Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         vvdwsum          = _mm_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_pd(ix0,jx0);
172             dy00             = _mm_sub_pd(iy0,jy0);
173             dz00             = _mm_sub_pd(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177
178             rinv00           = gmx_mm_invsqrt_pd(rsq00);
179
180             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
181
182             /* Load parameters for j particles */
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
194                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
195             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
196                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
197
198             /* Analytical LJ-PME */
199             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
200             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
201             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
202             exponent         = gmx_simd_exp_d(ewcljrsq);
203             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
204             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
205             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
206             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
207             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
208             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
209             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
210             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
211
212             /* Update potential sum for this i atom from the interaction with this j atom. */
213             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
214
215             fscal            = fvdw;
216
217             /* Calculate temporary vectorial force */
218             tx               = _mm_mul_pd(fscal,dx00);
219             ty               = _mm_mul_pd(fscal,dy00);
220             tz               = _mm_mul_pd(fscal,dz00);
221
222             /* Update vectorial force */
223             fix0             = _mm_add_pd(fix0,tx);
224             fiy0             = _mm_add_pd(fiy0,ty);
225             fiz0             = _mm_add_pd(fiz0,tz);
226
227             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
228
229             /* Inner loop uses 51 flops */
230         }
231
232         if(jidx<j_index_end)
233         {
234
235             jnrA             = jjnr[jidx];
236             j_coord_offsetA  = DIM*jnrA;
237
238             /* load j atom coordinates */
239             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
240                                               &jx0,&jy0,&jz0);
241
242             /* Calculate displacement vector */
243             dx00             = _mm_sub_pd(ix0,jx0);
244             dy00             = _mm_sub_pd(iy0,jy0);
245             dz00             = _mm_sub_pd(iz0,jz0);
246
247             /* Calculate squared distance and things based on it */
248             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
249
250             rinv00           = gmx_mm_invsqrt_pd(rsq00);
251
252             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
253
254             /* Load parameters for j particles */
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
265
266             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
267
268             /* Analytical LJ-PME */
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
271             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
272             exponent         = gmx_simd_exp_d(ewcljrsq);
273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
275             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
277             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
278             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
279             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
280             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = fvdw;
287
288             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm_mul_pd(fscal,dx00);
292             ty               = _mm_mul_pd(fscal,dy00);
293             tz               = _mm_mul_pd(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm_add_pd(fix0,tx);
297             fiy0             = _mm_add_pd(fiy0,ty);
298             fiz0             = _mm_add_pd(fiz0,tz);
299
300             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
301
302             /* Inner loop uses 51 flops */
303         }
304
305         /* End of innermost loop */
306
307         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
308                                               f+i_coord_offset,fshift+i_shift_offset);
309
310         ggid                        = gid[iidx];
311         /* Update potential energies */
312         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
313
314         /* Increment number of inner iterations */
315         inneriter                  += j_index_end - j_index_start;
316
317         /* Outer loop uses 7 flops */
318     }
319
320     /* Increment number of outer iterations */
321     outeriter        += nri;
322
323     /* Update outer/inner flops */
324
325     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
326 }
327 /*
328  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_double
329  * Electrostatics interaction: None
330  * VdW interaction:            LJEwald
331  * Geometry:                   Particle-Particle
332  * Calculate force/pot:        Force
333  */
334 void
335 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_double
336                     (t_nblist                    * gmx_restrict       nlist,
337                      rvec                        * gmx_restrict          xx,
338                      rvec                        * gmx_restrict          ff,
339                      t_forcerec                  * gmx_restrict          fr,
340                      t_mdatoms                   * gmx_restrict     mdatoms,
341                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
342                      t_nrnb                      * gmx_restrict        nrnb)
343 {
344     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
345      * just 0 for non-waters.
346      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
347      * jnr indices corresponding to data put in the four positions in the SIMD register.
