7f721a77cbf9b3d78741273ba54ed8f1a80117e6
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160         fix1             = _mm_setzero_pd();
161         fiy1             = _mm_setzero_pd();
162         fiz1             = _mm_setzero_pd();
163         fix2             = _mm_setzero_pd();
164         fiy2             = _mm_setzero_pd();
165         fiz2             = _mm_setzero_pd();
166         fix3             = _mm_setzero_pd();
167         fiy3             = _mm_setzero_pd();
168         fiz3             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198             dx30             = _mm_sub_pd(ix3,jx0);
199             dy30             = _mm_sub_pd(iy3,jy0);
200             dz30             = _mm_sub_pd(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
207
208             rinv00           = gmx_mm_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
215             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221
222             fjx0             = _mm_setzero_pd();
223             fjy0             = _mm_setzero_pd();
224             fjz0             = _mm_setzero_pd();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm_mul_pd(r00,vftabscale);
238             vfitab           = _mm_cvttpd_epi32(rt);
239             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Heps             = _mm_mul_pd(vfeps,H);
250             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
251             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
252             vvdw6            = _mm_mul_pd(c6_00,VV);
253             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
254             fvdw6            = _mm_mul_pd(c6_00,FF);
255
256             /* CUBIC SPLINE TABLE REPULSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             GMX_MM_TRANSPOSE2_PD(Y,F);
261             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
262             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(G,H);
264             Heps             = _mm_mul_pd(vfeps,H);
265             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
266             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
267             vvdw12           = _mm_mul_pd(c12_00,VV);
268             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
269             fvdw12           = _mm_mul_pd(c12_00,FF);
270             vvdw             = _mm_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx00);
280             ty               = _mm_mul_pd(fscal,dy00);
281             tz               = _mm_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm_add_pd(fix0,tx);
285             fiy0             = _mm_add_pd(fiy0,ty);
286             fiz0             = _mm_add_pd(fiz0,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm_any_lt(rsq10,rcutoff2))
297             {
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_pd(iq1,jq0);
301
302             /* REACTION-FIELD ELECTROSTATICS */
303             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
304             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
305
306             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velec            = _mm_and_pd(velec,cutoff_mask);
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             fscal            = _mm_and_pd(fscal,cutoff_mask);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_pd(fscal,dx10);
318             ty               = _mm_mul_pd(fscal,dy10);
319             tz               = _mm_mul_pd(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm_add_pd(fix1,tx);
323             fiy1             = _mm_add_pd(fiy1,ty);
324             fiz1             = _mm_add_pd(fiz1,tz);
325
326             fjx0             = _mm_add_pd(fjx0,tx);
327             fjy0             = _mm_add_pd(fjy0,ty);
328             fjz0             = _mm_add_pd(fjz0,tz);
329
330             }
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             if (gmx_mm_any_lt(rsq20,rcutoff2))
337             {
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm_mul_pd(iq2,jq0);
341
342             /* REACTION-FIELD ELECTROSTATICS */
343             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
344             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
345
346             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm_and_pd(velec,cutoff_mask);
350             velecsum         = _mm_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _mm_and_pd(fscal,cutoff_mask);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm_mul_pd(fscal,dx20);
358             ty               = _mm_mul_pd(fscal,dy20);
359             tz               = _mm_mul_pd(fscal,dz20);
360
361             /* Update vectorial force */
362             fix2             = _mm_add_pd(fix2,tx);
363             fiy2             = _mm_add_pd(fiy2,ty);
364             fiz2             = _mm_add_pd(fiz2,tz);
365
366             fjx0             = _mm_add_pd(fjx0,tx);
367             fjy0             = _mm_add_pd(fjy0,ty);
368             fjz0             = _mm_add_pd(fjz0,tz);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm_any_lt(rsq30,rcutoff2))
377             {
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq30             = _mm_mul_pd(iq3,jq0);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
384             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
385
386             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm_and_pd(velec,cutoff_mask);
