (gmx_mm_any_lt(rsq10,rcutoff2))
465             {
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq10             = _mm_mul_pd(iq1,jq0);
469
470             /* REACTION-FIELD ELECTROSTATICS */
471             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
472             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
473
474             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_and_pd(velec,cutoff_mask);
478             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
479             velecsum         = _mm_add_pd(velecsum,velec);
480
481             fscal            = felec;
482
483             fscal            = _mm_and_pd(fscal,cutoff_mask);
484
485             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
486
487             /* Calculate temporary vectorial force */
488             tx               = _mm_mul_pd(fscal,dx10);
489             ty               = _mm_mul_pd(fscal,dy10);
490             tz               = _mm_mul_pd(fscal,dz10);
491
492             /* Update vectorial force */
493             fix1             = _mm_add_pd(fix1,tx);
494             fiy1             = _mm_add_pd(fiy1,ty);
495             fiz1             = _mm_add_pd(fiz1,tz);
496
497             fjx0             = _mm_add_pd(fjx0,tx);
498             fjy0             = _mm_add_pd(fjy0,ty);
499             fjz0             = _mm_add_pd(fjz0,tz);
500
501             }
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             if (gmx_mm_any_lt(rsq20,rcutoff2))
508             {
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq20             = _mm_mul_pd(iq2,jq0);
512
513             /* REACTION-FIELD ELECTROSTATICS */
514             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
515             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
516
517             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_and_pd(velec,cutoff_mask);
521             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
522             velecsum         = _mm_add_pd(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_and_pd(fscal,cutoff_mask);
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx20);
532             ty               = _mm_mul_pd(fscal,dy20);
533             tz               = _mm_mul_pd(fscal,dz20);
534
535             /* Update vectorial force */
536             fix2             = _mm_add_pd(fix2,tx);
537             fiy2             = _mm_add_pd(fiy2,ty);
538             fiz2             = _mm_add_pd(fiz2,tz);
539
540             fjx0             = _mm_add_pd(fjx0,tx);
541             fjy0             = _mm_add_pd(fjy0,ty);
542             fjz0             = _mm_add_pd(fjz0,tz);
543
544             }
545
546             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
547
548             /* Inner loop uses 129 flops */
549         }
550
551         /* End of innermost loop */
552
553         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
554                                               f+i_coord_offset,fshift+i_shift_offset);
555
556         ggid                        = gid[iidx];
557         /* Update potential energies */
558         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
559         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
560
561         /* Increment number of inner iterations */
562         inneriter                  += j_index_end - j_index_start;
563
564         /* Outer loop uses 20 flops */
565     }
566
567     /* Increment number of outer iterations */
568     outeriter        += nri;
569
570     /* Update outer/inner flops */
571
572     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
573 }
574 /*
575  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_double
576  * Electrostatics interaction: ReactionField
577  * VdW interaction:            LennardJones
578  * Geometry:                   Water3-Particle
579  * Calculate force/pot:        Force
580  */
581 void
582 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_double
583                     (t_nblist                    * gmx_restrict       nlist,
584                      rvec                        * gmx_restrict          xx,
585                      rvec                        * gmx_restrict          ff,
586                      struct t_forcerec           * gmx_restrict          fr,
587                      t_mdatoms                   * gmx_restrict     mdatoms,
588                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
589                      t_nrnb                      * gmx_restrict        nrnb)
590 {
591     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
592      * just 0 for non-waters.
593      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
594      * jnr indices corresponding to data put in the four positions in the SIMD register.
