33ceddf5da7fa79bd126e662a0be5cd3dd4d897b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_pd(fr->ic->k_rf);
107     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_pd(fr->ic->c_rf);
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157         fix1             = _mm_setzero_pd();
158         fiy1             = _mm_setzero_pd();
159         fiz1             = _mm_setzero_pd();
160         fix2             = _mm_setzero_pd();
161         fiy2             = _mm_setzero_pd();
162         fiz2             = _mm_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186             dx10             = _mm_sub_pd(ix1,jx0);
187             dy10             = _mm_sub_pd(iy1,jy0);
188             dz10             = _mm_sub_pd(iz1,jz0);
189             dx20             = _mm_sub_pd(ix2,jx0);
190             dy20             = _mm_sub_pd(iy2,jy0);
191             dz20             = _mm_sub_pd(iz2,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
196             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199             rinv10           = gmx_mm_invsqrt_pd(rsq10);
200             rinv20           = gmx_mm_invsqrt_pd(rsq20);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
204             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             fjx0             = _mm_setzero_pd();
212             fjy0             = _mm_setzero_pd();
213             fjz0             = _mm_setzero_pd();
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq00,rcutoff2))
220             {
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_pd(iq0,jq0);
226             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_pd(r00,vftabscale);
231             vfitab           = _mm_cvttpd_epi32(rt);
232             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
233             vfitab           = _mm_slli_epi32(vfitab,3);
234
235             /* REACTION-FIELD ELECTROSTATICS */
236             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
237             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
238
239             /* CUBIC SPLINE TABLE DISPERSION */
240             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
242             GMX_MM_TRANSPOSE2_PD(Y,F);
243             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
244             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(G,H);
246             Heps             = _mm_mul_pd(vfeps,H);
247             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
248             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
249             vvdw6            = _mm_mul_pd(c6_00,VV);
250             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
251             fvdw6            = _mm_mul_pd(c6_00,FF);
252
253             /* CUBIC SPLINE TABLE REPULSION */
254             vfitab           = _mm_add_epi32(vfitab,ifour);
255             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
257             GMX_MM_TRANSPOSE2_PD(Y,F);
258             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
259             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
260             GMX_MM_TRANSPOSE2_PD(G,H);
261             Heps             = _mm_mul_pd(vfeps,H);
262             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
263             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
264             vvdw12           = _mm_mul_pd(c12_00,VV);
265             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
266             fvdw12           = _mm_mul_pd(c12_00,FF);
267             vvdw             = _mm_add_pd(vvdw12,vvdw6);
268             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
269
270             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _mm_and_pd(velec,cutoff_mask);
274             velecsum         = _mm_add_pd(velecsum,velec);
275             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
276             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
277
278             fscal            = _mm_add_pd(felec,fvdw);
279
280             fscal            = _mm_and_pd(fscal,cutoff_mask);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx00);
284             ty               = _mm_mul_pd(fscal,dy00);
285             tz               = _mm_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_pd(fix0,tx);
289             fiy0             = _mm_add_pd(fiy0,ty);
290             fiz0             = _mm_add_pd(fiz0,tz);
291
292             fjx0             = _mm_add_pd(fjx0,tx);
293             fjy0             = _mm_add_pd(fjy0,ty);
294             fjz0             = _mm_add_pd(fjz0,tz);
295
296             }
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             if (gmx_mm_any_lt(rsq10,rcutoff2))
303             {
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
310             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
311
312             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_and_pd(velec,cutoff_mask);
316             velecsum         = _mm_add_pd(velecsum,velec);
317
318             fscal            = felec;
319
320             fscal            = _mm_and_pd(fscal,cutoff_mask);
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_pd(fscal,dx10);
324             ty               = _mm_mul_pd(fscal,dy10);
325             tz               = _mm_mul_pd(fscal,dz10);
326
327             /* Update vectorial force */
328             fix1             = _mm_add_pd(fix1,tx);
329             fiy1             = _mm_add_pd(fiy1,ty);
330             fiz1             = _mm_add_pd(fiz1,tz);
331
332             fjx0             = _mm_add_pd(fjx0,tx);
333             fjy0             = _mm_add_pd(fjy0,ty);
334             fjz0             = _mm_add_pd(fjz0,tz);
335
