2b347935227da17c7c00dda0b2b22c49de2aab60
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_pd(fr->ic->k_rf);
123     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182         vvdwsum          = _mm_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_pd(ix0,jx0);
200             dy00             = _mm_sub_pd(iy0,jy0);
201             dz00             = _mm_sub_pd(iz0,jz0);
202             dx10             = _mm_sub_pd(ix1,jx0);
203             dy10             = _mm_sub_pd(iy1,jy0);
204             dz10             = _mm_sub_pd(iz1,jz0);
205             dx20             = _mm_sub_pd(ix2,jx0);
206             dy20             = _mm_sub_pd(iy2,jy0);
207             dz20             = _mm_sub_pd(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217
218             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm_mul_pd(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_pd(iq0,jq0);
242             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_pd(r00,vftabscale);
247             vfitab           = _mm_cvttpd_epi32(rt);
248             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
249             vfitab           = _mm_slli_epi32(vfitab,3);
250
251             /* REACTION-FIELD ELECTROSTATICS */
252             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
253             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
254
255             /* CUBIC SPLINE TABLE DISPERSION */
256             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
258             GMX_MM_TRANSPOSE2_PD(Y,F);
259             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
260             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(G,H);
262             Heps             = _mm_mul_pd(vfeps,H);
263             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
264             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
265             vvdw6            = _mm_mul_pd(c6_00,VV);
266             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
267             fvdw6            = _mm_mul_pd(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
273             GMX_MM_TRANSPOSE2_PD(Y,F);
274             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
275             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
276             GMX_MM_TRANSPOSE2_PD(G,H);
277             Heps             = _mm_mul_pd(vfeps,H);
278             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
279             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
280             vvdw12           = _mm_mul_pd(c12_00,VV);
281             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
282             fvdw12           = _mm_mul_pd(c12_00,FF);
283             vvdw             = _mm_add_pd(vvdw12,vvdw6);
284             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
285
286             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velec            = _mm_and_pd(velec,cutoff_mask);
290             velecsum         = _mm_add_pd(velecsum,velec);
291             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
292             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
293
294             fscal            = _mm_add_pd(felec,fvdw);
295
296             fscal            = _mm_and_pd(fscal,cutoff_mask);
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_pd(fscal,dx00);
300             ty               = _mm_mul_pd(fscal,dy00);
301             tz               = _mm_mul_pd(fscal,dz00);
302
303             /* Update vectorial force */
304             fix0             = _mm_add_pd(fix0,tx);
305             fiy0             = _mm_add_pd(fiy0,ty);
306             fiz0             = _mm_add_pd(fiz0,tz);
307
308             fjx0             = _mm_add_pd(fjx0,tx);
309             fjy0             = _mm_add_pd(fjy0,ty);
310             fjz0             = _mm_add_pd(fjz0,tz);
311
312             }
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             if (gmx_mm_any_lt(rsq10,rcutoff2))
319             {
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_pd(iq1,jq0);
323
324             /* REACTION-FIELD ELECTROSTATICS */
325             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
326             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
327
328             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velec            = _mm_and_pd(velec,cutoff_mask);
332             velecsum         = _mm_add_pd(velecsum,velec);
333
334             fscal            = felec;
335
336             fscal            = _mm_and_pd(fscal,cutoff_mask);
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_pd(fscal,dx10);
340             ty               = _mm_mul_pd(fscal,dy10);
341             tz               = _mm_mul_pd(fscal,dz10);
342
343             /* Update vectorial force */
344             fix1             = _mm_add_pd(fix1,tx);
345             fiy1             = _mm_add_pd(fiy1,ty);
346             fiz1             = _mm_add_pd(fiz1,tz);
347
348             fjx0             = _mm_add_pd(fjx0,tx);
349             fjy0             = _mm_add_pd(fjy0,ty);
350             fjz0             = _mm_add_pd(fjz0,tz);
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_mm_any_lt(rsq20,rcutoff2))
359             {
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq20             = _mm_mul_pd(iq2,jq0);
363
364             /* REACTION-FIELD ELECTROSTATICS */
365             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