348      */
349     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
350     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
351     int              jnrA,jnrB;
352     int              j_coord_offsetA,j_coord_offsetB;
353     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
354     real             rcutoff_scalar;
355     real             *shiftvec,*fshift,*x,*f;
356     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
357     int              vdwioffset0;
358     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
359     int              vdwjidx0A,vdwjidx0B;
360     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
361     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
362     int              nvdwtype;
363     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
364     int              *vdwtype;
365     real             *vdwparam;
366     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
367     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
368     __m128d           c6grid_00;
369     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
370     real             *vdwgridparam;
371     __m128d           one_half = _mm_set1_pd(0.5);
372     __m128d           minus_one = _mm_set1_pd(-1.0);
373     __m128d          dummy_mask,cutoff_mask;
374     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
375     __m128d          one     = _mm_set1_pd(1.0);
376     __m128d          two     = _mm_set1_pd(2.0);
377     x                = xx[0];
378     f                = ff[0];
379
380     nri              = nlist->nri;
381     iinr             = nlist->iinr;
382     jindex           = nlist->jindex;
383     jjnr             = nlist->jjnr;
384     shiftidx         = nlist->shift;
385     gid              = nlist->gid;
386     shiftvec         = fr->shift_vec[0];
387     fshift           = fr->fshift[0];
388     nvdwtype         = fr->ntype;
389     vdwparam         = fr->nbfp;
390     vdwtype          = mdatoms->typeA;
391     vdwgridparam     = fr->ljpme_c6grid;
392     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
393     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
394     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
395
396     /* Avoid stupid compiler warnings */
397     jnrA = jnrB = 0;
398     j_coord_offsetA = 0;
399     j_coord_offsetB = 0;
400
401     outeriter        = 0;
402     inneriter        = 0;
403
404     /* Start outer loop over neighborlists */
405     for(iidx=0; iidx<nri; iidx++)
406     {
407         /* Load shift vector for this list */
408         i_shift_offset   = DIM*shiftidx[iidx];
409
410         /* Load limits for loop over neighbors */
411         j_index_start    = jindex[iidx];
412         j_index_end      = jindex[iidx+1];
413
414         /* Get outer coordinate index */
415         inr              = iinr[iidx];
416         i_coord_offset   = DIM*inr;
417
418         /* Load i particle coords and add shift vector */
419         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
420
421         fix0             = _mm_setzero_pd();
422         fiy0             = _mm_setzero_pd();
423         fiz0             = _mm_setzero_pd();
424
425         /* Load parameters for i particles */
426         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
427
428         /* Start inner kernel loop */
429         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
430         {
431
432             /* Get j neighbor index, and coordinate index */
433             jnrA             = jjnr[jidx];
434             jnrB             = jjnr[jidx+1];
435             j_coord_offsetA  = DIM*jnrA;
436             j_coord_offsetB  = DIM*jnrB;
437
438             /* load j atom coordinates */
439             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
440                                               &jx0,&jy0,&jz0);
441
442             /* Calculate displacement vector */
443             dx00             = _mm_sub_pd(ix0,jx0);
444             dy00             = _mm_sub_pd(iy0,jy0);
445             dz00             = _mm_sub_pd(iz0,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
449
450             rinv00           = gmx_mm_invsqrt_pd(rsq00);
451
452             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
453
454             /* Load parameters for j particles */
455             vdwjidx0A        = 2*vdwtype[jnrA+0];
456             vdwjidx0B        = 2*vdwtype[jnrB+0];
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             r00              = _mm_mul_pd(rsq00,rinv00);
463
464             /* Compute parameters for interactions between i and j atoms */
465             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
466                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
467             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
468                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
469
470             /* Analytical LJ-PME */
471             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
473             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
474             exponent         = gmx_simd_exp_d(ewcljrsq);
475             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
476             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
477             /* f6A = 6 * C6grid * (1 - poly) */
478             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
479             /* f6B = C6grid * exponent * beta^6 */
480             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
481             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
482             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
483
484             fscal            = fvdw;
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_pd(fscal,dx00);
488             ty               = _mm_mul_pd(fscal,dy00);
489             tz               = _mm_mul_pd(fscal,dz00);
490
491             /* Update vectorial force */
492             fix0             = _mm_add_pd(fix0,tx);
493             fiy0             = _mm_add_pd(fiy0,ty);
494             fiz0             = _mm_add_pd(fiz0,tz);
495
496             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
497
498             /* Inner loop uses 46 flops */
499         }
500
501         if(jidx<j_index_end)
502         {
503
504             jnrA             = jjnr[jidx];
505             j_coord_offsetA  = DIM*jnrA;
506
507             /* load j atom coordinates */
508             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm_sub_pd(ix0,jx0);
513             dy00             = _mm_sub_pd(iy0,jy0);
514             dz00             = _mm_sub_pd(iz0,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
518
519             rinv00           = gmx_mm_invsqrt_pd(rsq00);
520
521             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r00              = _mm_mul_pd(rsq00,rinv00);
531
532             /* Compute parameters for interactions between i and j atoms */
533             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
534
535             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
536
537             /* Analytical LJ-PME */
538             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
539             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
540             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
541             exponent         = gmx_simd_exp_d(ewcljrsq);
542             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
543             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
544             /* f6A = 6 * C6grid * (1 - poly) */
545             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
546             /* f6B = C6grid * exponent * beta^6 */
547             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
548             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
549             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
550
551             fscal            = fvdw;
552
553             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm_mul_pd(fscal,dx00);
557             ty               = _mm_mul_pd(fscal,dy00);
558             tz               = _mm_mul_pd(fscal,dz00);
559
560             /* Update vectorial force */
561             fix0             = _mm_add_pd(fix0,tx);
562             fiy0             = _mm_add_pd(fiy0,ty);
563             fiz0             = _mm_add_pd(fiz0,tz);
564
565             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
566
567             /* Inner loop uses 46 flops */
568         }
569
570         /* End of innermost loop */
571
572         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
573                                               f+i_coord_offset,fshift+i_shift_offset);
574
575         /* Increment number of inner iterations */
576         inneriter                  += j_index_end - j_index_start;
577
578         /* Outer loop uses 6 flops */
579     }
580
581     /* Increment number of outer iterations */
582     outeriter        += nri;
583
584     /* Update outer/inner flops */
585
586     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*46);
587 }