Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm_set1_pd(fr->ic->k_rf);
119     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
120     crf              = _mm_set1_pd(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
128     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
129     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->rcoulomb;
134     rcutoff          = _mm_set1_pd(rcutoff_scalar);
135     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
136
137     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
138     rvdw             = _mm_set1_pd(fr->rvdw);
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
207             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
208             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
209
210             rinv00           = gmx_mm_invsqrt_pd(rsq00);
211             rinv10           = gmx_mm_invsqrt_pd(rsq10);
212             rinv20           = gmx_mm_invsqrt_pd(rsq20);
213
214             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
215             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
216             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_pd(iq0,jq0);
236             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
241             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
249                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
250             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
251
252             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velec            = _mm_and_pd(velec,cutoff_mask);
256             velecsum         = _mm_add_pd(velecsum,velec);
257             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
258             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
259
260             fscal            = _mm_add_pd(felec,fvdw);
261
262             fscal            = _mm_and_pd(fscal,cutoff_mask);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm_mul_pd(fscal,dx00);
266             ty               = _mm_mul_pd(fscal,dy00);
267             tz               = _mm_mul_pd(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm_add_pd(fix0,tx);
271             fiy0             = _mm_add_pd(fiy0,ty);
272             fiz0             = _mm_add_pd(fiz0,tz);
273
274             fjx0             = _mm_add_pd(fjx0,tx);
275             fjy0             = _mm_add_pd(fjy0,ty);
276             fjz0             = _mm_add_pd(fjz0,tz);
277
278             }
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             if (gmx_mm_any_lt(rsq10,rcutoff2))
285             {
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq10             = _mm_mul_pd(iq1,jq0);
289
290             /* REACTION-FIELD ELECTROSTATICS */
291             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
292             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
293
294             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_pd(velec,cutoff_mask);
298             velecsum         = _mm_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             fscal            = _mm_and_pd(fscal,cutoff_mask);
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_pd(fscal,dx10);
306             ty               = _mm_mul_pd(fscal,dy10);
307             tz               = _mm_mul_pd(fscal,dz10);
308
309             /* Update vectorial force */
310             fix1             = _mm_add_pd(fix1,tx);
311             fiy1             = _mm_add_pd(fiy1,ty);
312             fiz1             = _mm_add_pd(fiz1,tz);
313
314             fjx0             = _mm_add_pd(fjx0,tx);
315             fjy0             = _mm_add_pd(fjy0,ty);
316             fjz0             = _mm_add_pd(fjz0,tz);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq20,rcutoff2))
325             {
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq20             = _mm_mul_pd(iq2,jq0);
329
330             /* REACTION-FIELD ELECTROSTATICS */
331             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
332             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
333
334             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_pd(velec,cutoff_mask);
338             velecsum         = _mm_add_pd(velecsum,velec);
339
340             fscal            = felec;
341
342             fscal            = _mm_and_pd(fscal,cutoff_mask);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_pd(fscal,dx20);
346             ty               = _mm_mul_pd(fscal,dy20);
347             tz               = _mm_mul_pd(fscal,dz20);
348
349             /* Update vectorial force */
350             fix2             = _mm_add_pd(fix2,tx);
351             fiy2             = _mm_add_pd(fiy2,ty);
352             fiz2             = _mm_add_pd(fiz2,tz);
353
354             fjx0             = _mm_add_pd(fjx0,tx);
355             fjy0             = _mm_add_pd(fjy0,ty);
356             fjz0             = _mm_add_pd(fjz0,tz);
357
358             }
359
360             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
361
362             /* Inner loop uses 129 flops */
363         }
364
365         if(jidx<j_index_end)
366         {
367