336             }
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq20,rcutoff2))
343             {
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _mm_mul_pd(iq2,jq0);
347
348             /* REACTION-FIELD ELECTROSTATICS */
349             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
350             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
351
352             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_pd(velec,cutoff_mask);
356             velecsum         = _mm_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_pd(fscal,cutoff_mask);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_pd(fscal,dx20);
364             ty               = _mm_mul_pd(fscal,dy20);
365             tz               = _mm_mul_pd(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm_add_pd(fix2,tx);
369             fiy2             = _mm_add_pd(fiy2,ty);
370             fiz2             = _mm_add_pd(fiz2,tz);
371
372             fjx0             = _mm_add_pd(fjx0,tx);
373             fjy0             = _mm_add_pd(fjy0,ty);
374             fjz0             = _mm_add_pd(fjz0,tz);
375
376             }
377
378             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
379
380             /* Inner loop uses 147 flops */
381         }
382
383         if(jidx<j_index_end)
384         {
385
386             jnrA             = jjnr[jidx];
387             j_coord_offsetA  = DIM*jnrA;
388
389             /* load j atom coordinates */
390             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
391                                               &jx0,&jy0,&jz0);
392
393             /* Calculate displacement vector */
394             dx00             = _mm_sub_pd(ix0,jx0);
395             dy00             = _mm_sub_pd(iy0,jy0);
396             dz00             = _mm_sub_pd(iz0,jz0);
397             dx10             = _mm_sub_pd(ix1,jx0);
398             dy10             = _mm_sub_pd(iy1,jy0);
399             dz10             = _mm_sub_pd(iz1,jz0);
400             dx20             = _mm_sub_pd(ix2,jx0);
401             dy20             = _mm_sub_pd(iy2,jy0);
402             dz20             = _mm_sub_pd(iz2,jz0);
403
404             /* Calculate squared distance and things based on it */
405             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
406             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
407             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
408
409             rinv00           = gmx_mm_invsqrt_pd(rsq00);
410             rinv10           = gmx_mm_invsqrt_pd(rsq10);
411             rinv20           = gmx_mm_invsqrt_pd(rsq20);
412
413             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
414             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
415             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
416
417             /* Load parameters for j particles */
418             jq0              = _mm_load_sd(charge+jnrA+0);
419             vdwjidx0A        = 2*vdwtype[jnrA+0];
420
421             fjx0             = _mm_setzero_pd();
422             fjy0             = _mm_setzero_pd();
423             fjz0             = _mm_setzero_pd();
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             if (gmx_mm_any_lt(rsq00,rcutoff2))
430             {
431
432             r00              = _mm_mul_pd(rsq00,rinv00);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq00             = _mm_mul_pd(iq0,jq0);
436             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
437
438             /* Calculate table index by multiplying r with table scale and truncate to integer */
439             rt               = _mm_mul_pd(r00,vftabscale);
440             vfitab           = _mm_cvttpd_epi32(rt);
441             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
442             vfitab           = _mm_slli_epi32(vfitab,3);
443
444             /* REACTION-FIELD ELECTROSTATICS */
445             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
446             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
447
448             /* CUBIC SPLINE TABLE DISPERSION */
449             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
450             F                = _mm_setzero_pd();
451             GMX_MM_TRANSPOSE2_PD(Y,F);
452             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
453             H                = _mm_setzero_pd();
454             GMX_MM_TRANSPOSE2_PD(G,H);
455             Heps             = _mm_mul_pd(vfeps,H);
456             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
457             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
458             vvdw6            = _mm_mul_pd(c6_00,VV);
459             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
460             fvdw6            = _mm_mul_pd(c6_00,FF);
461
462             /* CUBIC SPLINE TABLE REPULSION */
463             vfitab           = _mm_add_epi32(vfitab,ifour);
464             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
465             F                = _mm_setzero_pd();
466             GMX_MM_TRANSPOSE2_PD(Y,F);
467             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
468             H                = _mm_setzero_pd();
469             GMX_MM_TRANSPOSE2_PD(G,H);
470             Heps             = _mm_mul_pd(vfeps,H);
471             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
472             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
473             vvdw12           = _mm_mul_pd(c12_00,VV);
474             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
475             fvdw12           = _mm_mul_pd(c12_00,FF);
476             vvdw             = _mm_add_pd(vvdw12,vvdw6);
