Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_pd(fr->ic->k_rf);
124     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180         fix3             = _mm_setzero_pd();
181         fiy3             = _mm_setzero_pd();
182         fiz3             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212             dx30             = _mm_sub_pd(ix3,jx0);
213             dy30             = _mm_sub_pd(iy3,jy0);
214             dz30             = _mm_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221
222             rinv00           = gmx_mm_invsqrt_pd(rsq00);
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
229             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_pd(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm_mul_pd(r00,vftabscale);
252             vfitab           = _mm_cvttpd_epi32(rt);
253             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
254             vfitab           = _mm_slli_epi32(vfitab,3);
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             GMX_MM_TRANSPOSE2_PD(Y,F);
260             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
261             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(G,H);
263             Heps             = _mm_mul_pd(vfeps,H);
264             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
265             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
266             vvdw6            = _mm_mul_pd(c6_00,VV);
267             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
268             fvdw6            = _mm_mul_pd(c6_00,FF);
269
270             /* CUBIC SPLINE TABLE REPULSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
274             GMX_MM_TRANSPOSE2_PD(Y,F);
275             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
276             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
277             GMX_MM_TRANSPOSE2_PD(G,H);
278             Heps             = _mm_mul_pd(vfeps,H);
279             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
280             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
281             vvdw12           = _mm_mul_pd(c12_00,VV);
282             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
283             fvdw12           = _mm_mul_pd(c12_00,FF);
284             vvdw             = _mm_add_pd(vvdw12,vvdw6);
285             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_pd(fscal,dx00);
294             ty               = _mm_mul_pd(fscal,dy00);
295             tz               = _mm_mul_pd(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm_add_pd(fix0,tx);
299             fiy0             = _mm_add_pd(fiy0,ty);
300             fiz0             = _mm_add_pd(fiz0,tz);
301
302             fjx0             = _mm_add_pd(fjx0,tx);
303             fjy0             = _mm_add_pd(fjy0,ty);
304             fjz0             = _mm_add_pd(fjz0,tz);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq10,rcutoff2))
311             {
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_pd(iq1,jq0);
315
316             /* REACTION-FIELD ELECTROSTATICS */
317             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
318             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
319
320             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velec            = _mm_and_pd(velec,cutoff_mask);
324             velecsum         = _mm_add_pd(velecsum,velec);
325
326             fscal            = felec;
327
328             fscal            = _mm_and_pd(fscal,cutoff_mask);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_pd(fscal,dx10);
332             ty               = _mm_mul_pd(fscal,dy10);
333             tz               = _mm_mul_pd(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_pd(fix1,tx);
337             fiy1             = _mm_add_pd(fiy1,ty);
338             fiz1             = _mm_add_pd(fiz1,tz);
339
340             fjx0             = _mm_add_pd(fjx0,tx);
341             fjy0             = _mm_add_pd(fjy0,ty);
342             fjz0             = _mm_add_pd(fjz0,tz);
343
344             }
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             if (gmx_mm_any_lt(rsq20,rcutoff2))
351             {
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_pd(iq2,jq0);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
358             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
359
360             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _mm_and_pd(velec,cutoff_mask);
364             velecsum         = _mm_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             fscal            = _mm_and_pd(fscal,cutoff_mask);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_pd(fscal,dx20);
372             ty               = _mm_mul_pd(fscal,dy20);
373             tz               = _mm_mul_pd(fscal,dz20);
374
375             /* Update vectorial force */
376             fix2             = _mm_add_pd(fix2,tx);
377             fiy2             = _mm_add_pd(fiy2,ty);
378             fiz2             = _mm_add_pd(fiz2,tz);
379
380             fjx0             = _mm_add_pd(fjx0,tx);
381             fjy0             = _mm_add_pd(fjy0,ty);
382             fjz0             = _mm_add_pd(fjz0,tz);
383
384             }
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             if (gmx_mm_any_lt(rsq30,rcutoff2))
391             {
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq30             = _mm_mul_pd(iq3,jq0);