368             jnrA             = jjnr[jidx];
369             j_coord_offsetA  = DIM*jnrA;
370
371             /* load j atom coordinates */
372             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
373                                               &jx0,&jy0,&jz0);
374
375             /* Calculate displacement vector */
376             dx00             = _mm_sub_pd(ix0,jx0);
377             dy00             = _mm_sub_pd(iy0,jy0);
378             dz00             = _mm_sub_pd(iz0,jz0);
379             dx10             = _mm_sub_pd(ix1,jx0);
380             dy10             = _mm_sub_pd(iy1,jy0);
381             dz10             = _mm_sub_pd(iz1,jz0);
382             dx20             = _mm_sub_pd(ix2,jx0);
383             dy20             = _mm_sub_pd(iy2,jy0);
384             dz20             = _mm_sub_pd(iz2,jz0);
385
386             /* Calculate squared distance and things based on it */
387             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
388             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
389             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
390
391             rinv00           = gmx_mm_invsqrt_pd(rsq00);
392             rinv10           = gmx_mm_invsqrt_pd(rsq10);
393             rinv20           = gmx_mm_invsqrt_pd(rsq20);
394
395             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
396             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
397             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
398
399             /* Load parameters for j particles */
400             jq0              = _mm_load_sd(charge+jnrA+0);
401             vdwjidx0A        = 2*vdwtype[jnrA+0];
402
403             fjx0             = _mm_setzero_pd();
404             fjy0             = _mm_setzero_pd();
405             fjz0             = _mm_setzero_pd();
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm_any_lt(rsq00,rcutoff2))
412             {
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq00             = _mm_mul_pd(iq0,jq0);
416             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
417
418             /* REACTION-FIELD ELECTROSTATICS */
419             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
420             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
421
422             /* LENNARD-JONES DISPERSION/REPULSION */
423
424             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
425             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
426             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
427             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
428                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
429             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
430
431             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_and_pd(velec,cutoff_mask);
435             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
436             velecsum         = _mm_add_pd(velecsum,velec);
437             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
438             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
439             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
440
441             fscal            = _mm_add_pd(felec,fvdw);
442
443             fscal            = _mm_and_pd(fscal,cutoff_mask);
444
445             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
446
447             /* Calculate temporary vectorial force */
448             tx               = _mm_mul_pd(fscal,dx00);
449             ty               = _mm_mul_pd(fscal,dy00);
450             tz               = _mm_mul_pd(fscal,dz00);
451
452             /* Update vectorial force */
453             fix0             = _mm_add_pd(fix0,tx);
454             fiy0             = _mm_add_pd(fiy0,ty);
455             fiz0             = _mm_add_pd(fiz0,tz);
456
457             fjx0             = _mm_add_pd(fjx0,tx);
458             fjy0             = _mm_add_pd(fjy0,ty);
459             fjz0             = _mm_add_pd(fjz0,tz);
460
461             }
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             if (gmx_mm_any_lt(rsq10,rcutoff2))
468             {
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq10             = _mm_mul_pd(iq1,jq0);
472
473             /* REACTION-FIELD ELECTROSTATICS */
474             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
475             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
476
477             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm_and_pd(velec,cutoff_mask);
481             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
482             velecsum         = _mm_add_pd(velecsum,velec);
483
484             fscal            = felec;
485
486             fscal            = _mm_and_pd(fscal,cutoff_mask);
487
488             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_pd(fscal,dx10);
492             ty               = _mm_mul_pd(fscal,dy10);
493             tz               = _mm_mul_pd(fscal,dz10);
494
495             /* Update vectorial force */
496             fix1             = _mm_add_pd(fix1,tx);
497             fiy1             = _mm_add_pd(fiy1,ty);
