Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
89     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
90     __m128d           c6grid_00;
91     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
92     real             *vdwgridparam;
93     __m128d           one_half = _mm_set1_pd(0.5);
94     __m128d           minus_one = _mm_set1_pd(-1.0);
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113     vdwgridparam     = fr->ljpme_c6grid;
114     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
115     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
116     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         vvdwsum          = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = sse41_invsqrt_d(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             r00              = _mm_mul_pd(rsq00,rinv00);
188
189             /* Compute parameters for interactions between i and j atoms */
190             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
192             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
193                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
194
195             /* Analytical LJ-PME */
196             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
197             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
198             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
199             exponent         = sse41_exp_d(ewcljrsq);
200             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
201             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
202             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
203             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
204             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
205             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
206             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
207             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
208
209             /* Update potential sum for this i atom from the interaction with this j atom. */
210             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
211
212             fscal            = fvdw;
213
214             /* Calculate temporary vectorial force */
215             tx               = _mm_mul_pd(fscal,dx00);
216             ty               = _mm_mul_pd(fscal,dy00);
217             tz               = _mm_mul_pd(fscal,dz00);
218
219             /* Update vectorial force */
220             fix0             = _mm_add_pd(fix0,tx);
221             fiy0             = _mm_add_pd(fiy0,ty);
222             fiz0             = _mm_add_pd(fiz0,tz);
223
224             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
225
226             /* Inner loop uses 51 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             jnrA             = jjnr[jidx];
233             j_coord_offsetA  = DIM*jnrA;
234
235             /* load j atom coordinates */
236             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
237                                               &jx0,&jy0,&jz0);
238
239             /* Calculate displacement vector */
240             dx00             = _mm_sub_pd(ix0,jx0);
241             dy00             = _mm_sub_pd(iy0,jy0);
242             dz00             = _mm_sub_pd(iz0,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
246
247             rinv00           = sse41_invsqrt_d(rsq00);
248
249             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
250
251             /* Load parameters for j particles */
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _mm_mul_pd(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
262
263             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
264
265             /* Analytical LJ-PME */
266             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
268             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
269             exponent         = sse41_exp_d(ewcljrsq);
270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
271             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
272             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
273             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
274             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
276             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
277             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
281             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx00);
289             ty               = _mm_mul_pd(fscal,dy00);
290             tz               = _mm_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_pd(fix0,tx);
294             fiy0             = _mm_add_pd(fiy0,ty);
295             fiz0             = _mm_add_pd(fiz0,tz);
296
297             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
298
299             /* Inner loop uses 51 flops */
300         }
301
302         /* End of innermost loop */
303
304         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
305                                               f+i_coord_offset,fshift+i_shift_offset);
306
307         ggid                        = gid[iidx];
308         /* Update potential energies */
309         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
310
311         /* Increment number of inner iterations */
312         inneriter                  += j_index_end - j_index_start;
313
314         /* Outer loop uses 7 flops */
315     }
316
317     /* Increment number of outer iterations */
318     outeriter        += nri;
319
320     /* Update outer/inner flops */
321
322     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
323 }
324 /*
325  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_double
326  * Electrostatics interaction: None
327  * VdW interaction:            LJEwald
328  * Geometry:                   Particle-Particle
329  * Calculate force/pot:        Force
330  */
331 void
332 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_double
333                     (t_nblist                    * gmx_restrict       nlist,
334                      rvec                        * gmx_restrict          xx,
335                      rvec                        * gmx_restrict          ff,
336                      struct t_forcerec           * gmx_restrict          fr,
337                      t_mdatoms                   * gmx_restrict     mdatoms,
338                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
339                      t_nrnb                      * gmx_restrict        nrnb)
340 {
341     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
342      * just 0 for non-waters.
343      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
344      * jnr indices corresponding to data put in the four positions in the SIMD register.