366             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
367
368             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_and_pd(velec,cutoff_mask);
372             velecsum         = _mm_add_pd(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm_and_pd(fscal,cutoff_mask);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_pd(fscal,dx20);
380             ty               = _mm_mul_pd(fscal,dy20);
381             tz               = _mm_mul_pd(fscal,dz20);
382
383             /* Update vectorial force */
384             fix2             = _mm_add_pd(fix2,tx);
385             fiy2             = _mm_add_pd(fiy2,ty);
386             fiz2             = _mm_add_pd(fiz2,tz);
387
388             fjx0             = _mm_add_pd(fjx0,tx);
389             fjy0             = _mm_add_pd(fjy0,ty);
390             fjz0             = _mm_add_pd(fjz0,tz);
391
392             }
393
394             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 147 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             jnrA             = jjnr[jidx];
403             j_coord_offsetA  = DIM*jnrA;
404
405             /* load j atom coordinates */
406             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
407                                               &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _mm_sub_pd(ix0,jx0);
411             dy00             = _mm_sub_pd(iy0,jy0);
412             dz00             = _mm_sub_pd(iz0,jz0);
413             dx10             = _mm_sub_pd(ix1,jx0);
414             dy10             = _mm_sub_pd(iy1,jy0);
415             dz10             = _mm_sub_pd(iz1,jz0);
416             dx20             = _mm_sub_pd(ix2,jx0);
417             dy20             = _mm_sub_pd(iy2,jy0);
418             dz20             = _mm_sub_pd(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
422             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
423             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
424
425             rinv00           = gmx_mm_invsqrt_pd(rsq00);
426             rinv10           = gmx_mm_invsqrt_pd(rsq10);
427             rinv20           = gmx_mm_invsqrt_pd(rsq20);
428
429             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
430             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
431             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = _mm_load_sd(charge+jnrA+0);
435             vdwjidx0A        = 2*vdwtype[jnrA+0];
436
437             fjx0             = _mm_setzero_pd();
438             fjy0             = _mm_setzero_pd();
439             fjz0             = _mm_setzero_pd();
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             if (gmx_mm_any_lt(rsq00,rcutoff2))
446             {
447
448             r00              = _mm_mul_pd(rsq00,rinv00);
449
450             /* Compute parameters for interactions between i and j atoms */
451             qq00             = _mm_mul_pd(iq0,jq0);
452             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
453
454             /* Calculate table index by multiplying r with table scale and truncate to integer */
455             rt               = _mm_mul_pd(r00,vftabscale);
456             vfitab           = _mm_cvttpd_epi32(rt);
457             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
458             vfitab           = _mm_slli_epi32(vfitab,3);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
462             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
463
464             /* CUBIC SPLINE TABLE DISPERSION */
465             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
466             F                = _mm_setzero_pd();
467             GMX_MM_TRANSPOSE2_PD(Y,F);
468             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
469             H                = _mm_setzero_pd();
470             GMX_MM_TRANSPOSE2_PD(G,H);
471             Heps             = _mm_mul_pd(vfeps,H);
472             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
473             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
474             vvdw6            = _mm_mul_pd(c6_00,VV);
475             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
476             fvdw6            = _mm_mul_pd(c6_00,FF);
477
478             /* CUBIC SPLINE TABLE REPULSION */
479             vfitab           = _mm_add_epi32(vfitab,ifour);
480             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
481             F                = _mm_setzero_pd();
482             GMX_MM_TRANSPOSE2_PD(Y,F);
483             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
484             H                = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(G,H);
486             Heps             = _mm_mul_pd(vfeps,H);
487             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
488             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
489             vvdw12           = _mm_mul_pd(c12_00,VV);
490             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
491             fvdw12           = _mm_mul_pd(c12_00,FF);
492             vvdw             = _mm_add_pd(vvdw12,vvdw6);
493             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
494
495             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm_and_pd(velec,cutoff_mask);
499             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
500             velecsum         = _mm_add_pd(velecsum,velec);