390             velecsum         = _mm_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             fscal            = _mm_and_pd(fscal,cutoff_mask);
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_pd(fscal,dx30);
398             ty               = _mm_mul_pd(fscal,dy30);
399             tz               = _mm_mul_pd(fscal,dz30);
400
401             /* Update vectorial force */
402             fix3             = _mm_add_pd(fix3,tx);
403             fiy3             = _mm_add_pd(fiy3,ty);
404             fiz3             = _mm_add_pd(fiz3,tz);
405
406             fjx0             = _mm_add_pd(fjx0,tx);
407             fjy0             = _mm_add_pd(fjy0,ty);
408             fjz0             = _mm_add_pd(fjz0,tz);
409
410             }
411
412             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
413
414             /* Inner loop uses 167 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             jnrA             = jjnr[jidx];
421             j_coord_offsetA  = DIM*jnrA;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_pd(ix0,jx0);
429             dy00             = _mm_sub_pd(iy0,jy0);
430             dz00             = _mm_sub_pd(iz0,jz0);
431             dx10             = _mm_sub_pd(ix1,jx0);
432             dy10             = _mm_sub_pd(iy1,jy0);
433             dz10             = _mm_sub_pd(iz1,jz0);
434             dx20             = _mm_sub_pd(ix2,jx0);
435             dy20             = _mm_sub_pd(iy2,jy0);
436             dz20             = _mm_sub_pd(iz2,jz0);
437             dx30             = _mm_sub_pd(ix3,jx0);
438             dy30             = _mm_sub_pd(iy3,jy0);
439             dz30             = _mm_sub_pd(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
443             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
444             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
445             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
446
447             rinv00           = gmx_mm_invsqrt_pd(rsq00);
448             rinv10           = gmx_mm_invsqrt_pd(rsq10);
449             rinv20           = gmx_mm_invsqrt_pd(rsq20);
450             rinv30           = gmx_mm_invsqrt_pd(rsq30);
451
452             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
453             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
454             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
455
456             /* Load parameters for j particles */
457             jq0              = _mm_load_sd(charge+jnrA+0);
458             vdwjidx0A        = 2*vdwtype[jnrA+0];
459
460             fjx0             = _mm_setzero_pd();
461             fjy0             = _mm_setzero_pd();
462             fjz0             = _mm_setzero_pd();
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r00              = _mm_mul_pd(rsq00,rinv00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
472
473             /* Calculate table index by multiplying r with table scale and truncate to integer */
474             rt               = _mm_mul_pd(r00,vftabscale);
475             vfitab           = _mm_cvttpd_epi32(rt);
476             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
477             vfitab           = _mm_slli_epi32(vfitab,3);
478
479             /* CUBIC SPLINE TABLE DISPERSION */
480             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
481             F                = _mm_setzero_pd();
482             GMX_MM_TRANSPOSE2_PD(Y,F);
483             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
484             H                = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(G,H);
486             Heps             = _mm_mul_pd(vfeps,H);
487             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
488             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
489             vvdw6            = _mm_mul_pd(c6_00,VV);
490             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
491             fvdw6            = _mm_mul_pd(c6_00,FF);
492
493             /* CUBIC SPLINE TABLE REPULSION */
494             vfitab           = _mm_add_epi32(vfitab,ifour);
495             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
496             F                = _mm_setzero_pd();
497             GMX_MM_TRANSPOSE2_PD(Y,F);
498             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
499             H                = _mm_setzero_pd();
500             GMX_MM_TRANSPOSE2_PD(G,H);
501             Heps             = _mm_mul_pd(vfeps,H);
502             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
503             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
504             vvdw12           = _mm_mul_pd(c12_00,VV);
505             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
506             fvdw12           = _mm_mul_pd(c12_00,FF);
507             vvdw             = _mm_add_pd(vvdw12,vvdw6);
508             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
512             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
513
514             fscal            = fvdw;
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             fjx0             = _mm_add_pd(fjx0,tx);
529             fjy0             = _mm_add_pd(fjy0,ty);
530             fjz0             = _mm_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq10,rcutoff2))
537             {
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq10             = _mm_mul_pd(iq1,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