595      */
596     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
597     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
598     int              jnrA,jnrB;
599     int              j_coord_offsetA,j_coord_offsetB;
600     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
601     real             rcutoff_scalar;
602     real             *shiftvec,*fshift,*x,*f;
603     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
604     int              vdwioffset0;
605     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
606     int              vdwioffset1;
607     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
608     int              vdwioffset2;
609     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
610     int              vdwjidx0A,vdwjidx0B;
611     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
612     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
613     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
614     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
615     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
616     real             *charge;
617     int              nvdwtype;
618     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
619     int              *vdwtype;
620     real             *vdwparam;
621     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
622     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
623     __m128d          dummy_mask,cutoff_mask;
624     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
625     __m128d          one     = _mm_set1_pd(1.0);
626     __m128d          two     = _mm_set1_pd(2.0);
627     x                = xx[0];
628     f                = ff[0];
629
630     nri              = nlist->nri;
631     iinr             = nlist->iinr;
632     jindex           = nlist->jindex;
633     jjnr             = nlist->jjnr;
634     shiftidx         = nlist->shift;
635     gid              = nlist->gid;
636     shiftvec         = fr->shift_vec[0];
637     fshift           = fr->fshift[0];
638     facel            = _mm_set1_pd(fr->ic->epsfac);
639     charge           = mdatoms->chargeA;
640     krf              = _mm_set1_pd(fr->ic->k_rf);
641     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
642     crf              = _mm_set1_pd(fr->ic->c_rf);
643     nvdwtype         = fr->ntype;
644     vdwparam         = fr->nbfp;
645     vdwtype          = mdatoms->typeA;
646
647     /* Setup water-specific parameters */
648     inr              = nlist->iinr[0];
649     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
650     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
651     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
652     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
653
654     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
655     rcutoff_scalar   = fr->ic->rcoulomb;
656     rcutoff          = _mm_set1_pd(rcutoff_scalar);
657     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
658
659     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
660     rvdw             = _mm_set1_pd(fr->ic->rvdw);
661
662     /* Avoid stupid compiler warnings */
663     jnrA = jnrB = 0;
664     j_coord_offsetA = 0;
665     j_coord_offsetB = 0;
666
667     outeriter        = 0;
668     inneriter        = 0;
669
670     /* Start outer loop over neighborlists */
671     for(iidx=0; iidx<nri; iidx++)
672     {
673         /* Load shift vector for this list */
674         i_shift_offset   = DIM*shiftidx[iidx];
675
676         /* Load limits for loop over neighbors */
677         j_index_start    = jindex[iidx];
678         j_index_end      = jindex[iidx+1];
679
680         /* Get outer coordinate index */
681         inr              = iinr[iidx];
682         i_coord_offset   = DIM*inr;
683
684         /* Load i particle coords and add shift vector */
685         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
686                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
687
688         fix0             = _mm_setzero_pd();
689         fiy0             = _mm_setzero_pd();
690         fiz0             = _mm_setzero_pd();
691         fix1             = _mm_setzero_pd();
692         fiy1             = _mm_setzero_pd();
693         fiz1             = _mm_setzero_pd();
694         fix2             = _mm_setzero_pd();
695         fiy2             = _mm_setzero_pd();
696         fiz2             = _mm_setzero_pd();
697
698         /* Start inner kernel loop */
699         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
700         {
701
702             /* Get j neighbor index, and coordinate index */
703             jnrA             = jjnr[jidx];
704             jnrB             = jjnr[jidx+1];
705             j_coord_offsetA  = DIM*jnrA;
706             j_coord_offsetB  = DIM*jnrB;
707
708             /* load j atom coordinates */
709             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
710                                               &jx0,&jy0,&jz0);
711
712             /* Calculate displacement vector */
713             dx00             = _mm_sub_pd(ix0,jx0);
714             dy00             = _mm_sub_pd(iy0,jy0);
715             dz00             = _mm_sub_pd(iz0,jz0);
716             dx10             = _mm_sub_pd(ix1,jx0);
717             dy10             = _mm_sub_pd(iy1,jy0);
718             dz10             = _mm_sub_pd(iz1,jz0);
719             dx20             = _mm_sub_pd(ix2,jx0);
720             dy20             = _mm_sub_pd(iy2,jy0);
721             dz20             = _mm_sub_pd(iz2,jz0);
722
723             /* Calculate squared distance and things based on it */
724             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