498             fiz1             = _mm_add_pd(fiz1,tz);
499
500             fjx0             = _mm_add_pd(fjx0,tx);
501             fjy0             = _mm_add_pd(fjy0,ty);
502             fjz0             = _mm_add_pd(fjz0,tz);
503
504             }
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (gmx_mm_any_lt(rsq20,rcutoff2))
511             {
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq20             = _mm_mul_pd(iq2,jq0);
515
516             /* REACTION-FIELD ELECTROSTATICS */
517             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
518             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
519
520             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_and_pd(velec,cutoff_mask);
524             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
525             velecsum         = _mm_add_pd(velecsum,velec);
526
527             fscal            = felec;
528
529             fscal            = _mm_and_pd(fscal,cutoff_mask);
530
531             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm_mul_pd(fscal,dx20);
535             ty               = _mm_mul_pd(fscal,dy20);
536             tz               = _mm_mul_pd(fscal,dz20);
537
538             /* Update vectorial force */
539             fix2             = _mm_add_pd(fix2,tx);
540             fiy2             = _mm_add_pd(fiy2,ty);
541             fiz2             = _mm_add_pd(fiz2,tz);
542
543             fjx0             = _mm_add_pd(fjx0,tx);
544             fjy0             = _mm_add_pd(fjy0,ty);
545             fjz0             = _mm_add_pd(fjz0,tz);
546
547             }
548
549             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
550
551             /* Inner loop uses 129 flops */
552         }
553
554         /* End of innermost loop */
555
556         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
557                                               f+i_coord_offset,fshift+i_shift_offset);
558
559         ggid                        = gid[iidx];
560         /* Update potential energies */
561         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
562         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
563
564         /* Increment number of inner iterations */
565         inneriter                  += j_index_end - j_index_start;
566
567         /* Outer loop uses 20 flops */
568     }
569
570     /* Increment number of outer iterations */
571     outeriter        += nri;
572
573     /* Update outer/inner flops */
574
575     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
576 }
577 /*
578  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_double
579  * Electrostatics interaction: ReactionField
580  * VdW interaction:            LennardJones
581  * Geometry:                   Water3-Particle
582  * Calculate force/pot:        Force
583  */
584 void
585 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_double
586                     (t_nblist                    * gmx_restrict       nlist,
587                      rvec                        * gmx_restrict          xx,
588                      rvec                        * gmx_restrict          ff,
589                      t_forcerec                  * gmx_restrict          fr,
590                      t_mdatoms                   * gmx_restrict     mdatoms,
591                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
592                      t_nrnb                      * gmx_restrict        nrnb)
593 {
594     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
595      * just 0 for non-waters.
596      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
597      * jnr indices corresponding to data put in the four positions in the SIMD register.
598      */
599     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
600     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
601     int              jnrA,jnrB;
602     int              j_coord_offsetA,j_coord_offsetB;
603     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
604     real             rcutoff_scalar;
605     real             *shiftvec,*fshift,*x,*f;
606     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
607     int              vdwioffset0;
608     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
609     int              vdwioffset1;
610     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
611     int              vdwioffset2;
612     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
613     int              vdwjidx0A,vdwjidx0B;
614     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
615     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
616     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
617     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
618     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
619     real             *charge;
620     int              nvdwtype;
621     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
622     int              *vdwtype;
623     real             *vdwparam;
624     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
625     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