544             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
545
546             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_and_pd(velec,cutoff_mask);
550             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551             velecsum         = _mm_add_pd(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_and_pd(fscal,cutoff_mask);
556
557             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_pd(fscal,dx10);
561             ty               = _mm_mul_pd(fscal,dy10);
562             tz               = _mm_mul_pd(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm_add_pd(fix1,tx);
566             fiy1             = _mm_add_pd(fiy1,ty);
567             fiz1             = _mm_add_pd(fiz1,tz);
568
569             fjx0             = _mm_add_pd(fjx0,tx);
570             fjy0             = _mm_add_pd(fjy0,ty);
571             fjz0             = _mm_add_pd(fjz0,tz);
572
573             }
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq20,rcutoff2))
580             {
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq20             = _mm_mul_pd(iq2,jq0);
584
585             /* REACTION-FIELD ELECTROSTATICS */
586             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
587             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
588
589             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_and_pd(velec,cutoff_mask);
593             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
594             velecsum         = _mm_add_pd(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_pd(fscal,cutoff_mask);
599
600             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm_mul_pd(fscal,dx20);
604             ty               = _mm_mul_pd(fscal,dy20);
605             tz               = _mm_mul_pd(fscal,dz20);
606
607             /* Update vectorial force */
608             fix2             = _mm_add_pd(fix2,tx);
609             fiy2             = _mm_add_pd(fiy2,ty);
610             fiz2             = _mm_add_pd(fiz2,tz);
611
612             fjx0             = _mm_add_pd(fjx0,tx);
613             fjy0             = _mm_add_pd(fjy0,ty);
614             fjz0             = _mm_add_pd(fjz0,tz);
615
616             }
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             if (gmx_mm_any_lt(rsq30,rcutoff2))
623             {
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq30             = _mm_mul_pd(iq3,jq0);
627
628             /* REACTION-FIELD ELECTROSTATICS */
629             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
630             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
631
632             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm_and_pd(velec,cutoff_mask);
636             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
637             velecsum         = _mm_add_pd(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_and_pd(fscal,cutoff_mask);
642
643             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm_mul_pd(fscal,dx30);
647             ty               = _mm_mul_pd(fscal,dy30);
648             tz               = _mm_mul_pd(fscal,dz30);
649
650             /* Update vectorial force */
651             fix3             = _mm_add_pd(fix3,tx);
652             fiy3             = _mm_add_pd(fiy3,ty);
653             fiz3             = _mm_add_pd(fiz3,tz);
654
655             fjx0             = _mm_add_pd(fjx0,tx);
656             fjy0             = _mm_add_pd(fjy0,ty);
657             fjz0             = _mm_add_pd(fjz0,tz);
658
659             }
660
661             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
662
663             /* Inner loop uses 167 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         ggid                        = gid[iidx];
672         /* Update potential energies */
673         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
674         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
675
676         /* Increment number of inner iterations */
677         inneriter                  += j_index_end - j_index_start;
678
679         /* Outer loop uses 26 flops */
680     }
681
682     /* Increment number of outer iterations */
683     outeriter        += nri;
684
685     /* Update outer/inner flops */
686
687     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
688 }
689 /*
690  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
691  * Electrostatics interaction: ReactionField
692  * VdW interaction:            CubicSplineTable
693  * Geometry:                   Water4-Particle
694  * Calculate force/pot:        Force
695  */
696 void
697 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
698                     (t_nblist * gmx_restrict                nlist,
699                      rvec * gmx_restrict                    xx,
700                      rvec * gmx_restrict                    ff,
701                      t_forcerec * gmx_restrict              fr,
702                      t_mdatoms * gmx_restrict               mdatoms,
703                      nb_kernel_data_t * gmx_restrict        kernel_data,
704                      t_nrnb * gmx_restrict                  nrnb)
705 {
706     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
707      * just 0 for non-waters.
708      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
709      * jnr indices corresponding to data put in the four positions in the SIMD register.