501             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
502             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
503             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
504
505             fscal            = _mm_add_pd(felec,fvdw);
506
507             fscal            = _mm_and_pd(fscal,cutoff_mask);
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_pd(fscal,dx00);
513             ty               = _mm_mul_pd(fscal,dy00);
514             tz               = _mm_mul_pd(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm_add_pd(fix0,tx);
518             fiy0             = _mm_add_pd(fiy0,ty);
519             fiz0             = _mm_add_pd(fiz0,tz);
520
521             fjx0             = _mm_add_pd(fjx0,tx);
522             fjy0             = _mm_add_pd(fjy0,ty);
523             fjz0             = _mm_add_pd(fjz0,tz);
524
525             }
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm_any_lt(rsq10,rcutoff2))
532             {
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm_mul_pd(iq1,jq0);
536
537             /* REACTION-FIELD ELECTROSTATICS */
538             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
539             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
540
541             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_and_pd(velec,cutoff_mask);
545             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
546             velecsum         = _mm_add_pd(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_and_pd(fscal,cutoff_mask);
551
552             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm_mul_pd(fscal,dx10);
556             ty               = _mm_mul_pd(fscal,dy10);
557             tz               = _mm_mul_pd(fscal,dz10);
558
559             /* Update vectorial force */
560             fix1             = _mm_add_pd(fix1,tx);
561             fiy1             = _mm_add_pd(fiy1,ty);
562             fiz1             = _mm_add_pd(fiz1,tz);
563
564             fjx0             = _mm_add_pd(fjx0,tx);
565             fjy0             = _mm_add_pd(fjy0,ty);
566             fjz0             = _mm_add_pd(fjz0,tz);
567
568             }
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (gmx_mm_any_lt(rsq20,rcutoff2))
575             {
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq20             = _mm_mul_pd(iq2,jq0);
579
580             /* REACTION-FIELD ELECTROSTATICS */
581             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
582             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
583
584             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_and_pd(velec,cutoff_mask);
588             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
589             velecsum         = _mm_add_pd(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_and_pd(fscal,cutoff_mask);
594
595             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm_mul_pd(fscal,dx20);
599             ty               = _mm_mul_pd(fscal,dy20);
600             tz               = _mm_mul_pd(fscal,dz20);
601
602             /* Update vectorial force */
603             fix2             = _mm_add_pd(fix2,tx);
604             fiy2             = _mm_add_pd(fiy2,ty);
605             fiz2             = _mm_add_pd(fiz2,tz);
606
607             fjx0             = _mm_add_pd(fjx0,tx);
608             fjy0             = _mm_add_pd(fjy0,ty);
609             fjz0             = _mm_add_pd(fjz0,tz);
610
611             }
612
613             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
614
615             /* Inner loop uses 147 flops */
616         }
617
618         /* End of innermost loop */
619
620         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
621                                               f+i_coord_offset,fshift+i_shift_offset);
622
623         ggid                        = gid[iidx];
624         /* Update potential energies */
625         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
626         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
627
628         /* Increment number of inner iterations */
629         inneriter                  += j_index_end - j_index_start;
630
631         /* Outer loop uses 20 flops */
632     }
633
634     /* Increment number of outer iterations */
635     outeriter        += nri;
636
637     /* Update outer/inner flops */
638
639     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
640 }
641 /*
642  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_double
643  * Electrostatics interaction: ReactionField
644  * VdW interaction:            CubicSplineTable
645  * Geometry:                   Water3-Particle
646  * Calculate force/pot:        Force
647  */
648 void
649 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_double
650                     (t_nblist                    * gmx_restrict       nlist,
651                      rvec                        * gmx_restrict          xx,
652                      rvec                        * gmx_restrict          ff,
653                      t_forcerec                  * gmx_restrict          fr,
654                      t_mdatoms                   * gmx_restrict     mdatoms,
655                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
656                      t_nrnb                      * gmx_restrict        nrnb)
657 {
658     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
659      * just 0 for non-waters.