395
396             /* REACTION-FIELD ELECTROSTATICS */
397             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
398             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
399
400             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _mm_and_pd(velec,cutoff_mask);
404             velecsum         = _mm_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _mm_and_pd(fscal,cutoff_mask);
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm_mul_pd(fscal,dx30);
412             ty               = _mm_mul_pd(fscal,dy30);
413             tz               = _mm_mul_pd(fscal,dz30);
414
415             /* Update vectorial force */
416             fix3             = _mm_add_pd(fix3,tx);
417             fiy3             = _mm_add_pd(fiy3,ty);
418             fiz3             = _mm_add_pd(fiz3,tz);
419
420             fjx0             = _mm_add_pd(fjx0,tx);
421             fjy0             = _mm_add_pd(fjy0,ty);
422             fjz0             = _mm_add_pd(fjz0,tz);
423
424             }
425
426             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
427
428             /* Inner loop uses 167 flops */
429         }
430
431         if(jidx<j_index_end)
432         {
433
434             jnrA             = jjnr[jidx];
435             j_coord_offsetA  = DIM*jnrA;
436
437             /* load j atom coordinates */
438             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_pd(ix0,jx0);
443             dy00             = _mm_sub_pd(iy0,jy0);
444             dz00             = _mm_sub_pd(iz0,jz0);
445             dx10             = _mm_sub_pd(ix1,jx0);
446             dy10             = _mm_sub_pd(iy1,jy0);
447             dz10             = _mm_sub_pd(iz1,jz0);
448             dx20             = _mm_sub_pd(ix2,jx0);
449             dy20             = _mm_sub_pd(iy2,jy0);
450             dz20             = _mm_sub_pd(iz2,jz0);
451             dx30             = _mm_sub_pd(ix3,jx0);
452             dy30             = _mm_sub_pd(iy3,jy0);
453             dz30             = _mm_sub_pd(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
459             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
460
461             rinv00           = gmx_mm_invsqrt_pd(rsq00);
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464             rinv30           = gmx_mm_invsqrt_pd(rsq30);
465
466             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
468             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
469
470             /* Load parameters for j particles */
471             jq0              = _mm_load_sd(charge+jnrA+0);
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473
474             fjx0             = _mm_setzero_pd();
475             fjy0             = _mm_setzero_pd();
476             fjz0             = _mm_setzero_pd();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r00              = _mm_mul_pd(rsq00,rinv00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _mm_mul_pd(r00,vftabscale);
489             vfitab           = _mm_cvttpd_epi32(rt);
490             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
491             vfitab           = _mm_slli_epi32(vfitab,3);
492
493             /* CUBIC SPLINE TABLE DISPERSION */
494             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
495             F                = _mm_setzero_pd();
496             GMX_MM_TRANSPOSE2_PD(Y,F);
497             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
498             H                = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(G,H);
500             Heps             = _mm_mul_pd(vfeps,H);
501             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
502             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
503             vvdw6            = _mm_mul_pd(c6_00,VV);
504             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
505             fvdw6            = _mm_mul_pd(c6_00,FF);
506
507             /* CUBIC SPLINE TABLE REPULSION */
508             vfitab           = _mm_add_epi32(vfitab,ifour);
509             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
510             F                = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(Y,F);
512             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
513             H                = _mm_setzero_pd();
514             GMX_MM_TRANSPOSE2_PD(G,H);
515             Heps             = _mm_mul_pd(vfeps,H);
516             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
517             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
518             vvdw12           = _mm_mul_pd(c12_00,VV);
519             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
520             fvdw12           = _mm_mul_pd(c12_00,FF);
521             vvdw             = _mm_add_pd(vvdw12,vvdw6);
522             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
526             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
527
528             fscal            = fvdw;
529
530             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx00);
534             ty               = _mm_mul_pd(fscal,dy00);
535             tz               = _mm_mul_pd(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm_add_pd(fix0,tx);
539             fiy0             = _mm_add_pd(fiy0,ty);
540             fiz0             = _mm_add_pd(fiz0,tz);
541
