Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     int              nvdwtype;
86     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
90     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     rcutoff_scalar   = fr->rvdw;
111     rcutoff          = _mm_set1_pd(rcutoff_scalar);
112     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
113
114     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
115     rvdw             = _mm_set1_pd(fr->rvdw);
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinvsq00         = gmx_mm_inv_pd(rsq00);
175
176             /* Load parameters for j particles */
177             vdwjidx0A        = 2*vdwtype[jnrA+0];
178             vdwjidx0B        = 2*vdwtype[jnrB+0];
179
180             /**************************
181              * CALCULATE INTERACTIONS *
182              **************************/
183
184             if (gmx_mm_any_lt(rsq00,rcutoff2))
185             {
186
187             /* Compute parameters for interactions between i and j atoms */
188             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
189                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
190
191             /* LENNARD-JONES DISPERSION/REPULSION */
192
193             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
194             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
195             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
196             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
197                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
198             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
199
200             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
201
202             /* Update potential sum for this i atom from the interaction with this j atom. */
203             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
204             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
205
206             fscal            = fvdw;
207
208             fscal            = _mm_and_pd(fscal,cutoff_mask);
209
210             /* Calculate temporary vectorial force */
211             tx               = _mm_mul_pd(fscal,dx00);
212             ty               = _mm_mul_pd(fscal,dy00);
213             tz               = _mm_mul_pd(fscal,dz00);
214
215             /* Update vectorial force */
216             fix0             = _mm_add_pd(fix0,tx);
217             fiy0             = _mm_add_pd(fiy0,ty);
218             fiz0             = _mm_add_pd(fiz0,tz);
219
220             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
221
222             }
223
224             /* Inner loop uses 41 flops */
225         }
226
227         if(jidx<j_index_end)
228         {
229
230             jnrA             = jjnr[jidx];
231             j_coord_offsetA  = DIM*jnrA;
232
233             /* load j atom coordinates */
234             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
235                                               &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm_sub_pd(ix0,jx0);
239             dy00             = _mm_sub_pd(iy0,jy0);
240             dz00             = _mm_sub_pd(iz0,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
244
245             rinvsq00         = gmx_mm_inv_pd(rsq00);
246
247             /* Load parameters for j particles */
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq00,rcutoff2))
255             {
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
264             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
265             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
266                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
267             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
268
269             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
273             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             fscal            = _mm_and_pd(fscal,cutoff_mask);
279
280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx00);
284             ty               = _mm_mul_pd(fscal,dy00);
285             tz               = _mm_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_pd(fix0,tx);
289             fiy0             = _mm_add_pd(fiy0,ty);
290             fiz0             = _mm_add_pd(fiz0,tz);
291
292             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
293
294             }
295
296             /* Inner loop uses 41 flops */
297         }
298
299         /* End of innermost loop */
300
301         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
302                                               f+i_coord_offset,fshift+i_shift_offset);
303
304         ggid                        = gid[iidx];
305         /* Update potential energies */
306         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
307
308         /* Increment number of inner iterations */
309         inneriter                  += j_index_end - j_index_start;
310
311         /* Outer loop uses 7 flops */
312     }
313
314     /* Increment number of outer iterations */
315     outeriter        += nri;
316
317     /* Update outer/inner flops */
318
319     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
320 }
321 /*
322  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_double
323  * Electrostatics interaction: None
324  * VdW interaction:            LennardJones
325  * Geometry:                   Particle-Particle
326  * Calculate force/pot:        Force
327  */
328 void
329 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_double
330                     (t_nblist                    * gmx_restrict       nlist,
331                      rvec                        * gmx_restrict          xx,
332                      rvec                        * gmx_restrict          ff,
333                      t_forcerec                  * gmx_restrict          fr,
334                      t_mdatoms                   * gmx_restrict     mdatoms,
335                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
336                      t_nrnb                      * gmx_restrict        nrnb)
337 {
338     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
339      * just 0 for non-waters.
340      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
341      * jnr indices corresponding to data put in the four positions in the SIMD register.