477             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
478
479             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_and_pd(velec,cutoff_mask);
483             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
484             velecsum         = _mm_add_pd(velecsum,velec);
485             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
486             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
487             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
488
489             fscal            = _mm_add_pd(felec,fvdw);
490
491             fscal            = _mm_and_pd(fscal,cutoff_mask);
492
493             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm_mul_pd(fscal,dx00);
497             ty               = _mm_mul_pd(fscal,dy00);
498             tz               = _mm_mul_pd(fscal,dz00);
499
500             /* Update vectorial force */
501             fix0             = _mm_add_pd(fix0,tx);
502             fiy0             = _mm_add_pd(fiy0,ty);
503             fiz0             = _mm_add_pd(fiz0,tz);
504
505             fjx0             = _mm_add_pd(fjx0,tx);
506             fjy0             = _mm_add_pd(fjy0,ty);
507             fjz0             = _mm_add_pd(fjz0,tz);
508
509             }
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (gmx_mm_any_lt(rsq10,rcutoff2))
516             {
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm_mul_pd(iq1,jq0);
520
521             /* REACTION-FIELD ELECTROSTATICS */
522             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
523             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
524
525             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm_and_pd(velec,cutoff_mask);
529             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
530             velecsum         = _mm_add_pd(velecsum,velec);
531
532             fscal            = felec;
533
534             fscal            = _mm_and_pd(fscal,cutoff_mask);
535
536             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_pd(fscal,dx10);
540             ty               = _mm_mul_pd(fscal,dy10);
541             tz               = _mm_mul_pd(fscal,dz10);
542
543             /* Update vectorial force */
544             fix1             = _mm_add_pd(fix1,tx);
545             fiy1             = _mm_add_pd(fiy1,ty);
546             fiz1             = _mm_add_pd(fiz1,tz);
547
548             fjx0             = _mm_add_pd(fjx0,tx);
549             fjy0             = _mm_add_pd(fjy0,ty);
550             fjz0             = _mm_add_pd(fjz0,tz);
551
552             }
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm_any_lt(rsq20,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _mm_mul_pd(iq2,jq0);
563
564             /* REACTION-FIELD ELECTROSTATICS */
565             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
566             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
567
568             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_and_pd(velec,cutoff_mask);
572             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
573             velecsum         = _mm_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_and_pd(fscal,cutoff_mask);
578
579             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_pd(fscal,dx20);
583             ty               = _mm_mul_pd(fscal,dy20);
584             tz               = _mm_mul_pd(fscal,dz20);
585
586             /* Update vectorial force */
587             fix2             = _mm_add_pd(fix2,tx);
588             fiy2             = _mm_add_pd(fiy2,ty);
589             fiz2             = _mm_add_pd(fiz2,tz);
590
591             fjx0             = _mm_add_pd(fjx0,tx);
592             fjy0             = _mm_add_pd(fjy0,ty);
593             fjz0             = _mm_add_pd(fjz0,tz);
594
595             }
596
597             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
598
599             /* Inner loop uses 147 flops */
600         }
601
602         /* End of innermost loop */
603
604         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
605                                               f+i_coord_offset,fshift+i_shift_offset);
606
607         ggid                        = gid[iidx];
608         /* Update potential energies */
609         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
610         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
611
612         /* Increment number of inner iterations */
613         inneriter                  += j_index_end - j_index_start;
614
615         /* Outer loop uses 20 flops */
616     }
617
618     /* Increment number of outer iterations */
619     outeriter        += nri;
620
621     /* Update outer/inner flops */
622
623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
624 }
625 /*
626  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_double
627  * Electrostatics interaction: ReactionField
628  * VdW interaction:            CubicSplineTable
629  * Geometry:                   Water3-Particle
630  * Calculate force/pot:        Force
631  */
632 void
633 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_double
634                     (t_nblist * gmx_restrict                nlist,
635                      rvec * gmx_restrict                    xx,
636                      rvec * gmx_restrict                    ff,
637                      t_forcerec * gmx_restrict              fr,
638                      t_mdatoms * gmx_restrict               mdatoms,
639                      nb_kernel_data_t * gmx_restrict        kernel_data,
640                      t_nrnb * gmx_restrict                  nrnb)
641 {
642     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
643      * just 0 for non-waters.
