Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->rcoulomb;
121     rcutoff          = _mm_set1_pd(rcutoff_scalar);
122     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
125     rvdw             = _mm_set1_pd(fr->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_pd();
153         fiy0             = _mm_setzero_pd();
154         fiz0             = _mm_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162         vvdwsum          = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_pd(ix0,jx0);
180             dy00             = _mm_sub_pd(iy0,jy0);
181             dz00             = _mm_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_pd(rsq00);
187
188             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_pd(iq0,jq0);
204             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
206
207             /* REACTION-FIELD ELECTROSTATICS */
208             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
209             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
210
211             /* LENNARD-JONES DISPERSION/REPULSION */
212
213             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
214             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
215             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
216             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
217                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
218             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
219
220             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             velec            = _mm_and_pd(velec,cutoff_mask);
224             velecsum         = _mm_add_pd(velecsum,velec);
225             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
226             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
227
228             fscal            = _mm_add_pd(felec,fvdw);
229
230             fscal            = _mm_and_pd(fscal,cutoff_mask);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_pd(fscal,dx00);
234             ty               = _mm_mul_pd(fscal,dy00);
235             tz               = _mm_mul_pd(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm_add_pd(fix0,tx);
239             fiy0             = _mm_add_pd(fiy0,ty);
240             fiz0             = _mm_add_pd(fiz0,tz);
241
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
243
244             }
245
246             /* Inner loop uses 54 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
270
271             /* Load parameters for j particles */
272             jq0              = _mm_load_sd(charge+jnrA+0);
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_mm_any_lt(rsq00,rcutoff2))
280             {
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq00             = _mm_mul_pd(iq0,jq0);
284             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
285
286             /* REACTION-FIELD ELECTROSTATICS */
287             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
288             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
289
290             /* LENNARD-JONES DISPERSION/REPULSION */
291
292             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
293             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
294             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
295             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
296                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
297             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
298
299             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velec            = _mm_and_pd(velec,cutoff_mask);
303             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
304             velecsum         = _mm_add_pd(velecsum,velec);
305             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
306             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
307             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
308
309             fscal            = _mm_add_pd(felec,fvdw);
310
311             fscal            = _mm_and_pd(fscal,cutoff_mask);
312
313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_pd(fscal,dx00);
317             ty               = _mm_mul_pd(fscal,dy00);
318             tz               = _mm_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm_add_pd(fix0,tx);
322             fiy0             = _mm_add_pd(fiy0,ty);
323             fiz0             = _mm_add_pd(fiz0,tz);
324
325             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
326
327             }
328
329             /* Inner loop uses 54 flops */
330         }
331
332         /* End of innermost loop */
333
334         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
335                                               f+i_coord_offset,fshift+i_shift_offset);
336
337         ggid                        = gid[iidx];
338         /* Update potential energies */
339         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
340         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
341
342         /* Increment number of inner iterations */
343         inneriter                  += j_index_end - j_index_start;
344
345         /* Outer loop uses 9 flops */
346     }
347
348     /* Increment number of outer iterations */
349     outeriter        += nri;
350
351     /* Update outer/inner flops */
352
353     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
354 }
355 /*
356  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
357  * Electrostatics interaction: ReactionField
358  * VdW interaction:            LennardJones
359  * Geometry:                   Particle-Particle
360  * Calculate force/pot:        Force
361  */
362 void
363 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
364                     (t_nblist                    * gmx_restrict       nlist,
365                      rvec                        * gmx_restrict          xx,
366                      rvec                        * gmx_restrict          ff,
367                      t_forcerec                  * gmx_restrict          fr,
368                      t_mdatoms                   * gmx_restrict     mdatoms,
369                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
370                      t_nrnb                      * gmx_restrict        nrnb)
371 {
372     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
373      * just 0 for non-waters.
374      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
375      * jnr indices corresponding to data put in the four positions in the SIMD register.