342      */
343     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
344     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
345     int              jnrA,jnrB;
346     int              j_coord_offsetA,j_coord_offsetB;
347     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
348     real             rcutoff_scalar;
349     real             *shiftvec,*fshift,*x,*f;
350     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
351     int              vdwioffset0;
352     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
353     int              vdwjidx0A,vdwjidx0B;
354     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
355     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
356     int              nvdwtype;
357     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
358     int              *vdwtype;
359     real             *vdwparam;
360     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
361     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
362     __m128d          dummy_mask,cutoff_mask;
363     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
364     __m128d          one     = _mm_set1_pd(1.0);
365     __m128d          two     = _mm_set1_pd(2.0);
366     x                = xx[0];
367     f                = ff[0];
368
369     nri              = nlist->nri;
370     iinr             = nlist->iinr;
371     jindex           = nlist->jindex;
372     jjnr             = nlist->jjnr;
373     shiftidx         = nlist->shift;
374     gid              = nlist->gid;
375     shiftvec         = fr->shift_vec[0];
376     fshift           = fr->fshift[0];
377     nvdwtype         = fr->ntype;
378     vdwparam         = fr->nbfp;
379     vdwtype          = mdatoms->typeA;
380
381     rcutoff_scalar   = fr->rvdw;
382     rcutoff          = _mm_set1_pd(rcutoff_scalar);
383     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
384
385     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
386     rvdw             = _mm_set1_pd(fr->rvdw);
387
388     /* Avoid stupid compiler warnings */
389     jnrA = jnrB = 0;
390     j_coord_offsetA = 0;
391     j_coord_offsetB = 0;
392
393     outeriter        = 0;
394     inneriter        = 0;
395
396     /* Start outer loop over neighborlists */
397     for(iidx=0; iidx<nri; iidx++)
398     {
399         /* Load shift vector for this list */
400         i_shift_offset   = DIM*shiftidx[iidx];
401
402         /* Load limits for loop over neighbors */
403         j_index_start    = jindex[iidx];
404         j_index_end      = jindex[iidx+1];
405
406         /* Get outer coordinate index */
407         inr              = iinr[iidx];
408         i_coord_offset   = DIM*inr;
409
410         /* Load i particle coords and add shift vector */
411         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
412
413         fix0             = _mm_setzero_pd();
414         fiy0             = _mm_setzero_pd();
415         fiz0             = _mm_setzero_pd();
416
417         /* Load parameters for i particles */
418         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
419
420         /* Start inner kernel loop */
421         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrA             = jjnr[jidx];
426             jnrB             = jjnr[jidx+1];
427             j_coord_offsetA  = DIM*jnrA;
428             j_coord_offsetB  = DIM*jnrB;
429
430             /* load j atom coordinates */
431             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
432                                               &jx0,&jy0,&jz0);
433
434             /* Calculate displacement vector */
435             dx00             = _mm_sub_pd(ix0,jx0);
436             dy00             = _mm_sub_pd(iy0,jy0);
437             dz00             = _mm_sub_pd(iz0,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
441
442             rinvsq00         = gmx_mm_inv_pd(rsq00);
443
444             /* Load parameters for j particles */
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446             vdwjidx0B        = 2*vdwtype[jnrB+0];
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             if (gmx_mm_any_lt(rsq00,rcutoff2))
453             {
454
455             /* Compute parameters for interactions between i and j atoms */
456             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
457                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
458
459             /* LENNARD-JONES DISPERSION/REPULSION */
460
461             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
462             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
463
464             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
465
466             fscal            = fvdw;
467
468             fscal            = _mm_and_pd(fscal,cutoff_mask);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_pd(fscal,dx00);
472             ty               = _mm_mul_pd(fscal,dy00);
473             tz               = _mm_mul_pd(fscal,dz00);
474
475             /* Update vectorial force */
476             fix0             = _mm_add_pd(fix0,tx);
477             fiy0             = _mm_add_pd(fiy0,ty);
478             fiz0             = _mm_add_pd(fiz0,tz);
479
480             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
481
482             }
483
484             /* Inner loop uses 30 flops */
485         }
486
487         if(jidx<j_index_end)
488         {
489
490             jnrA             = jjnr[jidx];
491             j_coord_offsetA  = DIM*jnrA;
492
493             /* load j atom coordinates */
494             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
495                                               &jx0,&jy0,&jz0);
496
497             /* Calculate displacement vector */
498             dx00             = _mm_sub_pd(ix0,jx0);
499             dy00             = _mm_sub_pd(iy0,jy0);
500             dz00             = _mm_sub_pd(iz0,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
504
505             rinvsq00         = gmx_mm_inv_pd(rsq00);
506
507             /* Load parameters for j particles */
508             vdwjidx0A        = 2*vdwtype[jnrA+0];
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             if (gmx_mm_any_lt(rsq00,rcutoff2))
515             {
516
517             /* Compute parameters for interactions between i and j atoms */
518             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
519
520             /* LENNARD-JONES DISPERSION/REPULSION */
521
522             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
523             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
524
525             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_and_pd(fscal,cutoff_mask);
530
531             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm_mul_pd(fscal,dx00);
535             ty               = _mm_mul_pd(fscal,dy00);
536             tz               = _mm_mul_pd(fscal,dz00);
537
538             /* Update vectorial force */
539             fix0             = _mm_add_pd(fix0,tx);
540             fiy0             = _mm_add_pd(fiy0,ty);
541             fiz0             = _mm_add_pd(fiz0,tz);
542
543             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
544
545             }
546
547             /* Inner loop uses 30 flops */
548         }
549
550         /* End of innermost loop */
551
552         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
553                                               f+i_coord_offset,fshift+i_shift_offset);
554
555         /* Increment number of inner iterations */
556         inneriter                  += j_index_end - j_index_start;
557
558         /* Outer loop uses 6 flops */
559     }
560
561     /* Increment number of outer iterations */
562     outeriter        += nri;
563
564     /* Update outer/inner flops */
565
566     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
567 }