542             fjx0             = _mm_add_pd(fjx0,tx);
543             fjy0             = _mm_add_pd(fjy0,ty);
544             fjz0             = _mm_add_pd(fjz0,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm_any_lt(rsq10,rcutoff2))
551             {
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _mm_mul_pd(iq1,jq0);
555
556             /* REACTION-FIELD ELECTROSTATICS */
557             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
558             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
559
560             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm_and_pd(velec,cutoff_mask);
564             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
565             velecsum         = _mm_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm_and_pd(fscal,cutoff_mask);
570
571             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm_mul_pd(fscal,dx10);
575             ty               = _mm_mul_pd(fscal,dy10);
576             tz               = _mm_mul_pd(fscal,dz10);
577
578             /* Update vectorial force */
579             fix1             = _mm_add_pd(fix1,tx);
580             fiy1             = _mm_add_pd(fiy1,ty);
581             fiz1             = _mm_add_pd(fiz1,tz);
582
583             fjx0             = _mm_add_pd(fjx0,tx);
584             fjy0             = _mm_add_pd(fjy0,ty);
585             fjz0             = _mm_add_pd(fjz0,tz);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq20,rcutoff2))
594             {
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _mm_mul_pd(iq2,jq0);
598
599             /* REACTION-FIELD ELECTROSTATICS */
600             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
601             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
602
603             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_and_pd(velec,cutoff_mask);
607             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
608             velecsum         = _mm_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm_and_pd(fscal,cutoff_mask);
613
614             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_pd(fscal,dx20);
618             ty               = _mm_mul_pd(fscal,dy20);
619             tz               = _mm_mul_pd(fscal,dz20);
620
621             /* Update vectorial force */
622             fix2             = _mm_add_pd(fix2,tx);
623             fiy2             = _mm_add_pd(fiy2,ty);
624             fiz2             = _mm_add_pd(fiz2,tz);
625
626             fjx0             = _mm_add_pd(fjx0,tx);
627             fjy0             = _mm_add_pd(fjy0,ty);
628             fjz0             = _mm_add_pd(fjz0,tz);
629
630             }
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             if (gmx_mm_any_lt(rsq30,rcutoff2))
637             {
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq30             = _mm_mul_pd(iq3,jq0);
641
642             /* REACTION-FIELD ELECTROSTATICS */
643             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
644             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
645
646             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_and_pd(velec,cutoff_mask);
650             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
651             velecsum         = _mm_add_pd(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm_and_pd(fscal,cutoff_mask);
656
657             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_pd(fscal,dx30);
661             ty               = _mm_mul_pd(fscal,dy30);
662             tz               = _mm_mul_pd(fscal,dz30);
663
664             /* Update vectorial force */
665             fix3             = _mm_add_pd(fix3,tx);
666             fiy3             = _mm_add_pd(fiy3,ty);
667             fiz3             = _mm_add_pd(fiz3,tz);
668
669             fjx0             = _mm_add_pd(fjx0,tx);
670             fjy0             = _mm_add_pd(fjy0,ty);
671             fjz0             = _mm_add_pd(fjz0,tz);
672
673             }
674
675             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
676
677             /* Inner loop uses 167 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
688         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 26 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
702 }
703 /*
704  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
705  * Electrostatics interaction: ReactionField
706  * VdW interaction:            CubicSplineTable
707  * Geometry:                   Water4-Particle
708  * Calculate force/pot:        Force
709  */
710 void
711 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_double
712                     (t_nblist                    * gmx_restrict       nlist,
713                      rvec                        * gmx_restrict          xx,
714                      rvec                        * gmx_restrict          ff,
715                      t_forcerec                  * gmx_restrict          fr,
716                      t_mdatoms                   * gmx_restrict     mdatoms,
717                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
718                      t_nrnb                      * gmx_restrict        nrnb)
719 {
720     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
721      * just 0 for non-waters.
722      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
723      * jnr indices corresponding to data put in the four positions in the SIMD register.