626     __m128d          dummy_mask,cutoff_mask;
627     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
628     __m128d          one     = _mm_set1_pd(1.0);
629     __m128d          two     = _mm_set1_pd(2.0);
630     x                = xx[0];
631     f                = ff[0];
632
633     nri              = nlist->nri;
634     iinr             = nlist->iinr;
635     jindex           = nlist->jindex;
636     jjnr             = nlist->jjnr;
637     shiftidx         = nlist->shift;
638     gid              = nlist->gid;
639     shiftvec         = fr->shift_vec[0];
640     fshift           = fr->fshift[0];
641     facel            = _mm_set1_pd(fr->epsfac);
642     charge           = mdatoms->chargeA;
643     krf              = _mm_set1_pd(fr->ic->k_rf);
644     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
645     crf              = _mm_set1_pd(fr->ic->c_rf);
646     nvdwtype         = fr->ntype;
647     vdwparam         = fr->nbfp;
648     vdwtype          = mdatoms->typeA;
649
650     /* Setup water-specific parameters */
651     inr              = nlist->iinr[0];
652     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
653     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
654     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
655     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
656
657     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
658     rcutoff_scalar   = fr->rcoulomb;
659     rcutoff          = _mm_set1_pd(rcutoff_scalar);
660     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
661
662     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
663     rvdw             = _mm_set1_pd(fr->rvdw);
664
665     /* Avoid stupid compiler warnings */
666     jnrA = jnrB = 0;
667     j_coord_offsetA = 0;
668     j_coord_offsetB = 0;
669
670     outeriter        = 0;
671     inneriter        = 0;
672
673     /* Start outer loop over neighborlists */
674     for(iidx=0; iidx<nri; iidx++)
675     {
676         /* Load shift vector for this list */
677         i_shift_offset   = DIM*shiftidx[iidx];
678
679         /* Load limits for loop over neighbors */
680         j_index_start    = jindex[iidx];
681         j_index_end      = jindex[iidx+1];
682
683         /* Get outer coordinate index */
684         inr              = iinr[iidx];
685         i_coord_offset   = DIM*inr;
686
687         /* Load i particle coords and add shift vector */
688         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
689                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
690
691         fix0             = _mm_setzero_pd();
692         fiy0             = _mm_setzero_pd();
693         fiz0             = _mm_setzero_pd();
694         fix1             = _mm_setzero_pd();
695         fiy1             = _mm_setzero_pd();
696         fiz1             = _mm_setzero_pd();
697         fix2             = _mm_setzero_pd();
698         fiy2             = _mm_setzero_pd();
699         fiz2             = _mm_setzero_pd();
700
701         /* Start inner kernel loop */
702         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
703         {
704
705             /* Get j neighbor index, and coordinate index */
706             jnrA             = jjnr[jidx];
707             jnrB             = jjnr[jidx+1];
708             j_coord_offsetA  = DIM*jnrA;
709             j_coord_offsetB  = DIM*jnrB;
710
711             /* load j atom coordinates */
712             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
713                                               &jx0,&jy0,&jz0);
714
715             /* Calculate displacement vector */
716             dx00             = _mm_sub_pd(ix0,jx0);
717             dy00             = _mm_sub_pd(iy0,jy0);
718             dz00             = _mm_sub_pd(iz0,jz0);
719             dx10             = _mm_sub_pd(ix1,jx0);
720             dy10             = _mm_sub_pd(iy1,jy0);
721             dz10             = _mm_sub_pd(iz1,jz0);
722             dx20             = _mm_sub_pd(ix2,jx0);
723             dy20             = _mm_sub_pd(iy2,jy0);
724             dz20             = _mm_sub_pd(iz2,jz0);
725
726             /* Calculate squared distance and things based on it */
727             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
728             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
729             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
730
731             rinv00           = gmx_mm_invsqrt_pd(rsq00);
732             rinv10           = gmx_mm_invsqrt_pd(rsq10);
733             rinv20           = gmx_mm_invsqrt_pd(rsq20);
734
735             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
736             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
737             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
738
739             /* Load parameters for j particles */
740             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
741             vdwjidx0A        = 2*vdwtype[jnrA+0];
742             vdwjidx0B        = 2*vdwtype[jnrB+0];
743
744             fjx0             = _mm_setzero_pd();
745             fjy0             = _mm_setzero_pd();
746             fjz0             = _mm_setzero_pd();