710      */
711     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
712     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
713     int              jnrA,jnrB;
714     int              j_coord_offsetA,j_coord_offsetB;
715     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
716     real             rcutoff_scalar;
717     real             *shiftvec,*fshift,*x,*f;
718     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
719     int              vdwioffset0;
720     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
721     int              vdwioffset1;
722     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
723     int              vdwioffset2;
724     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
725     int              vdwioffset3;
726     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
727     int              vdwjidx0A,vdwjidx0B;
728     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
729     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
730     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
731     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
732     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
733     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
734     real             *charge;
735     int              nvdwtype;
736     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
737     int              *vdwtype;
738     real             *vdwparam;
739     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
740     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
741     __m128i          vfitab;
742     __m128i          ifour       = _mm_set1_epi32(4);
743     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
744     real             *vftab;
745     __m128d          dummy_mask,cutoff_mask;
746     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
747     __m128d          one     = _mm_set1_pd(1.0);
748     __m128d          two     = _mm_set1_pd(2.0);
749     x                = xx[0];
750     f                = ff[0];
751
752     nri              = nlist->nri;
753     iinr             = nlist->iinr;
754     jindex           = nlist->jindex;
755     jjnr             = nlist->jjnr;
756     shiftidx         = nlist->shift;
757     gid              = nlist->gid;
758     shiftvec         = fr->shift_vec[0];
759     fshift           = fr->fshift[0];
760     facel            = _mm_set1_pd(fr->epsfac);
761     charge           = mdatoms->chargeA;
762     krf              = _mm_set1_pd(fr->ic->k_rf);
763     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
764     crf              = _mm_set1_pd(fr->ic->c_rf);
765     nvdwtype         = fr->ntype;
766     vdwparam         = fr->nbfp;
767     vdwtype          = mdatoms->typeA;
768
769     vftab            = kernel_data->table_vdw->data;
770     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
771
772     /* Setup water-specific parameters */
773     inr              = nlist->iinr[0];
774     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
775     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
776     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
777     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
778
779     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
780     rcutoff_scalar   = fr->rcoulomb;
781     rcutoff          = _mm_set1_pd(rcutoff_scalar);
782     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
783
784     /* Avoid stupid compiler warnings */
785     jnrA = jnrB = 0;
786     j_coord_offsetA = 0;
787     j_coord_offsetB = 0;
788
789     outeriter        = 0;
790     inneriter        = 0;
791
792     /* Start outer loop over neighborlists */
793     for(iidx=0; iidx<nri; iidx++)
794     {
795         /* Load shift vector for this list */
796         i_shift_offset   = DIM*shiftidx[iidx];
797
798         /* Load limits for loop over neighbors */
799         j_index_start    = jindex[iidx];
800         j_index_end      = jindex[iidx+1];
801
802         /* Get outer coordinate index */
803         inr              = iinr[iidx];
804         i_coord_offset   = DIM*inr;
805
806         /* Load i particle coords and add shift vector */
807         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
808                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
809
810         fix0             = _mm_setzero_pd();
811         fiy0             = _mm_setzero_pd();
812         fiz0             = _mm_setzero_pd();
813         fix1             = _mm_setzero_pd();
814         fiy1             = _mm_setzero_pd();
815         fiz1             = _mm_setzero_pd();
816         fix2             = _mm_setzero_pd();
817         fiy2             = _mm_setzero_pd();
818         fiz2             = _mm_setzero_pd();
819         fix3             = _mm_setzero_pd();
820         fiy3             = _mm_setzero_pd();
821         fiz3             = _mm_setzero_pd();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             j_coord_offsetA  = DIM*jnrA;
831             j_coord_offsetB  = DIM*jnrB;
832
833             /* load j atom coordinates */
834             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
835                                               &jx0,&jy0,&jz0);
836
837             /* Calculate displacement vector */
838             dx00             = _mm_sub_pd(ix0,jx0);
839             dy00             = _mm_sub_pd(iy0,jy0);
840             dz00             = _mm_sub_pd(iz0,jz0);
841             dx10             = _mm_sub_pd(ix1,jx0);
842             dy10             = _mm_sub_pd(iy1,jy0);
843             dz10             = _mm_sub_pd(iz1,jz0);
844             dx20             = _mm_sub_pd(ix2,jx0);