724      */
725     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
726     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
727     int              jnrA,jnrB;
728     int              j_coord_offsetA,j_coord_offsetB;
729     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
730     real             rcutoff_scalar;
731     real             *shiftvec,*fshift,*x,*f;
732     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
733     int              vdwioffset0;
734     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735     int              vdwioffset1;
736     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737     int              vdwioffset2;
738     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739     int              vdwioffset3;
740     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
741     int              vdwjidx0A,vdwjidx0B;
742     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
747     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     int              nvdwtype;
750     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
751     int              *vdwtype;
752     real             *vdwparam;
753     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
754     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
755     __m128i          vfitab;
756     __m128i          ifour       = _mm_set1_epi32(4);
757     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
758     real             *vftab;
759     __m128d          dummy_mask,cutoff_mask;
760     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
761     __m128d          one     = _mm_set1_pd(1.0);
762     __m128d          two     = _mm_set1_pd(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm_set1_pd(fr->epsfac);
775     charge           = mdatoms->chargeA;
776     krf              = _mm_set1_pd(fr->ic->k_rf);
777     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
778     crf              = _mm_set1_pd(fr->ic->c_rf);
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782
783     vftab            = kernel_data->table_vdw->data;
784     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
789     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
790     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
791     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
792
793     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
794     rcutoff_scalar   = fr->rcoulomb;
795     rcutoff          = _mm_set1_pd(rcutoff_scalar);
796     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
797
798     /* Avoid stupid compiler warnings */
799     jnrA = jnrB = 0;
800     j_coord_offsetA = 0;
801     j_coord_offsetB = 0;
802
803     outeriter        = 0;
804     inneriter        = 0;
805
806     /* Start outer loop over neighborlists */
807     for(iidx=0; iidx<nri; iidx++)
808     {
809         /* Load shift vector for this list */
810         i_shift_offset   = DIM*shiftidx[iidx];
811
812         /* Load limits for loop over neighbors */
813         j_index_start    = jindex[iidx];
814         j_index_end      = jindex[iidx+1];
815
816         /* Get outer coordinate index */
817         inr              = iinr[iidx];
818         i_coord_offset   = DIM*inr;
819
820         /* Load i particle coords and add shift vector */
821         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
822                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
823
824         fix0             = _mm_setzero_pd();
825         fiy0             = _mm_setzero_pd();
826         fiz0             = _mm_setzero_pd();
827         fix1             = _mm_setzero_pd();
828         fiy1             = _mm_setzero_pd();
829         fiz1             = _mm_setzero_pd();
830         fix2             = _mm_setzero_pd();
831         fiy2             = _mm_setzero_pd();
832         fiz2             = _mm_setzero_pd();
833         fix3             = _mm_setzero_pd();
834         fiy3             = _mm_setzero_pd();
835         fiz3             = _mm_setzero_pd();
836
837         /* Start inner kernel loop */
838         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
839         {
840
841             /* Get j neighbor index, and coordinate index */
842             jnrA             = jjnr[jidx];
843             jnrB             = jjnr[jidx+1];
844             j_coord_offsetA  = DIM*jnrA;
845             j_coord_offsetB  = DIM*jnrB;
846
847             /* load j atom coordinates */
848             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_pd(ix0,jx0);
853             dy00             = _mm_sub_pd(iy0,jy0);
854             dz00             = _mm_sub_pd(iz0,jz0);
855             dx10             = _mm_sub_pd(ix1,jx0);
856             dy10             = _mm_sub_pd(iy1,jy0);
857             dz10             = _mm_sub_pd(iz1,jz0);
858             dx20             = _mm_sub_pd(ix2,jx0);
859             dy20             = _mm_sub_pd(iy2,jy0);
860             dz20             = _mm_sub_pd(iz2,jz0);
861             dx30             = _mm_sub_pd(ix3,jx0);
862             dy30             = _mm_sub_pd(iy3,jy0);
863             dz30             = _mm_sub_pd(iz3,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
867             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
868             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
869             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
870