345      */
346     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
347     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
348     int              jnrA,jnrB;
349     int              j_coord_offsetA,j_coord_offsetB;
350     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
351     real             rcutoff_scalar;
352     real             *shiftvec,*fshift,*x,*f;
353     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
354     int              vdwioffset0;
355     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
356     int              vdwjidx0A,vdwjidx0B;
357     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
358     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
359     int              nvdwtype;
360     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
361     int              *vdwtype;
362     real             *vdwparam;
363     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
364     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
365     __m128d           c6grid_00;
366     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
367     real             *vdwgridparam;
368     __m128d           one_half = _mm_set1_pd(0.5);
369     __m128d           minus_one = _mm_set1_pd(-1.0);
370     __m128d          dummy_mask,cutoff_mask;
371     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
372     __m128d          one     = _mm_set1_pd(1.0);
373     __m128d          two     = _mm_set1_pd(2.0);
374     x                = xx[0];
375     f                = ff[0];
376
377     nri              = nlist->nri;
378     iinr             = nlist->iinr;
379     jindex           = nlist->jindex;
380     jjnr             = nlist->jjnr;
381     shiftidx         = nlist->shift;
382     gid              = nlist->gid;
383     shiftvec         = fr->shift_vec[0];
384     fshift           = fr->fshift[0];
385     nvdwtype         = fr->ntype;
386     vdwparam         = fr->nbfp;
387     vdwtype          = mdatoms->typeA;
388     vdwgridparam     = fr->ljpme_c6grid;
389     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
390     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
391     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
392
393     /* Avoid stupid compiler warnings */
394     jnrA = jnrB = 0;
395     j_coord_offsetA = 0;
396     j_coord_offsetB = 0;
397
398     outeriter        = 0;
399     inneriter        = 0;
400
401     /* Start outer loop over neighborlists */
402     for(iidx=0; iidx<nri; iidx++)
403     {
404         /* Load shift vector for this list */
405         i_shift_offset   = DIM*shiftidx[iidx];
406
407         /* Load limits for loop over neighbors */
408         j_index_start    = jindex[iidx];
409         j_index_end      = jindex[iidx+1];
410
411         /* Get outer coordinate index */
412         inr              = iinr[iidx];
413         i_coord_offset   = DIM*inr;
414
415         /* Load i particle coords and add shift vector */
416         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
417
418         fix0             = _mm_setzero_pd();
419         fiy0             = _mm_setzero_pd();
420         fiz0             = _mm_setzero_pd();
421
422         /* Load parameters for i particles */
423         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
424
425         /* Start inner kernel loop */
426         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrA             = jjnr[jidx];
431             jnrB             = jjnr[jidx+1];
432             j_coord_offsetA  = DIM*jnrA;
433             j_coord_offsetB  = DIM*jnrB;
434
435             /* load j atom coordinates */
436             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
437                                               &jx0,&jy0,&jz0);
438
439             /* Calculate displacement vector */
440             dx00             = _mm_sub_pd(ix0,jx0);
441             dy00             = _mm_sub_pd(iy0,jy0);
442             dz00             = _mm_sub_pd(iz0,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
446
447             rinv00           = sse41_invsqrt_d(rsq00);
448
449             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
450
451             /* Load parameters for j particles */
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             r00              = _mm_mul_pd(rsq00,rinv00);
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
463                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
464             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
465                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
466
467             /* Analytical LJ-PME */
468             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
469             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
470             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
471             exponent         = sse41_exp_d(ewcljrsq);
472             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
473             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
474             /* f6A = 6 * C6grid * (1 - poly) */
475             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
476             /* f6B = C6grid * exponent * beta^6 */
477             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
478             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
479             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
480
481             fscal            = fvdw;
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm_mul_pd(fscal,dx00);
485             ty               = _mm_mul_pd(fscal,dy00);
486             tz               = _mm_mul_pd(fscal,dz00);
487
488             /* Update vectorial force */
489             fix0             = _mm_add_pd(fix0,tx);
490             fiy0             = _mm_add_pd(fiy0,ty);
491             fiz0             = _mm_add_pd(fiz0,tz);
492
493             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
494
495             /* Inner loop uses 46 flops */
496         }
497
498         if(jidx<j_index_end)
499         {
500
501             jnrA             = jjnr[jidx];
502             j_coord_offsetA  = DIM*jnrA;
503
504             /* load j atom coordinates */
505             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
506                                               &jx0,&jy0,&jz0);
507
508             /* Calculate displacement vector */
509             dx00             = _mm_sub_pd(ix0,jx0);
510             dy00             = _mm_sub_pd(iy0,jy0);
511             dz00             = _mm_sub_pd(iz0,jz0);
512
513             /* Calculate squared distance and things based on it */
514             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
515
516             rinv00           = sse41_invsqrt_d(rsq00);
517
518             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
519
520             /* Load parameters for j particles */
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             r00              = _mm_mul_pd(rsq00,rinv00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
531
532             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
533
534             /* Analytical LJ-PME */
535             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
536             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
537             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
538             exponent         = sse41_exp_d(ewcljrsq);
539             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
540             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
541             /* f6A = 6 * C6grid * (1 - poly) */
542             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
543             /* f6B = C6grid * exponent * beta^6 */
544             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
545             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
546             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
547
548             fscal            = fvdw;
549
550             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_pd(fscal,dx00);
554             ty               = _mm_mul_pd(fscal,dy00);
555             tz               = _mm_mul_pd(fscal,dz00);
556
557             /* Update vectorial force */
558             fix0             = _mm_add_pd(fix0,tx);
559             fiy0             = _mm_add_pd(fiy0,ty);
560             fiz0             = _mm_add_pd(fiz0,tz);
561
562             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
563
564             /* Inner loop uses 46 flops */
565         }
566
567         /* End of innermost loop */
568
569         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
570                                               f+i_coord_offset,fshift+i_shift_offset);
571
572         /* Increment number of inner iterations */
573         inneriter                  += j_index_end - j_index_start;
574
575         /* Outer loop uses 6 flops */
576     }
577
578     /* Increment number of outer iterations */
579     outeriter        += nri;
580
581     /* Update outer/inner flops */
582
583     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*46);
584 }