376      */
377     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
378     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
379     int              jnrA,jnrB;
380     int              j_coord_offsetA,j_coord_offsetB;
381     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
382     real             rcutoff_scalar;
383     real             *shiftvec,*fshift,*x,*f;
384     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
385     int              vdwioffset0;
386     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
387     int              vdwjidx0A,vdwjidx0B;
388     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
389     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
390     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
391     real             *charge;
392     int              nvdwtype;
393     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
394     int              *vdwtype;
395     real             *vdwparam;
396     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
397     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
398     __m128d          dummy_mask,cutoff_mask;
399     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
400     __m128d          one     = _mm_set1_pd(1.0);
401     __m128d          two     = _mm_set1_pd(2.0);
402     x                = xx[0];
403     f                = ff[0];
404
405     nri              = nlist->nri;
406     iinr             = nlist->iinr;
407     jindex           = nlist->jindex;
408     jjnr             = nlist->jjnr;
409     shiftidx         = nlist->shift;
410     gid              = nlist->gid;
411     shiftvec         = fr->shift_vec[0];
412     fshift           = fr->fshift[0];
413     facel            = _mm_set1_pd(fr->epsfac);
414     charge           = mdatoms->chargeA;
415     krf              = _mm_set1_pd(fr->ic->k_rf);
416     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
417     crf              = _mm_set1_pd(fr->ic->c_rf);
418     nvdwtype         = fr->ntype;
419     vdwparam         = fr->nbfp;
420     vdwtype          = mdatoms->typeA;
421
422     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
423     rcutoff_scalar   = fr->rcoulomb;
424     rcutoff          = _mm_set1_pd(rcutoff_scalar);
425     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
426
427     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
428     rvdw             = _mm_set1_pd(fr->rvdw);
429
430     /* Avoid stupid compiler warnings */
431     jnrA = jnrB = 0;
432     j_coord_offsetA = 0;
433     j_coord_offsetB = 0;
434
435     outeriter        = 0;
436     inneriter        = 0;
437
438     /* Start outer loop over neighborlists */
439     for(iidx=0; iidx<nri; iidx++)
440     {
441         /* Load shift vector for this list */
442         i_shift_offset   = DIM*shiftidx[iidx];
443
444         /* Load limits for loop over neighbors */
445         j_index_start    = jindex[iidx];
446         j_index_end      = jindex[iidx+1];
447
448         /* Get outer coordinate index */
449         inr              = iinr[iidx];
450         i_coord_offset   = DIM*inr;
451
452         /* Load i particle coords and add shift vector */
453         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
454
455         fix0             = _mm_setzero_pd();
456         fiy0             = _mm_setzero_pd();
457         fiz0             = _mm_setzero_pd();
458
459         /* Load parameters for i particles */
460         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
461         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
462
463         /* Start inner kernel loop */
464         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
465         {
466
467             /* Get j neighbor index, and coordinate index */
468             jnrA             = jjnr[jidx];
469             jnrB             = jjnr[jidx+1];
470             j_coord_offsetA  = DIM*jnrA;
471             j_coord_offsetB  = DIM*jnrB;
472
473             /* load j atom coordinates */
474             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
475                                               &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx00             = _mm_sub_pd(ix0,jx0);
479             dy00             = _mm_sub_pd(iy0,jy0);
480             dz00             = _mm_sub_pd(iz0,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
484
485             rinv00           = gmx_mm_invsqrt_pd(rsq00);
486
487             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             if (gmx_mm_any_lt(rsq00,rcutoff2))
499             {
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq00             = _mm_mul_pd(iq0,jq0);
503             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
504                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
505
506             /* REACTION-FIELD ELECTROSTATICS */
507             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
508
509             /* LENNARD-JONES DISPERSION/REPULSION */
510
511             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
512             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
513
514             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
515
516             fscal            = _mm_add_pd(felec,fvdw);
517
518             fscal            = _mm_and_pd(fscal,cutoff_mask);
519
520             /* Calculate temporary vectorial force */
521             tx               = _mm_mul_pd(fscal,dx00);
522             ty               = _mm_mul_pd(fscal,dy00);
523             tz               = _mm_mul_pd(fscal,dz00);
524
525             /* Update vectorial force */
526             fix0             = _mm_add_pd(fix0,tx);
527             fiy0             = _mm_add_pd(fiy0,ty);
528             fiz0             = _mm_add_pd(fiz0,tz);
529
530             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
531
532             }
533
534             /* Inner loop uses 37 flops */
535         }
536
537         if(jidx<j_index_end)
538         {
539
540             jnrA             = jjnr[jidx];
541             j_coord_offsetA  = DIM*jnrA;
542
543             /* load j atom coordinates */
544             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_pd(ix0,jx0);
549             dy00             = _mm_sub_pd(iy0,jy0);
550             dz00             = _mm_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm_invsqrt_pd(rsq00);
556
557             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = _mm_load_sd(charge+jnrA+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             if (gmx_mm_any_lt(rsq00,rcutoff2))
568             {
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq00             = _mm_mul_pd(iq0,jq0);
572             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
573
574             /* REACTION-FIELD ELECTROSTATICS */
575             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
580             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
581
582             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
583
584             fscal            = _mm_add_pd(felec,fvdw);
585
586             fscal            = _mm_and_pd(fscal,cutoff_mask);
587
588             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm_mul_pd(fscal,dx00);
592             ty               = _mm_mul_pd(fscal,dy00);
593             tz               = _mm_mul_pd(fscal,dz00);
594
595             /* Update vectorial force */
596             fix0             = _mm_add_pd(fix0,tx);
597             fiy0             = _mm_add_pd(fiy0,ty);
598             fiz0             = _mm_add_pd(fiz0,tz);
599
600             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
601
602             }
603
604             /* Inner loop uses 37 flops */
605         }
606
607         /* End of innermost loop */
608
609         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
610                                               f+i_coord_offset,fshift+i_shift_offset);
611
612         /* Increment number of inner iterations */
613         inneriter                  += j_index_end - j_index_start;
614
615         /* Outer loop uses 7 flops */
616     }
617
618     /* Increment number of outer iterations */
619     outeriter        += nri;
620
621     /* Update outer/inner flops */
622
623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
624 }