871             rinv00           = gmx_mm_invsqrt_pd(rsq00);
872             rinv10           = gmx_mm_invsqrt_pd(rsq10);
873             rinv20           = gmx_mm_invsqrt_pd(rsq20);
874             rinv30           = gmx_mm_invsqrt_pd(rsq30);
875
876             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
877             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
878             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
882             vdwjidx0A        = 2*vdwtype[jnrA+0];
883             vdwjidx0B        = 2*vdwtype[jnrB+0];
884
885             fjx0             = _mm_setzero_pd();
886             fjy0             = _mm_setzero_pd();
887             fjz0             = _mm_setzero_pd();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r00              = _mm_mul_pd(rsq00,rinv00);
894
895             /* Compute parameters for interactions between i and j atoms */
896             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
897                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
898
899             /* Calculate table index by multiplying r with table scale and truncate to integer */
900             rt               = _mm_mul_pd(r00,vftabscale);
901             vfitab           = _mm_cvttpd_epi32(rt);
902             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
903             vfitab           = _mm_slli_epi32(vfitab,3);
904
905             /* CUBIC SPLINE TABLE DISPERSION */
906             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
907             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
908             GMX_MM_TRANSPOSE2_PD(Y,F);
909             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
910             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
911             GMX_MM_TRANSPOSE2_PD(G,H);
912             Heps             = _mm_mul_pd(vfeps,H);
913             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
914             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
915             fvdw6            = _mm_mul_pd(c6_00,FF);
916
917             /* CUBIC SPLINE TABLE REPULSION */
918             vfitab           = _mm_add_epi32(vfitab,ifour);
919             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
920             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
921             GMX_MM_TRANSPOSE2_PD(Y,F);
922             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
923             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
924             GMX_MM_TRANSPOSE2_PD(G,H);
925             Heps             = _mm_mul_pd(vfeps,H);
926             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
927             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
928             fvdw12           = _mm_mul_pd(c12_00,FF);
929             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
930
931             fscal            = fvdw;
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm_mul_pd(fscal,dx00);
935             ty               = _mm_mul_pd(fscal,dy00);
936             tz               = _mm_mul_pd(fscal,dz00);
937
938             /* Update vectorial force */
939             fix0             = _mm_add_pd(fix0,tx);
940             fiy0             = _mm_add_pd(fiy0,ty);
941             fiz0             = _mm_add_pd(fiz0,tz);
942
943             fjx0             = _mm_add_pd(fjx0,tx);
944             fjy0             = _mm_add_pd(fjy0,ty);
945             fjz0             = _mm_add_pd(fjz0,tz);
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm_any_lt(rsq10,rcutoff2))
952             {
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm_mul_pd(iq1,jq0);
956
957             /* REACTION-FIELD ELECTROSTATICS */
958             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
959
960             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
961
962             fscal            = felec;
963
964             fscal            = _mm_and_pd(fscal,cutoff_mask);
965
966             /* Calculate temporary vectorial force */
967             tx               = _mm_mul_pd(fscal,dx10);
968             ty               = _mm_mul_pd(fscal,dy10);
969             tz               = _mm_mul_pd(fscal,dz10);
970
971             /* Update vectorial force */
972             fix1             = _mm_add_pd(fix1,tx);
973             fiy1             = _mm_add_pd(fiy1,ty);
974             fiz1             = _mm_add_pd(fiz1,tz);
975
976             fjx0             = _mm_add_pd(fjx0,tx);
977             fjy0             = _mm_add_pd(fjy0,ty);
978             fjz0             = _mm_add_pd(fjz0,tz);
979
980             }
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             if (gmx_mm_any_lt(rsq20,rcutoff2))
987             {
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq20             = _mm_mul_pd(iq2,jq0);
991
992             /* REACTION-FIELD ELECTROSTATICS */
993             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
994
995             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
996
997             fscal            = felec;
998
999             fscal            = _mm_and_pd(fscal,cutoff_mask);
1000
1001             /* Calculate temporary vectorial force */
1002             tx               = _mm_mul_pd(fscal,dx20);
1003             ty               = _mm_mul_pd(fscal,dy20);
1004             tz               = _mm_mul_pd(fscal,dz20);
1005
1006             /* Update vectorial force */