660      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
661      * jnr indices corresponding to data put in the four positions in the SIMD register.
662      */
663     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
664     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
665     int              jnrA,jnrB;
666     int              j_coord_offsetA,j_coord_offsetB;
667     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
668     real             rcutoff_scalar;
669     real             *shiftvec,*fshift,*x,*f;
670     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
671     int              vdwioffset0;
672     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
673     int              vdwioffset1;
674     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
675     int              vdwioffset2;
676     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
677     int              vdwjidx0A,vdwjidx0B;
678     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
679     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
680     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
681     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
682     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
683     real             *charge;
684     int              nvdwtype;
685     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
686     int              *vdwtype;
687     real             *vdwparam;
688     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
689     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
690     __m128i          vfitab;
691     __m128i          ifour       = _mm_set1_epi32(4);
692     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
693     real             *vftab;
694     __m128d          dummy_mask,cutoff_mask;
695     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
696     __m128d          one     = _mm_set1_pd(1.0);
697     __m128d          two     = _mm_set1_pd(2.0);
698     x                = xx[0];
699     f                = ff[0];
700
701     nri              = nlist->nri;
702     iinr             = nlist->iinr;
703     jindex           = nlist->jindex;
704     jjnr             = nlist->jjnr;
705     shiftidx         = nlist->shift;
706     gid              = nlist->gid;
707     shiftvec         = fr->shift_vec[0];
708     fshift           = fr->fshift[0];
709     facel            = _mm_set1_pd(fr->epsfac);
710     charge           = mdatoms->chargeA;
711     krf              = _mm_set1_pd(fr->ic->k_rf);
712     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
713     crf              = _mm_set1_pd(fr->ic->c_rf);
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717
718     vftab            = kernel_data->table_vdw->data;
719     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
724     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
725     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
729     rcutoff_scalar   = fr->rcoulomb;
730     rcutoff          = _mm_set1_pd(rcutoff_scalar);
731     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
732
733     /* Avoid stupid compiler warnings */
734     jnrA = jnrB = 0;
735     j_coord_offsetA = 0;
736     j_coord_offsetB = 0;
737
738     outeriter        = 0;
739     inneriter        = 0;
740
741     /* Start outer loop over neighborlists */
742     for(iidx=0; iidx<nri; iidx++)
743     {
744         /* Load shift vector for this list */
745         i_shift_offset   = DIM*shiftidx[iidx];
746
747         /* Load limits for loop over neighbors */
748         j_index_start    = jindex[iidx];
749         j_index_end      = jindex[iidx+1];
750
751         /* Get outer coordinate index */
752         inr              = iinr[iidx];
753         i_coord_offset   = DIM*inr;
754
755         /* Load i particle coords and add shift vector */
756         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
757                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
758
759         fix0             = _mm_setzero_pd();
760         fiy0             = _mm_setzero_pd();
761         fiz0             = _mm_setzero_pd();
762         fix1             = _mm_setzero_pd();
763         fiy1             = _mm_setzero_pd();
764         fiz1             = _mm_setzero_pd();
765         fix2             = _mm_setzero_pd();
766         fiy2             = _mm_setzero_pd();
767         fiz2             = _mm_setzero_pd();
768
769         /* Start inner kernel loop */
770         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrA             = jjnr[jidx];
775             jnrB             = jjnr[jidx+1];
776             j_coord_offsetA  = DIM*jnrA;
777             j_coord_offsetB  = DIM*jnrB;
778
779             /* load j atom coordinates */
780             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
781                                               &jx0,&jy0,&jz0);
782
783             /* Calculate displacement vector */
784             dx00             = _mm_sub_pd(ix0,jx0);
785             dy00             = _mm_sub_pd(iy0,jy0);