845             dy20             = _mm_sub_pd(iy2,jy0);
846             dz20             = _mm_sub_pd(iz2,jz0);
847             dx30             = _mm_sub_pd(ix3,jx0);
848             dy30             = _mm_sub_pd(iy3,jy0);
849             dz30             = _mm_sub_pd(iz3,jz0);
850
851             /* Calculate squared distance and things based on it */
852             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
853             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
854             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
855             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
856
857             rinv00           = gmx_mm_invsqrt_pd(rsq00);
858             rinv10           = gmx_mm_invsqrt_pd(rsq10);
859             rinv20           = gmx_mm_invsqrt_pd(rsq20);
860             rinv30           = gmx_mm_invsqrt_pd(rsq30);
861
862             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
863             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
864             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
865
866             /* Load parameters for j particles */
867             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
868             vdwjidx0A        = 2*vdwtype[jnrA+0];
869             vdwjidx0B        = 2*vdwtype[jnrB+0];
870
871             fjx0             = _mm_setzero_pd();
872             fjy0             = _mm_setzero_pd();
873             fjz0             = _mm_setzero_pd();
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r00              = _mm_mul_pd(rsq00,rinv00);
880
881             /* Compute parameters for interactions between i and j atoms */
882             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
883                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
884
885             /* Calculate table index by multiplying r with table scale and truncate to integer */
886             rt               = _mm_mul_pd(r00,vftabscale);
887             vfitab           = _mm_cvttpd_epi32(rt);
888             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
889             vfitab           = _mm_slli_epi32(vfitab,3);
890
891             /* CUBIC SPLINE TABLE DISPERSION */
892             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
893             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
894             GMX_MM_TRANSPOSE2_PD(Y,F);
895             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
896             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
897             GMX_MM_TRANSPOSE2_PD(G,H);
898             Heps             = _mm_mul_pd(vfeps,H);
899             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
900             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
901             fvdw6            = _mm_mul_pd(c6_00,FF);
902
903             /* CUBIC SPLINE TABLE REPULSION */
904             vfitab           = _mm_add_epi32(vfitab,ifour);
905             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
906             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
907             GMX_MM_TRANSPOSE2_PD(Y,F);
908             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
909             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
910             GMX_MM_TRANSPOSE2_PD(G,H);
911             Heps             = _mm_mul_pd(vfeps,H);
912             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
913             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
914             fvdw12           = _mm_mul_pd(c12_00,FF);
915             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
916
917             fscal            = fvdw;
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx00);
921             ty               = _mm_mul_pd(fscal,dy00);
922             tz               = _mm_mul_pd(fscal,dz00);
923
924             /* Update vectorial force */
925             fix0             = _mm_add_pd(fix0,tx);
926             fiy0             = _mm_add_pd(fiy0,ty);
927             fiz0             = _mm_add_pd(fiz0,tz);
928
929             fjx0             = _mm_add_pd(fjx0,tx);
930             fjy0             = _mm_add_pd(fjy0,ty);
931             fjz0             = _mm_add_pd(fjz0,tz);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             if (gmx_mm_any_lt(rsq10,rcutoff2))
938             {
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm_mul_pd(iq1,jq0);
942
943             /* REACTION-FIELD ELECTROSTATICS */
944             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
945
946             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
947
948             fscal            = felec;
949
950             fscal            = _mm_and_pd(fscal,cutoff_mask);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm_mul_pd(fscal,dx10);
954             ty               = _mm_mul_pd(fscal,dy10);
955             tz               = _mm_mul_pd(fscal,dz10);
956
957             /* Update vectorial force */
958             fix1             = _mm_add_pd(fix1,tx);
959             fiy1             = _mm_add_pd(fiy1,ty);
960             fiz1             = _mm_add_pd(fiz1,tz);
961
962             fjx0             = _mm_add_pd(fjx0,tx);
963             fjy0             = _mm_add_pd(fjy0,ty);
964             fjz0             = _mm_add_pd(fjz0,tz);
965
966             }
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             if (gmx_mm_any_lt(rsq20,rcutoff2))
973             {
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq20             = _mm_mul_pd(iq2,jq0);
977
978             /* REACTION-FIELD ELECTROSTATICS */