1007             fix2             = _mm_add_pd(fix2,tx);
1008             fiy2             = _mm_add_pd(fiy2,ty);
1009             fiz2             = _mm_add_pd(fiz2,tz);
1010
1011             fjx0             = _mm_add_pd(fjx0,tx);
1012             fjy0             = _mm_add_pd(fjy0,ty);
1013             fjz0             = _mm_add_pd(fjz0,tz);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm_any_lt(rsq30,rcutoff2))
1022             {
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq30             = _mm_mul_pd(iq3,jq0);
1026
1027             /* REACTION-FIELD ELECTROSTATICS */
1028             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1029
1030             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm_and_pd(fscal,cutoff_mask);
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm_mul_pd(fscal,dx30);
1038             ty               = _mm_mul_pd(fscal,dy30);
1039             tz               = _mm_mul_pd(fscal,dz30);
1040
1041             /* Update vectorial force */
1042             fix3             = _mm_add_pd(fix3,tx);
1043             fiy3             = _mm_add_pd(fiy3,ty);
1044             fiz3             = _mm_add_pd(fiz3,tz);
1045
1046             fjx0             = _mm_add_pd(fjx0,tx);
1047             fjy0             = _mm_add_pd(fjy0,ty);
1048             fjz0             = _mm_add_pd(fjz0,tz);
1049
1050             }
1051
1052             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1053
1054             /* Inner loop uses 141 flops */
1055         }
1056
1057         if(jidx<j_index_end)
1058         {
1059
1060             jnrA             = jjnr[jidx];
1061             j_coord_offsetA  = DIM*jnrA;
1062
1063             /* load j atom coordinates */
1064             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1065                                               &jx0,&jy0,&jz0);
1066
1067             /* Calculate displacement vector */
1068             dx00             = _mm_sub_pd(ix0,jx0);
1069             dy00             = _mm_sub_pd(iy0,jy0);
1070             dz00             = _mm_sub_pd(iz0,jz0);
1071             dx10             = _mm_sub_pd(ix1,jx0);
1072             dy10             = _mm_sub_pd(iy1,jy0);
1073             dz10             = _mm_sub_pd(iz1,jz0);
1074             dx20             = _mm_sub_pd(ix2,jx0);
1075             dy20             = _mm_sub_pd(iy2,jy0);
1076             dz20             = _mm_sub_pd(iz2,jz0);
1077             dx30             = _mm_sub_pd(ix3,jx0);
1078             dy30             = _mm_sub_pd(iy3,jy0);
1079             dz30             = _mm_sub_pd(iz3,jz0);
1080
1081             /* Calculate squared distance and things based on it */
1082             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1083             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1084             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1085             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1086
1087             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1088             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1089             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1090             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1091
1092             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1093             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1094             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1095
1096             /* Load parameters for j particles */
1097             jq0              = _mm_load_sd(charge+jnrA+0);
1098             vdwjidx0A        = 2*vdwtype[jnrA+0];
1099
1100             fjx0             = _mm_setzero_pd();
1101             fjy0             = _mm_setzero_pd();
1102             fjz0             = _mm_setzero_pd();
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r00              = _mm_mul_pd(rsq00,rinv00);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1112
1113             /* Calculate table index by multiplying r with table scale and truncate to integer */
1114             rt               = _mm_mul_pd(r00,vftabscale);
1115             vfitab           = _mm_cvttpd_epi32(rt);
1116             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1117             vfitab           = _mm_slli_epi32(vfitab,3);
1118
1119             /* CUBIC SPLINE TABLE DISPERSION */
1120             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1121             F                = _mm_setzero_pd();
1122             GMX_MM_TRANSPOSE2_PD(Y,F);
1123             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1124             H                = _mm_setzero_pd();
1125             GMX_MM_TRANSPOSE2_PD(G,H);
1126             Heps             = _mm_mul_pd(vfeps,H);
1127             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1128             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1129             fvdw6            = _mm_mul_pd(c6_00,FF);
1130
1131             /* CUBIC SPLINE TABLE REPULSION */
1132             vfitab           = _mm_add_epi32(vfitab,ifour);
1133             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1134             F                = _mm_setzero_pd();
1135             GMX_MM_TRANSPOSE2_PD(Y,F);
1136             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1137             H                = _mm_setzero_pd();
1138             GMX_MM_TRANSPOSE2_PD(G,H);
1139             Heps             = _mm_mul_pd(vfeps,H);