644      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
645      * jnr indices corresponding to data put in the four positions in the SIMD register.
646      */
647     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
648     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
649     int              jnrA,jnrB;
650     int              j_coord_offsetA,j_coord_offsetB;
651     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
652     real             rcutoff_scalar;
653     real             *shiftvec,*fshift,*x,*f;
654     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
655     int              vdwioffset0;
656     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
657     int              vdwioffset1;
658     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
659     int              vdwioffset2;
660     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
661     int              vdwjidx0A,vdwjidx0B;
662     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
663     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
664     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
665     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
666     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
667     real             *charge;
668     int              nvdwtype;
669     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
670     int              *vdwtype;
671     real             *vdwparam;
672     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
673     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
674     __m128i          vfitab;
675     __m128i          ifour       = _mm_set1_epi32(4);
676     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
677     real             *vftab;
678     __m128d          dummy_mask,cutoff_mask;
679     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
680     __m128d          one     = _mm_set1_pd(1.0);
681     __m128d          two     = _mm_set1_pd(2.0);
682     x                = xx[0];
683     f                = ff[0];
684
685     nri              = nlist->nri;
686     iinr             = nlist->iinr;
687     jindex           = nlist->jindex;
688     jjnr             = nlist->jjnr;
689     shiftidx         = nlist->shift;
690     gid              = nlist->gid;
691     shiftvec         = fr->shift_vec[0];
692     fshift           = fr->fshift[0];
693     facel            = _mm_set1_pd(fr->epsfac);
694     charge           = mdatoms->chargeA;
695     krf              = _mm_set1_pd(fr->ic->k_rf);
696     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
697     crf              = _mm_set1_pd(fr->ic->c_rf);
698     nvdwtype         = fr->ntype;
699     vdwparam         = fr->nbfp;
700     vdwtype          = mdatoms->typeA;
701
702     vftab            = kernel_data->table_vdw->data;
703     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
704
705     /* Setup water-specific parameters */
706     inr              = nlist->iinr[0];
707     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
708     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
709     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
710     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
711
712     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
713     rcutoff_scalar   = fr->rcoulomb;
714     rcutoff          = _mm_set1_pd(rcutoff_scalar);
715     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
716
717     /* Avoid stupid compiler warnings */
718     jnrA = jnrB = 0;
719     j_coord_offsetA = 0;
720     j_coord_offsetB = 0;
721
722     outeriter        = 0;
723     inneriter        = 0;
724
725     /* Start outer loop over neighborlists */
726     for(iidx=0; iidx<nri; iidx++)
727     {
728         /* Load shift vector for this list */
729         i_shift_offset   = DIM*shiftidx[iidx];
730
731         /* Load limits for loop over neighbors */
732         j_index_start    = jindex[iidx];
733         j_index_end      = jindex[iidx+1];
734
735         /* Get outer coordinate index */
736         inr              = iinr[iidx];
737         i_coord_offset   = DIM*inr;
738
739         /* Load i particle coords and add shift vector */
740         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
741                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
742
743         fix0             = _mm_setzero_pd();
744         fiy0             = _mm_setzero_pd();
745         fiz0             = _mm_setzero_pd();
746         fix1             = _mm_setzero_pd();
747         fiy1             = _mm_setzero_pd();
748         fiz1             = _mm_setzero_pd();
749         fix2             = _mm_setzero_pd();
750         fiy2             = _mm_setzero_pd();
751         fiz2             = _mm_setzero_pd();
752
753         /* Start inner kernel loop */
754         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
755         {
756
757             /* Get j neighbor index, and coordinate index */
758             jnrA             = jjnr[jidx];
759             jnrB             = jjnr[jidx+1];
760             j_coord_offsetA  = DIM*jnrA;
761             j_coord_offsetB  = DIM*jnrB;
762
763             /* load j atom coordinates */