786             dz00             = _mm_sub_pd(iz0,jz0);
787             dx10             = _mm_sub_pd(ix1,jx0);
788             dy10             = _mm_sub_pd(iy1,jy0);
789             dz10             = _mm_sub_pd(iz1,jz0);
790             dx20             = _mm_sub_pd(ix2,jx0);
791             dy20             = _mm_sub_pd(iy2,jy0);
792             dz20             = _mm_sub_pd(iz2,jz0);
793
794             /* Calculate squared distance and things based on it */
795             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
796             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
797             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
798
799             rinv00           = gmx_mm_invsqrt_pd(rsq00);
800             rinv10           = gmx_mm_invsqrt_pd(rsq10);
801             rinv20           = gmx_mm_invsqrt_pd(rsq20);
802
803             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
804             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
805             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
806
807             /* Load parameters for j particles */
808             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
809             vdwjidx0A        = 2*vdwtype[jnrA+0];
810             vdwjidx0B        = 2*vdwtype[jnrB+0];
811
812             fjx0             = _mm_setzero_pd();
813             fjy0             = _mm_setzero_pd();
814             fjz0             = _mm_setzero_pd();
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             if (gmx_mm_any_lt(rsq00,rcutoff2))
821             {
822
823             r00              = _mm_mul_pd(rsq00,rinv00);
824
825             /* Compute parameters for interactions between i and j atoms */
826             qq00             = _mm_mul_pd(iq0,jq0);
827             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
828                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
829
830             /* Calculate table index by multiplying r with table scale and truncate to integer */
831             rt               = _mm_mul_pd(r00,vftabscale);
832             vfitab           = _mm_cvttpd_epi32(rt);
833             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
834             vfitab           = _mm_slli_epi32(vfitab,3);
835
836             /* REACTION-FIELD ELECTROSTATICS */
837             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
838
839             /* CUBIC SPLINE TABLE DISPERSION */
840             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
841             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
842             GMX_MM_TRANSPOSE2_PD(Y,F);
843             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
844             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
845             GMX_MM_TRANSPOSE2_PD(G,H);
846             Heps             = _mm_mul_pd(vfeps,H);
847             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
848             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
849             fvdw6            = _mm_mul_pd(c6_00,FF);
850
851             /* CUBIC SPLINE TABLE REPULSION */
852             vfitab           = _mm_add_epi32(vfitab,ifour);
853             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
854             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
855             GMX_MM_TRANSPOSE2_PD(Y,F);
856             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
857             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
858             GMX_MM_TRANSPOSE2_PD(G,H);
859             Heps             = _mm_mul_pd(vfeps,H);
860             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
861             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
862             fvdw12           = _mm_mul_pd(c12_00,FF);
863             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
864
865             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
866
867             fscal            = _mm_add_pd(felec,fvdw);
868
869             fscal            = _mm_and_pd(fscal,cutoff_mask);
870
871             /* Calculate temporary vectorial force */
872             tx               = _mm_mul_pd(fscal,dx00);
873             ty               = _mm_mul_pd(fscal,dy00);
874             tz               = _mm_mul_pd(fscal,dz00);
875
876             /* Update vectorial force */
877             fix0             = _mm_add_pd(fix0,tx);
878             fiy0             = _mm_add_pd(fiy0,ty);
879             fiz0             = _mm_add_pd(fiz0,tz);
880
881             fjx0             = _mm_add_pd(fjx0,tx);
882             fjy0             = _mm_add_pd(fjy0,ty);
883             fjz0             = _mm_add_pd(fjz0,tz);
884
885             }
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             if (gmx_mm_any_lt(rsq10,rcutoff2))
892             {
893
894             /* Compute parameters for interactions between i and j atoms */
895             qq10             = _mm_mul_pd(iq1,jq0);
896
897             /* REACTION-FIELD ELECTROSTATICS */