747
748             /**************************
749              * CALCULATE INTERACTIONS *
750              **************************/
751
752             if (gmx_mm_any_lt(rsq00,rcutoff2))
753             {
754
755             /* Compute parameters for interactions between i and j atoms */
756             qq00             = _mm_mul_pd(iq0,jq0);
757             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
758                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
759
760             /* REACTION-FIELD ELECTROSTATICS */
761             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
762
763             /* LENNARD-JONES DISPERSION/REPULSION */
764
765             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
766             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
767
768             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
769
770             fscal            = _mm_add_pd(felec,fvdw);
771
772             fscal            = _mm_and_pd(fscal,cutoff_mask);
773
774             /* Calculate temporary vectorial force */
775             tx               = _mm_mul_pd(fscal,dx00);
776             ty               = _mm_mul_pd(fscal,dy00);
777             tz               = _mm_mul_pd(fscal,dz00);
778
779             /* Update vectorial force */
780             fix0             = _mm_add_pd(fix0,tx);
781             fiy0             = _mm_add_pd(fiy0,ty);
782             fiz0             = _mm_add_pd(fiz0,tz);
783
784             fjx0             = _mm_add_pd(fjx0,tx);
785             fjy0             = _mm_add_pd(fjy0,ty);
786             fjz0             = _mm_add_pd(fjz0,tz);
787
788             }
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             if (gmx_mm_any_lt(rsq10,rcutoff2))
795             {
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq10             = _mm_mul_pd(iq1,jq0);
799
800             /* REACTION-FIELD ELECTROSTATICS */
801             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
802
803             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
804
805             fscal            = felec;
806
807             fscal            = _mm_and_pd(fscal,cutoff_mask);
808
809             /* Calculate temporary vectorial force */
810             tx               = _mm_mul_pd(fscal,dx10);
811             ty               = _mm_mul_pd(fscal,dy10);
812             tz               = _mm_mul_pd(fscal,dz10);
813
814             /* Update vectorial force */
815             fix1             = _mm_add_pd(fix1,tx);
816             fiy1             = _mm_add_pd(fiy1,ty);
817             fiz1             = _mm_add_pd(fiz1,tz);
818
819             fjx0             = _mm_add_pd(fjx0,tx);
820             fjy0             = _mm_add_pd(fjy0,ty);
821             fjz0             = _mm_add_pd(fjz0,tz);
822
823             }
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             if (gmx_mm_any_lt(rsq20,rcutoff2))
830             {
831
832             /* Compute parameters for interactions between i and j atoms */
833             qq20             = _mm_mul_pd(iq2,jq0);
834
835             /* REACTION-FIELD ELECTROSTATICS */
836             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
837
838             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
839
840             fscal            = felec;
841
842             fscal            = _mm_and_pd(fscal,cutoff_mask);
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm_mul_pd(fscal,dx20);
846             ty               = _mm_mul_pd(fscal,dy20);
847             tz               = _mm_mul_pd(fscal,dz20);
848
849             /* Update vectorial force */
850             fix2             = _mm_add_pd(fix2,tx);
851             fiy2             = _mm_add_pd(fiy2,ty);
852             fiz2             = _mm_add_pd(fiz2,tz);
853
854             fjx0             = _mm_add_pd(fjx0,tx);
855             fjy0             = _mm_add_pd(fjy0,ty);
856             fjz0             = _mm_add_pd(fjz0,tz);
857
858             }
859
860             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
861
862             /* Inner loop uses 100 flops */
863         }
864
865         if(jidx<j_index_end)
866         {
867
868             jnrA             = jjnr[jidx];
869             j_coord_offsetA  = DIM*jnrA;
870
871             /* load j atom coordinates */
872             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
873                                               &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx00             = _mm_sub_pd(ix0,jx0);
877             dy00             = _mm_sub_pd(iy0,jy0);
878             dz00             = _mm_sub_pd(iz0,jz0);
879             dx10             = _mm_sub_pd(ix1,jx0);
880             dy10             = _mm_sub_pd(iy1,jy0);
881             dz10             = _mm_sub_pd(iz1,jz0);
882             dx20             = _mm_sub_pd(ix2,jx0);
883             dy20             = _mm_sub_pd(iy2,jy0);
884             dz20             = _mm_sub_pd(iz2,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
888             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