764             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
765                                               &jx0,&jy0,&jz0);
766
767             /* Calculate displacement vector */
768             dx00             = _mm_sub_pd(ix0,jx0);
769             dy00             = _mm_sub_pd(iy0,jy0);
770             dz00             = _mm_sub_pd(iz0,jz0);
771             dx10             = _mm_sub_pd(ix1,jx0);
772             dy10             = _mm_sub_pd(iy1,jy0);
773             dz10             = _mm_sub_pd(iz1,jz0);
774             dx20             = _mm_sub_pd(ix2,jx0);
775             dy20             = _mm_sub_pd(iy2,jy0);
776             dz20             = _mm_sub_pd(iz2,jz0);
777
778             /* Calculate squared distance and things based on it */
779             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
780             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
781             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
782
783             rinv00           = gmx_mm_invsqrt_pd(rsq00);
784             rinv10           = gmx_mm_invsqrt_pd(rsq10);
785             rinv20           = gmx_mm_invsqrt_pd(rsq20);
786
787             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
788             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
789             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
790
791             /* Load parameters for j particles */
792             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
793             vdwjidx0A        = 2*vdwtype[jnrA+0];
794             vdwjidx0B        = 2*vdwtype[jnrB+0];
795
796             fjx0             = _mm_setzero_pd();
797             fjy0             = _mm_setzero_pd();
798             fjz0             = _mm_setzero_pd();
799
800             /**************************
801              * CALCULATE INTERACTIONS *
802              **************************/
803
804             if (gmx_mm_any_lt(rsq00,rcutoff2))
805             {
806
807             r00              = _mm_mul_pd(rsq00,rinv00);
808
809             /* Compute parameters for interactions between i and j atoms */
810             qq00             = _mm_mul_pd(iq0,jq0);
811             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
812                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
813
814             /* Calculate table index by multiplying r with table scale and truncate to integer */
815             rt               = _mm_mul_pd(r00,vftabscale);
816             vfitab           = _mm_cvttpd_epi32(rt);
817             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
818             vfitab           = _mm_slli_epi32(vfitab,3);
819
820             /* REACTION-FIELD ELECTROSTATICS */
821             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
822
823             /* CUBIC SPLINE TABLE DISPERSION */
824             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
825             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
826             GMX_MM_TRANSPOSE2_PD(Y,F);
827             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
828             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
829             GMX_MM_TRANSPOSE2_PD(G,H);
830             Heps             = _mm_mul_pd(vfeps,H);
831             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
832             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
833             fvdw6            = _mm_mul_pd(c6_00,FF);
834
835             /* CUBIC SPLINE TABLE REPULSION */
836             vfitab           = _mm_add_epi32(vfitab,ifour);
837             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
838             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
839             GMX_MM_TRANSPOSE2_PD(Y,F);
840             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
841             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
842             GMX_MM_TRANSPOSE2_PD(G,H);
843             Heps             = _mm_mul_pd(vfeps,H);
844             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
845             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
846             fvdw12           = _mm_mul_pd(c12_00,FF);
847             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
848
849             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
850
851             fscal            = _mm_add_pd(felec,fvdw);
852
853             fscal            = _mm_and_pd(fscal,cutoff_mask);
854
855             /* Calculate temporary vectorial force */
856             tx               = _mm_mul_pd(fscal,dx00);
857             ty               = _mm_mul_pd(fscal,dy00);
858             tz               = _mm_mul_pd(fscal,dz00);
859
860             /* Update vectorial force */
861             fix0             = _mm_add_pd(fix0,tx);
862             fiy0             = _mm_add_pd(fiy0,ty);
863             fiz0             = _mm_add_pd(fiz0,tz);
864
865             fjx0             = _mm_add_pd(fjx0,tx);
866             fjy0             = _mm_add_pd(fjy0,ty);
867             fjz0             = _mm_add_pd(fjz0,tz);
868
869             }
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             if (gmx_mm_any_lt(rsq10,rcutoff2))