898             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
899
900             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
901
902             fscal            = felec;
903
904             fscal            = _mm_and_pd(fscal,cutoff_mask);
905
906             /* Calculate temporary vectorial force */
907             tx               = _mm_mul_pd(fscal,dx10);
908             ty               = _mm_mul_pd(fscal,dy10);
909             tz               = _mm_mul_pd(fscal,dz10);
910
911             /* Update vectorial force */
912             fix1             = _mm_add_pd(fix1,tx);
913             fiy1             = _mm_add_pd(fiy1,ty);
914             fiz1             = _mm_add_pd(fiz1,tz);
915
916             fjx0             = _mm_add_pd(fjx0,tx);
917             fjy0             = _mm_add_pd(fjy0,ty);
918             fjz0             = _mm_add_pd(fjz0,tz);
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_mm_any_lt(rsq20,rcutoff2))
927             {
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq20             = _mm_mul_pd(iq2,jq0);
931
932             /* REACTION-FIELD ELECTROSTATICS */
933             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
934
935             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
936
937             fscal            = felec;
938
939             fscal            = _mm_and_pd(fscal,cutoff_mask);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_pd(fscal,dx20);
943             ty               = _mm_mul_pd(fscal,dy20);
944             tz               = _mm_mul_pd(fscal,dz20);
945
946             /* Update vectorial force */
947             fix2             = _mm_add_pd(fix2,tx);
948             fiy2             = _mm_add_pd(fiy2,ty);
949             fiz2             = _mm_add_pd(fiz2,tz);
950
951             fjx0             = _mm_add_pd(fjx0,tx);
952             fjy0             = _mm_add_pd(fjy0,ty);
953             fjz0             = _mm_add_pd(fjz0,tz);
954
955             }
956
957             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
958
959             /* Inner loop uses 120 flops */
960         }
961
962         if(jidx<j_index_end)
963         {
964
965             jnrA             = jjnr[jidx];
966             j_coord_offsetA  = DIM*jnrA;
967
968             /* load j atom coordinates */
969             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
970                                               &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm_sub_pd(ix0,jx0);
974             dy00             = _mm_sub_pd(iy0,jy0);
975             dz00             = _mm_sub_pd(iz0,jz0);
976             dx10             = _mm_sub_pd(ix1,jx0);
977             dy10             = _mm_sub_pd(iy1,jy0);
978             dz10             = _mm_sub_pd(iz1,jz0);
979             dx20             = _mm_sub_pd(ix2,jx0);
980             dy20             = _mm_sub_pd(iy2,jy0);
981             dz20             = _mm_sub_pd(iz2,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
985             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
986             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
987
988             rinv00           = gmx_mm_invsqrt_pd(rsq00);
989             rinv10           = gmx_mm_invsqrt_pd(rsq10);
990             rinv20           = gmx_mm_invsqrt_pd(rsq20);
991
992             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
993             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
994             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
995
996             /* Load parameters for j particles */
997             jq0              = _mm_load_sd(charge+jnrA+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999
1000             fjx0             = _mm_setzero_pd();
1001             fjy0             = _mm_setzero_pd();
1002             fjz0             = _mm_setzero_pd();
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             if (gmx_mm_any_lt(rsq00,rcutoff2))
1009             {
1010
1011             r00              = _mm_mul_pd(rsq00,rinv00);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             qq00             = _mm_mul_pd(iq0,jq0);
1015             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1016
1017             /* Calculate table index by multiplying r with table scale and truncate to integer */
1018             rt               = _mm_mul_pd(r00,vftabscale);
1019             vfitab           = _mm_cvttpd_epi32(rt);
1020             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1021             vfitab           = _mm_slli_epi32(vfitab,3);
1022
1023             /* REACTION-FIELD ELECTROSTATICS */
1024             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
1025
1026             /* CUBIC SPLINE TABLE DISPERSION */
1027             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1028             F                = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(Y,F);
1030             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1031             H                = _mm_setzero_pd();