1140             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1141             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1142             fvdw12           = _mm_mul_pd(c12_00,FF);
1143             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1144
1145             fscal            = fvdw;
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_pd(fscal,dx00);
1151             ty               = _mm_mul_pd(fscal,dy00);
1152             tz               = _mm_mul_pd(fscal,dz00);
1153
1154             /* Update vectorial force */
1155             fix0             = _mm_add_pd(fix0,tx);
1156             fiy0             = _mm_add_pd(fiy0,ty);
1157             fiz0             = _mm_add_pd(fiz0,tz);
1158
1159             fjx0             = _mm_add_pd(fjx0,tx);
1160             fjy0             = _mm_add_pd(fjy0,ty);
1161             fjz0             = _mm_add_pd(fjz0,tz);
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             if (gmx_mm_any_lt(rsq10,rcutoff2))
1168             {
1169
1170             /* Compute parameters for interactions between i and j atoms */
1171             qq10             = _mm_mul_pd(iq1,jq0);
1172
1173             /* REACTION-FIELD ELECTROSTATICS */
1174             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1175
1176             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1177
1178             fscal            = felec;
1179
1180             fscal            = _mm_and_pd(fscal,cutoff_mask);
1181
1182             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm_mul_pd(fscal,dx10);
1186             ty               = _mm_mul_pd(fscal,dy10);
1187             tz               = _mm_mul_pd(fscal,dz10);
1188
1189             /* Update vectorial force */
1190             fix1             = _mm_add_pd(fix1,tx);
1191             fiy1             = _mm_add_pd(fiy1,ty);
1192             fiz1             = _mm_add_pd(fiz1,tz);
1193
1194             fjx0             = _mm_add_pd(fjx0,tx);
1195             fjy0             = _mm_add_pd(fjy0,ty);
1196             fjz0             = _mm_add_pd(fjz0,tz);
1197
1198             }
1199
1200             /**************************
1201              * CALCULATE INTERACTIONS *
1202              **************************/
1203
1204             if (gmx_mm_any_lt(rsq20,rcutoff2))
1205             {
1206
1207             /* Compute parameters for interactions between i and j atoms */
1208             qq20             = _mm_mul_pd(iq2,jq0);
1209
1210             /* REACTION-FIELD ELECTROSTATICS */
1211             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1212
1213             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1214
1215             fscal            = felec;
1216
1217             fscal            = _mm_and_pd(fscal,cutoff_mask);
1218
1219             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm_mul_pd(fscal,dx20);
1223             ty               = _mm_mul_pd(fscal,dy20);
1224             tz               = _mm_mul_pd(fscal,dz20);
1225
1226             /* Update vectorial force */
1227             fix2             = _mm_add_pd(fix2,tx);
1228             fiy2             = _mm_add_pd(fiy2,ty);
1229             fiz2             = _mm_add_pd(fiz2,tz);
1230
1231             fjx0             = _mm_add_pd(fjx0,tx);
1232             fjy0             = _mm_add_pd(fjy0,ty);
1233             fjz0             = _mm_add_pd(fjz0,tz);
1234
1235             }
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_mm_any_lt(rsq30,rcutoff2))
1242             {
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq30             = _mm_mul_pd(iq3,jq0);
1246
1247             /* REACTION-FIELD ELECTROSTATICS */
1248             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1249
1250             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1251
1252             fscal            = felec;
1253
1254             fscal            = _mm_and_pd(fscal,cutoff_mask);
1255
1256             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1257
1258             /* Calculate temporary vectorial force */
1259             tx               = _mm_mul_pd(fscal,dx30);
1260             ty               = _mm_mul_pd(fscal,dy30);
1261             tz               = _mm_mul_pd(fscal,dz30);
1262
1263             /* Update vectorial force */
1264             fix3             = _mm_add_pd(fix3,tx);
1265             fiy3             = _mm_add_pd(fiy3,ty);
1266             fiz3             = _mm_add_pd(fiz3,tz);
1267
1268             fjx0             = _mm_add_pd(fjx0,tx);
1269             fjy0             = _mm_add_pd(fjy0,ty);
1270             fjz0             = _mm_add_pd(fjz0,tz);
1271
1272             }
1273
1274             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1275
1276             /* Inner loop uses 141 flops */
1277         }
1278
1279         /* End of innermost loop */
1280
1281         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1282                                               f+i_coord_offset,fshift+i_shift_offset);
1283
1284         /* Increment number of inner iterations */
1285         inneriter                  += j_index_end - j_index_start;
1286
1287         /* Outer loop uses 24 flops */
1288     }
1289
1290     /* Increment number of outer iterations */
1291     outeriter        += nri;
1292
1293     /* Update outer/inner flops */
1294
1295     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1296 }