876             {
877
878             /* Compute parameters for interactions between i and j atoms */
879             qq10             = _mm_mul_pd(iq1,jq0);
880
881             /* REACTION-FIELD ELECTROSTATICS */
882             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
883
884             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
885
886             fscal            = felec;
887
888             fscal            = _mm_and_pd(fscal,cutoff_mask);
889
890             /* Calculate temporary vectorial force */
891             tx               = _mm_mul_pd(fscal,dx10);
892             ty               = _mm_mul_pd(fscal,dy10);
893             tz               = _mm_mul_pd(fscal,dz10);
894
895             /* Update vectorial force */
896             fix1             = _mm_add_pd(fix1,tx);
897             fiy1             = _mm_add_pd(fiy1,ty);
898             fiz1             = _mm_add_pd(fiz1,tz);
899
900             fjx0             = _mm_add_pd(fjx0,tx);
901             fjy0             = _mm_add_pd(fjy0,ty);
902             fjz0             = _mm_add_pd(fjz0,tz);
903
904             }
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             if (gmx_mm_any_lt(rsq20,rcutoff2))
911             {
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq20             = _mm_mul_pd(iq2,jq0);
915
916             /* REACTION-FIELD ELECTROSTATICS */
917             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
918
919             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
920
921             fscal            = felec;
922
923             fscal            = _mm_and_pd(fscal,cutoff_mask);
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm_mul_pd(fscal,dx20);
927             ty               = _mm_mul_pd(fscal,dy20);
928             tz               = _mm_mul_pd(fscal,dz20);
929
930             /* Update vectorial force */
931             fix2             = _mm_add_pd(fix2,tx);
932             fiy2             = _mm_add_pd(fiy2,ty);
933             fiz2             = _mm_add_pd(fiz2,tz);
934
935             fjx0             = _mm_add_pd(fjx0,tx);
936             fjy0             = _mm_add_pd(fjy0,ty);
937             fjz0             = _mm_add_pd(fjz0,tz);
938
939             }
940
941             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
942
943             /* Inner loop uses 120 flops */
944         }
945
946         if(jidx<j_index_end)
947         {
948
949             jnrA             = jjnr[jidx];
950             j_coord_offsetA  = DIM*jnrA;
951
952             /* load j atom coordinates */
953             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
954                                               &jx0,&jy0,&jz0);
955
956             /* Calculate displacement vector */
957             dx00             = _mm_sub_pd(ix0,jx0);
958             dy00             = _mm_sub_pd(iy0,jy0);
959             dz00             = _mm_sub_pd(iz0,jz0);
960             dx10             = _mm_sub_pd(ix1,jx0);
961             dy10             = _mm_sub_pd(iy1,jy0);
962             dz10             = _mm_sub_pd(iz1,jz0);
963             dx20             = _mm_sub_pd(ix2,jx0);
964             dy20             = _mm_sub_pd(iy2,jy0);
965             dz20             = _mm_sub_pd(iz2,jz0);
966
967             /* Calculate squared distance and things based on it */
968             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
969             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
970             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
971
972             rinv00           = gmx_mm_invsqrt_pd(rsq00);
973             rinv10           = gmx_mm_invsqrt_pd(rsq10);
974             rinv20           = gmx_mm_invsqrt_pd(rsq20);
975
976             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
977             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
978             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
979
980             /* Load parameters for j particles */
981             jq0              = _mm_load_sd(charge+jnrA+0);
982             vdwjidx0A        = 2*vdwtype[jnrA+0];
983
984             fjx0             = _mm_setzero_pd();
985             fjy0             = _mm_setzero_pd();
986             fjz0             = _mm_setzero_pd();
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             if (gmx_mm_any_lt(rsq00,rcutoff2))
993             {
994
995             r00              = _mm_mul_pd(rsq00,rinv00);
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq00             = _mm_mul_pd(iq0,jq0);
999             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1000
1001             /* Calculate table index by multiplying r with table scale and truncate to integer */
1002             rt               = _mm_mul_pd(r00,vftabscale);
1003             vfitab           = _mm_cvttpd_epi32(rt);
1004             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1005             vfitab           = _mm_slli_epi32(vfitab,3);
1006
1007             /* REACTION-FIELD ELECTROSTATICS */
1008             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
1009