889             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
890
891             rinv00           = gmx_mm_invsqrt_pd(rsq00);
892             rinv10           = gmx_mm_invsqrt_pd(rsq10);
893             rinv20           = gmx_mm_invsqrt_pd(rsq20);
894
895             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
896             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
897             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
898
899             /* Load parameters for j particles */
900             jq0              = _mm_load_sd(charge+jnrA+0);
901             vdwjidx0A        = 2*vdwtype[jnrA+0];
902
903             fjx0             = _mm_setzero_pd();
904             fjy0             = _mm_setzero_pd();
905             fjz0             = _mm_setzero_pd();
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             if (gmx_mm_any_lt(rsq00,rcutoff2))
912             {
913
914             /* Compute parameters for interactions between i and j atoms */
915             qq00             = _mm_mul_pd(iq0,jq0);
916             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
917
918             /* REACTION-FIELD ELECTROSTATICS */
919             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
920
921             /* LENNARD-JONES DISPERSION/REPULSION */
922
923             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
924             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
925
926             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
927
928             fscal            = _mm_add_pd(felec,fvdw);
929
930             fscal            = _mm_and_pd(fscal,cutoff_mask);
931
932             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm_mul_pd(fscal,dx00);
936             ty               = _mm_mul_pd(fscal,dy00);
937             tz               = _mm_mul_pd(fscal,dz00);
938
939             /* Update vectorial force */
940             fix0             = _mm_add_pd(fix0,tx);
941             fiy0             = _mm_add_pd(fiy0,ty);
942             fiz0             = _mm_add_pd(fiz0,tz);
943
944             fjx0             = _mm_add_pd(fjx0,tx);
945             fjy0             = _mm_add_pd(fjy0,ty);
946             fjz0             = _mm_add_pd(fjz0,tz);
947
948             }
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             if (gmx_mm_any_lt(rsq10,rcutoff2))
955             {
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq10             = _mm_mul_pd(iq1,jq0);
959
960             /* REACTION-FIELD ELECTROSTATICS */
961             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
962
963             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
964
965             fscal            = felec;
966
967             fscal            = _mm_and_pd(fscal,cutoff_mask);
968
969             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_pd(fscal,dx10);
973             ty               = _mm_mul_pd(fscal,dy10);
974             tz               = _mm_mul_pd(fscal,dz10);
975
976             /* Update vectorial force */
977             fix1             = _mm_add_pd(fix1,tx);
978             fiy1             = _mm_add_pd(fiy1,ty);
979             fiz1             = _mm_add_pd(fiz1,tz);
980
981             fjx0             = _mm_add_pd(fjx0,tx);
982             fjy0             = _mm_add_pd(fjy0,ty);
983             fjz0             = _mm_add_pd(fjz0,tz);
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (gmx_mm_any_lt(rsq20,rcutoff2))
992             {
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq20             = _mm_mul_pd(iq2,jq0);
996
997             /* REACTION-FIELD ELECTROSTATICS */
998             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
999
1000             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm_and_pd(fscal,cutoff_mask);
1005
1006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_pd(fscal,dx20);
1010             ty               = _mm_mul_pd(fscal,dy20);
1011             tz               = _mm_mul_pd(fscal,dz20);
1012
1013             /* Update vectorial force */
1014             fix2             = _mm_add_pd(fix2,tx);
1015             fiy2             = _mm_add_pd(fiy2,ty);
1016             fiz2             = _mm_add_pd(fiz2,tz);
1017
1018             fjx0             = _mm_add_pd(fjx0,tx);
1019             fjy0             = _mm_add_pd(fjy0,ty);
1020             fjz0             = _mm_add_pd(fjz0,tz);
1021
1022             }
1023
1024             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1025
1026             /* Inner loop uses 100 flops */
1027         }
1028
1029         /* End of innermost loop */
1030
1031         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1032                                               f+i_coord_offset,fshift+i_shift_offset);
1033
1034         /* Increment number of inner iterations */
1035         inneriter                  += j_index_end - j_index_start;
1036
1037         /* Outer loop uses 18 flops */
1038     }
1039
1040     /* Increment number of outer iterations */
1041     outeriter        += nri;
1042
1043     /* Update outer/inner flops */
1044
1045     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1046 }