979             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
980
981             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
982
983             fscal            = felec;
984
985             fscal            = _mm_and_pd(fscal,cutoff_mask);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm_mul_pd(fscal,dx20);
989             ty               = _mm_mul_pd(fscal,dy20);
990             tz               = _mm_mul_pd(fscal,dz20);
991
992             /* Update vectorial force */
993             fix2             = _mm_add_pd(fix2,tx);
994             fiy2             = _mm_add_pd(fiy2,ty);
995             fiz2             = _mm_add_pd(fiz2,tz);
996
997             fjx0             = _mm_add_pd(fjx0,tx);
998             fjy0             = _mm_add_pd(fjy0,ty);
999             fjz0             = _mm_add_pd(fjz0,tz);
1000
1001             }
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             if (gmx_mm_any_lt(rsq30,rcutoff2))
1008             {
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq30             = _mm_mul_pd(iq3,jq0);
1012
1013             /* REACTION-FIELD ELECTROSTATICS */
1014             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1015
1016             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1017
1018             fscal            = felec;
1019
1020             fscal            = _mm_and_pd(fscal,cutoff_mask);
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm_mul_pd(fscal,dx30);
1024             ty               = _mm_mul_pd(fscal,dy30);
1025             tz               = _mm_mul_pd(fscal,dz30);
1026
1027             /* Update vectorial force */
1028             fix3             = _mm_add_pd(fix3,tx);
1029             fiy3             = _mm_add_pd(fiy3,ty);
1030             fiz3             = _mm_add_pd(fiz3,tz);
1031
1032             fjx0             = _mm_add_pd(fjx0,tx);
1033             fjy0             = _mm_add_pd(fjy0,ty);
1034             fjz0             = _mm_add_pd(fjz0,tz);
1035
1036             }
1037
1038             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1039
1040             /* Inner loop uses 141 flops */
1041         }
1042
1043         if(jidx<j_index_end)
1044         {
1045
1046             jnrA             = jjnr[jidx];
1047             j_coord_offsetA  = DIM*jnrA;
1048
1049             /* load j atom coordinates */
1050             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1051                                               &jx0,&jy0,&jz0);
1052
1053             /* Calculate displacement vector */
1054             dx00             = _mm_sub_pd(ix0,jx0);
1055             dy00             = _mm_sub_pd(iy0,jy0);
1056             dz00             = _mm_sub_pd(iz0,jz0);
1057             dx10             = _mm_sub_pd(ix1,jx0);
1058             dy10             = _mm_sub_pd(iy1,jy0);
1059             dz10             = _mm_sub_pd(iz1,jz0);
1060             dx20             = _mm_sub_pd(ix2,jx0);
1061             dy20             = _mm_sub_pd(iy2,jy0);
1062             dz20             = _mm_sub_pd(iz2,jz0);
1063             dx30             = _mm_sub_pd(ix3,jx0);
1064             dy30             = _mm_sub_pd(iy3,jy0);
1065             dz30             = _mm_sub_pd(iz3,jz0);
1066
1067             /* Calculate squared distance and things based on it */
1068             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1069             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1070             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1071             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1072
1073             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1074             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1075             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1076             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1077
1078             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1079             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1080             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1081
1082             /* Load parameters for j particles */
1083             jq0              = _mm_load_sd(charge+jnrA+0);
1084             vdwjidx0A        = 2*vdwtype[jnrA+0];
1085
1086             fjx0             = _mm_setzero_pd();
1087             fjy0             = _mm_setzero_pd();
1088             fjz0             = _mm_setzero_pd();
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             r00              = _mm_mul_pd(rsq00,rinv00);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1098
1099             /* Calculate table index by multiplying r with table scale and truncate to integer */
1100             rt               = _mm_mul_pd(r00,vftabscale);
1101             vfitab           = _mm_cvttpd_epi32(rt);
1102             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1103             vfitab           = _mm_slli_epi32(vfitab,3);
1104
1105             /* CUBIC SPLINE TABLE DISPERSION */
1106             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1107             F                = _mm_setzero_pd();
1108             GMX_MM_TRANSPOSE2_PD(Y,F);
1109             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1110             H                = _mm_setzero_pd();
1111             GMX_MM_TRANSPOSE2_PD(G,H);
1112             Heps             = _mm_mul_pd(vfeps,H);
1113             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1114             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1115             fvdw6            = _mm_mul_pd(c6_00,FF);
1116
1117             /* CUBIC SPLINE TABLE REPULSION */
1118             vfitab           = _mm_add_epi32(vfitab,ifour);