1010             /* CUBIC SPLINE TABLE DISPERSION */
1011             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1012             F                = _mm_setzero_pd();
1013             GMX_MM_TRANSPOSE2_PD(Y,F);
1014             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1015             H                = _mm_setzero_pd();
1016             GMX_MM_TRANSPOSE2_PD(G,H);
1017             Heps             = _mm_mul_pd(vfeps,H);
1018             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1019             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1020             fvdw6            = _mm_mul_pd(c6_00,FF);
1021
1022             /* CUBIC SPLINE TABLE REPULSION */
1023             vfitab           = _mm_add_epi32(vfitab,ifour);
1024             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1025             F                = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(Y,F);
1027             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1028             H                = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(G,H);
1030             Heps             = _mm_mul_pd(vfeps,H);
1031             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1032             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1033             fvdw12           = _mm_mul_pd(c12_00,FF);
1034             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1035
1036             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1037
1038             fscal            = _mm_add_pd(felec,fvdw);
1039
1040             fscal            = _mm_and_pd(fscal,cutoff_mask);
1041
1042             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_pd(fscal,dx00);
1046             ty               = _mm_mul_pd(fscal,dy00);
1047             tz               = _mm_mul_pd(fscal,dz00);
1048
1049             /* Update vectorial force */
1050             fix0             = _mm_add_pd(fix0,tx);
1051             fiy0             = _mm_add_pd(fiy0,ty);
1052             fiz0             = _mm_add_pd(fiz0,tz);
1053
1054             fjx0             = _mm_add_pd(fjx0,tx);
1055             fjy0             = _mm_add_pd(fjy0,ty);
1056             fjz0             = _mm_add_pd(fjz0,tz);
1057
1058             }
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             if (gmx_mm_any_lt(rsq10,rcutoff2))
1065             {
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             qq10             = _mm_mul_pd(iq1,jq0);
1069
1070             /* REACTION-FIELD ELECTROSTATICS */
1071             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1072
1073             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_and_pd(fscal,cutoff_mask);
1078
1079             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_pd(fscal,dx10);
1083             ty               = _mm_mul_pd(fscal,dy10);
1084             tz               = _mm_mul_pd(fscal,dz10);
1085
1086             /* Update vectorial force */
1087             fix1             = _mm_add_pd(fix1,tx);
1088             fiy1             = _mm_add_pd(fiy1,ty);
1089             fiz1             = _mm_add_pd(fiz1,tz);
1090
1091             fjx0             = _mm_add_pd(fjx0,tx);
1092             fjy0             = _mm_add_pd(fjy0,ty);
1093             fjz0             = _mm_add_pd(fjz0,tz);
1094
1095             }
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             if (gmx_mm_any_lt(rsq20,rcutoff2))
1102             {
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq20             = _mm_mul_pd(iq2,jq0);
1106
1107             /* REACTION-FIELD ELECTROSTATICS */
1108             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1109
1110             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1111
1112             fscal            = felec;
1113
1114             fscal            = _mm_and_pd(fscal,cutoff_mask);
1115
1116             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_pd(fscal,dx20);
1120             ty               = _mm_mul_pd(fscal,dy20);
1121             tz               = _mm_mul_pd(fscal,dz20);
1122
1123             /* Update vectorial force */
1124             fix2             = _mm_add_pd(fix2,tx);
1125             fiy2             = _mm_add_pd(fiy2,ty);
1126             fiz2             = _mm_add_pd(fiz2,tz);
1127
1128             fjx0             = _mm_add_pd(fjx0,tx);
1129             fjy0             = _mm_add_pd(fjy0,ty);
1130             fjz0             = _mm_add_pd(fjz0,tz);
1131
1132             }
1133
1134             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 120 flops */
1137         }
1138
1139         /* End of innermost loop */
1140
1141         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1142                                               f+i_coord_offset,fshift+i_shift_offset);
1143
1144         /* Increment number of inner iterations */
1145         inneriter                  += j_index_end - j_index_start;
1146
1147         /* Outer loop uses 18 flops */
1148     }
1149
1150     /* Increment number of outer iterations */
1151     outeriter        += nri;
1152
1153     /* Update outer/inner flops */
1154
1155     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
1156 }