725             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
726             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
727
728             rinv00           = sse41_invsqrt_d(rsq00);
729             rinv10           = sse41_invsqrt_d(rsq10);
730             rinv20           = sse41_invsqrt_d(rsq20);
731
732             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
733             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
734             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
735
736             /* Load parameters for j particles */
737             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
738             vdwjidx0A        = 2*vdwtype[jnrA+0];
739             vdwjidx0B        = 2*vdwtype[jnrB+0];
740
741             fjx0             = _mm_setzero_pd();
742             fjy0             = _mm_setzero_pd();
743             fjz0             = _mm_setzero_pd();
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             if (gmx_mm_any_lt(rsq00,rcutoff2))
750             {
751
752             /* Compute parameters for interactions between i and j atoms */
753             qq00             = _mm_mul_pd(iq0,jq0);
754             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
755                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
756
757             /* REACTION-FIELD ELECTROSTATICS */
758             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
759
760             /* LENNARD-JONES DISPERSION/REPULSION */
761
762             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
763             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
764
765             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
766
767             fscal            = _mm_add_pd(felec,fvdw);
768
769             fscal            = _mm_and_pd(fscal,cutoff_mask);
770
771             /* Calculate temporary vectorial force */
772             tx               = _mm_mul_pd(fscal,dx00);
773             ty               = _mm_mul_pd(fscal,dy00);
774             tz               = _mm_mul_pd(fscal,dz00);
775
776             /* Update vectorial force */
777             fix0             = _mm_add_pd(fix0,tx);
778             fiy0             = _mm_add_pd(fiy0,ty);
779             fiz0             = _mm_add_pd(fiz0,tz);
780
781             fjx0             = _mm_add_pd(fjx0,tx);
782             fjy0             = _mm_add_pd(fjy0,ty);
783             fjz0             = _mm_add_pd(fjz0,tz);
784
785             }
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             if (gmx_mm_any_lt(rsq10,rcutoff2))
792             {
793
794             /* Compute parameters for interactions between i and j atoms */
795             qq10             = _mm_mul_pd(iq1,jq0);
796
797             /* REACTION-FIELD ELECTROSTATICS */
798             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
799
800             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
801
802             fscal            = felec;
803
804             fscal            = _mm_and_pd(fscal,cutoff_mask);
805
806             /* Calculate temporary vectorial force */
807             tx               = _mm_mul_pd(fscal,dx10);
808             ty               = _mm_mul_pd(fscal,dy10);
809             tz               = _mm_mul_pd(fscal,dz10);
810
811             /* Update vectorial force */
812             fix1             = _mm_add_pd(fix1,tx);
813             fiy1             = _mm_add_pd(fiy1,ty);
814             fiz1             = _mm_add_pd(fiz1,tz);
815
816             fjx0             = _mm_add_pd(fjx0,tx);
817             fjy0             = _mm_add_pd(fjy0,ty);
818             fjz0             = _mm_add_pd(fjz0,tz);
819
820             }
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             if (gmx_mm_any_lt(rsq20,rcutoff2))
827             {
828
829             /* Compute parameters for interactions between i and j atoms */
830             qq20             = _mm_mul_pd(iq2,jq0);
831
832             /* REACTION-FIELD ELECTROSTATICS */
833             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
834
835             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
836
837             fscal            = felec;
838
839             fscal            = _mm_and_pd(fscal,cutoff_mask);
840
841             /* Calculate temporary vectorial force */
842             tx               = _mm_mul_pd(fscal,dx20);
843             ty               = _mm_mul_pd(fscal,dy20);
844             tz               = _mm_mul_pd(fscal,dz20);
845
846             /* Update vectorial force */
847             fix2             = _mm_add_pd(fix2,tx);
848             fiy2             = _mm_add_pd(fiy2,ty);
849             fiz2             = _mm_add_pd(fiz2,tz);
850
851             fjx0             = _mm_add_pd(fjx0,tx);
852             fjy0             = _mm_add_pd(fjy0,ty);
853             fjz0             = _mm_add_pd(fjz0,tz);
854
855             }
856
857             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
858
859             /* Inner loop uses 100 flops */
860         }
861
862         if(jidx<j_index_end)
863         {
864
865             jnrA             = jjnr[jidx];
866             j_coord_offsetA  = DIM*jnrA;
867
868             /* load j atom coordinates */
869             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
870                                               &jx0,&jy0,&jz0);
871
872             /* Calculate displacement vector */
873             dx00             = _mm_sub_pd(ix0,jx0);
874             dy00             = _mm_sub_pd(iy0,jy0);
875             dz00             = _mm_sub_pd(iz0,jz0);
876             dx10             = _mm_sub_pd(ix1,jx0);