1032             GMX_MM_TRANSPOSE2_PD(G,H);
1033             Heps             = _mm_mul_pd(vfeps,H);
1034             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1035             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1036             fvdw6            = _mm_mul_pd(c6_00,FF);
1037
1038             /* CUBIC SPLINE TABLE REPULSION */
1039             vfitab           = _mm_add_epi32(vfitab,ifour);
1040             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1041             F                = _mm_setzero_pd();
1042             GMX_MM_TRANSPOSE2_PD(Y,F);
1043             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1044             H                = _mm_setzero_pd();
1045             GMX_MM_TRANSPOSE2_PD(G,H);
1046             Heps             = _mm_mul_pd(vfeps,H);
1047             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1048             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1049             fvdw12           = _mm_mul_pd(c12_00,FF);
1050             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1051
1052             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1053
1054             fscal            = _mm_add_pd(felec,fvdw);
1055
1056             fscal            = _mm_and_pd(fscal,cutoff_mask);
1057
1058             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm_mul_pd(fscal,dx00);
1062             ty               = _mm_mul_pd(fscal,dy00);
1063             tz               = _mm_mul_pd(fscal,dz00);
1064
1065             /* Update vectorial force */
1066             fix0             = _mm_add_pd(fix0,tx);
1067             fiy0             = _mm_add_pd(fiy0,ty);
1068             fiz0             = _mm_add_pd(fiz0,tz);
1069
1070             fjx0             = _mm_add_pd(fjx0,tx);
1071             fjy0             = _mm_add_pd(fjy0,ty);
1072             fjz0             = _mm_add_pd(fjz0,tz);
1073
1074             }
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm_any_lt(rsq10,rcutoff2))
1081             {
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             qq10             = _mm_mul_pd(iq1,jq0);
1085
1086             /* REACTION-FIELD ELECTROSTATICS */
1087             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1088
1089             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_and_pd(fscal,cutoff_mask);
1094
1095             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_pd(fscal,dx10);
1099             ty               = _mm_mul_pd(fscal,dy10);
1100             tz               = _mm_mul_pd(fscal,dz10);
1101
1102             /* Update vectorial force */
1103             fix1             = _mm_add_pd(fix1,tx);
1104             fiy1             = _mm_add_pd(fiy1,ty);
1105             fiz1             = _mm_add_pd(fiz1,tz);
1106
1107             fjx0             = _mm_add_pd(fjx0,tx);
1108             fjy0             = _mm_add_pd(fjy0,ty);
1109             fjz0             = _mm_add_pd(fjz0,tz);
1110
1111             }
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             if (gmx_mm_any_lt(rsq20,rcutoff2))
1118             {
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq20             = _mm_mul_pd(iq2,jq0);
1122
1123             /* REACTION-FIELD ELECTROSTATICS */
1124             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1125
1126             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1127
1128             fscal            = felec;
1129
1130             fscal            = _mm_and_pd(fscal,cutoff_mask);
1131
1132             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1133
1134             /* Calculate temporary vectorial force */
1135             tx               = _mm_mul_pd(fscal,dx20);
1136             ty               = _mm_mul_pd(fscal,dy20);
1137             tz               = _mm_mul_pd(fscal,dz20);
1138
1139             /* Update vectorial force */
1140             fix2             = _mm_add_pd(fix2,tx);
1141             fiy2             = _mm_add_pd(fiy2,ty);
1142             fiz2             = _mm_add_pd(fiz2,tz);
1143
1144             fjx0             = _mm_add_pd(fjx0,tx);
1145             fjy0             = _mm_add_pd(fjy0,ty);
1146             fjz0             = _mm_add_pd(fjz0,tz);
1147
1148             }
1149
1150             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1151
1152             /* Inner loop uses 120 flops */
1153         }
1154
1155         /* End of innermost loop */
1156
1157         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1158                                               f+i_coord_offset,fshift+i_shift_offset);
1159
1160         /* Increment number of inner iterations */
1161         inneriter                  += j_index_end - j_index_start;
1162
1163         /* Outer loop uses 18 flops */
1164     }
1165
1166     /* Increment number of outer iterations */
1167     outeriter        += nri;
1168
1169     /* Update outer/inner flops */
1170
1171     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
1172 }