1119             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1120             F                = _mm_setzero_pd();
1121             GMX_MM_TRANSPOSE2_PD(Y,F);
1122             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1123             H                = _mm_setzero_pd();
1124             GMX_MM_TRANSPOSE2_PD(G,H);
1125             Heps             = _mm_mul_pd(vfeps,H);
1126             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1127             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1128             fvdw12           = _mm_mul_pd(c12_00,FF);
1129             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1130
1131             fscal            = fvdw;
1132
1133             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = _mm_mul_pd(fscal,dx00);
1137             ty               = _mm_mul_pd(fscal,dy00);
1138             tz               = _mm_mul_pd(fscal,dz00);
1139
1140             /* Update vectorial force */
1141             fix0             = _mm_add_pd(fix0,tx);
1142             fiy0             = _mm_add_pd(fiy0,ty);
1143             fiz0             = _mm_add_pd(fiz0,tz);
1144
1145             fjx0             = _mm_add_pd(fjx0,tx);
1146             fjy0             = _mm_add_pd(fjy0,ty);
1147             fjz0             = _mm_add_pd(fjz0,tz);
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             if (gmx_mm_any_lt(rsq10,rcutoff2))
1154             {
1155
1156             /* Compute parameters for interactions between i and j atoms */
1157             qq10             = _mm_mul_pd(iq1,jq0);
1158
1159             /* REACTION-FIELD ELECTROSTATICS */
1160             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1161
1162             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_and_pd(fscal,cutoff_mask);
1167
1168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm_mul_pd(fscal,dx10);
1172             ty               = _mm_mul_pd(fscal,dy10);
1173             tz               = _mm_mul_pd(fscal,dz10);
1174
1175             /* Update vectorial force */
1176             fix1             = _mm_add_pd(fix1,tx);
1177             fiy1             = _mm_add_pd(fiy1,ty);
1178             fiz1             = _mm_add_pd(fiz1,tz);
1179
1180             fjx0             = _mm_add_pd(fjx0,tx);
1181             fjy0             = _mm_add_pd(fjy0,ty);
1182             fjz0             = _mm_add_pd(fjz0,tz);
1183
1184             }
1185
1186             /**************************
1187              * CALCULATE INTERACTIONS *
1188              **************************/
1189
1190             if (gmx_mm_any_lt(rsq20,rcutoff2))
1191             {
1192
1193             /* Compute parameters for interactions between i and j atoms */
1194             qq20             = _mm_mul_pd(iq2,jq0);
1195
1196             /* REACTION-FIELD ELECTROSTATICS */
1197             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1198
1199             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1200
1201             fscal            = felec;
1202
1203             fscal            = _mm_and_pd(fscal,cutoff_mask);
1204
1205             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm_mul_pd(fscal,dx20);
1209             ty               = _mm_mul_pd(fscal,dy20);
1210             tz               = _mm_mul_pd(fscal,dz20);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm_add_pd(fix2,tx);
1214             fiy2             = _mm_add_pd(fiy2,ty);
1215             fiz2             = _mm_add_pd(fiz2,tz);
1216
1217             fjx0             = _mm_add_pd(fjx0,tx);
1218             fjy0             = _mm_add_pd(fjy0,ty);
1219             fjz0             = _mm_add_pd(fjz0,tz);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm_any_lt(rsq30,rcutoff2))
1228             {
1229
1230             /* Compute parameters for interactions between i and j atoms */
1231             qq30             = _mm_mul_pd(iq3,jq0);
1232
1233             /* REACTION-FIELD ELECTROSTATICS */
1234             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1235
1236             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1237
1238             fscal            = felec;
1239
1240             fscal            = _mm_and_pd(fscal,cutoff_mask);
1241
1242             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm_mul_pd(fscal,dx30);
1246             ty               = _mm_mul_pd(fscal,dy30);
1247             tz               = _mm_mul_pd(fscal,dz30);
1248
1249             /* Update vectorial force */
1250             fix3             = _mm_add_pd(fix3,tx);
1251             fiy3             = _mm_add_pd(fiy3,ty);
1252             fiz3             = _mm_add_pd(fiz3,tz);
1253
1254             fjx0             = _mm_add_pd(fjx0,tx);
1255             fjy0             = _mm_add_pd(fjy0,ty);
1256             fjz0             = _mm_add_pd(fjz0,tz);
1257
1258             }
1259
1260             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1261
1262             /* Inner loop uses 141 flops */
1263         }
1264
1265         /* End of innermost loop */
1266
1267         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1268                                               f+i_coord_offset,fshift+i_shift_offset);
1269
1270         /* Increment number of inner iterations */
1271         inneriter                  += j_index_end - j_index_start;
1272
1273         /* Outer loop uses 24 flops */
1274     }
1275
1276     /* Increment number of outer iterations */
1277     outeriter        += nri;
1278
1279     /* Update outer/inner flops */
1280
1281     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1282 }