877             dy10             = _mm_sub_pd(iy1,jy0);
878             dz10             = _mm_sub_pd(iz1,jz0);
879             dx20             = _mm_sub_pd(ix2,jx0);
880             dy20             = _mm_sub_pd(iy2,jy0);
881             dz20             = _mm_sub_pd(iz2,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
885             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
886             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
887
888             rinv00           = sse41_invsqrt_d(rsq00);
889             rinv10           = sse41_invsqrt_d(rsq10);
890             rinv20           = sse41_invsqrt_d(rsq20);
891
892             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
893             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
894             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
895
896             /* Load parameters for j particles */
897             jq0              = _mm_load_sd(charge+jnrA+0);
898             vdwjidx0A        = 2*vdwtype[jnrA+0];
899
900             fjx0             = _mm_setzero_pd();
901             fjy0             = _mm_setzero_pd();
902             fjz0             = _mm_setzero_pd();
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             if (gmx_mm_any_lt(rsq00,rcutoff2))
909             {
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq00             = _mm_mul_pd(iq0,jq0);
913             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
914
915             /* REACTION-FIELD ELECTROSTATICS */
916             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
917
918             /* LENNARD-JONES DISPERSION/REPULSION */
919
920             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
921             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
922
923             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
924
925             fscal            = _mm_add_pd(felec,fvdw);
926
927             fscal            = _mm_and_pd(fscal,cutoff_mask);
928
929             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
930
931             /* Calculate temporary vectorial force */
932             tx               = _mm_mul_pd(fscal,dx00);
933             ty               = _mm_mul_pd(fscal,dy00);
934             tz               = _mm_mul_pd(fscal,dz00);
935
936             /* Update vectorial force */
937             fix0             = _mm_add_pd(fix0,tx);
938             fiy0             = _mm_add_pd(fiy0,ty);
939             fiz0             = _mm_add_pd(fiz0,tz);
940
941             fjx0             = _mm_add_pd(fjx0,tx);
942             fjy0             = _mm_add_pd(fjy0,ty);
943             fjz0             = _mm_add_pd(fjz0,tz);
944
945             }
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm_any_lt(rsq10,rcutoff2))
952             {
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm_mul_pd(iq1,jq0);
956
957             /* REACTION-FIELD ELECTROSTATICS */
958             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
959
960             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
961
962             fscal            = felec;
963
964             fscal            = _mm_and_pd(fscal,cutoff_mask);
965
966             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_pd(fscal,dx10);
970             ty               = _mm_mul_pd(fscal,dy10);
971             tz               = _mm_mul_pd(fscal,dz10);
972
973             /* Update vectorial force */
974             fix1             = _mm_add_pd(fix1,tx);
975             fiy1             = _mm_add_pd(fiy1,ty);
976             fiz1             = _mm_add_pd(fiz1,tz);
977
978             fjx0             = _mm_add_pd(fjx0,tx);
979             fjy0             = _mm_add_pd(fjy0,ty);
980             fjz0             = _mm_add_pd(fjz0,tz);
981
982             }
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             if (gmx_mm_any_lt(rsq20,rcutoff2))
989             {
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq20             = _mm_mul_pd(iq2,jq0);
993
994             /* REACTION-FIELD ELECTROSTATICS */
995             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
996
997             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
998
999             fscal            = felec;
1000
1001             fscal            = _mm_and_pd(fscal,cutoff_mask);
1002
1003             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_pd(fscal,dx20);
1007             ty               = _mm_mul_pd(fscal,dy20);
1008             tz               = _mm_mul_pd(fscal,dz20);
1009
1010             /* Update vectorial force */
1011             fix2             = _mm_add_pd(fix2,tx);
1012             fiy2             = _mm_add_pd(fiy2,ty);
1013             fiz2             = _mm_add_pd(fiz2,tz);
1014
1015             fjx0             = _mm_add_pd(fjx0,tx);
1016             fjy0             = _mm_add_pd(fjy0,ty);
1017             fjz0             = _mm_add_pd(fjz0,tz);
1018
1019             }
1020
1021             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1022
1023             /* Inner loop uses 100 flops */
1024         }
1025
1026         /* End of innermost loop */
1027
1028         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1029                                               f+i_coord_offset,fshift+i_shift_offset);
1030
1031         /* Increment number of inner iterations */
1032         inneriter                  += j_index_end - j_index_start;
1033
1034         /* Outer loop uses 18 flops */
1035     }
1036
1037     /* Increment number of outer iterations */
1038     outeriter        += nri;
1039
1040     /* Update outer/inner flops */
1041
1042     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1043 }