Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
120
121     rcutoff_scalar   = fr->rvdw;
122     rcutoff          = _mm_set1_pd(rcutoff_scalar);
123     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
124
125     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
126     rvdw             = _mm_set1_pd(fr->rvdw);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         vvdwsum          = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
184
185             rinv00           = gmx_mm_invsqrt_pd(rsq00);
186
187             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
188
189             /* Load parameters for j particles */
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             if (gmx_mm_any_lt(rsq00,rcutoff2))
198             {
199
200             r00              = _mm_mul_pd(rsq00,rinv00);
201
202             /* Compute parameters for interactions between i and j atoms */
203             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
204                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
205             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
206                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
207
208             /* Analytical LJ-PME */
209             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
210             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
211             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
212             exponent         = gmx_simd_exp_d(ewcljrsq);
213             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
214             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
215             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
216             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
217             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
218             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
219                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
220             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
221             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
222
223             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
227             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
228
229             fscal            = fvdw;
230
231             fscal            = _mm_and_pd(fscal,cutoff_mask);
232
233             /* Calculate temporary vectorial force */
234             tx               = _mm_mul_pd(fscal,dx00);
235             ty               = _mm_mul_pd(fscal,dy00);
236             tz               = _mm_mul_pd(fscal,dz00);
237
238             /* Update vectorial force */
239             fix0             = _mm_add_pd(fix0,tx);
240             fiy0             = _mm_add_pd(fiy0,ty);
241             fiz0             = _mm_add_pd(fiz0,tz);
242
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
244
245             }
246
247             /* Inner loop uses 61 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_pd(ix0,jx0);
262             dy00             = _mm_sub_pd(iy0,jy0);
263             dz00             = _mm_sub_pd(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267
268             rinv00           = gmx_mm_invsqrt_pd(rsq00);
269
270             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_mm_any_lt(rsq00,rcutoff2))
280             {
281
282             r00              = _mm_mul_pd(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286
287             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
288
289             /* Analytical LJ-PME */
290             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
291             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
292             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
293             exponent         = gmx_simd_exp_d(ewcljrsq);
294             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
295             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
296             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
297             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
298             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
299             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
300                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
301             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
302             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
303
304             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
308             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
309             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
310
311             fscal            = fvdw;
312
313             fscal            = _mm_and_pd(fscal,cutoff_mask);
314
315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_pd(fscal,dx00);
319             ty               = _mm_mul_pd(fscal,dy00);
320             tz               = _mm_mul_pd(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm_add_pd(fix0,tx);
324             fiy0             = _mm_add_pd(fiy0,ty);
325             fiz0             = _mm_add_pd(fiz0,tz);
326
327             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
328
329             }
330
331             /* Inner loop uses 61 flops */
332         }
333
334         /* End of innermost loop */
335
336         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
337                                               f+i_coord_offset,fshift+i_shift_offset);
338
339         ggid                        = gid[iidx];
340         /* Update potential energies */
341         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
342
343         /* Increment number of inner iterations */
344         inneriter                  += j_index_end - j_index_start;
345
346         /* Outer loop uses 7 flops */
347     }
348
349     /* Increment number of outer iterations */
350     outeriter        += nri;
351
352     /* Update outer/inner flops */
353
354     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*61);
355 }
356 /*
357  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_double
358  * Electrostatics interaction: None
359  * VdW interaction:            LJEwald
360  * Geometry:                   Particle-Particle
361  * Calculate force/pot:        Force
362  */
363 void
364 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_double
365                     (t_nblist                    * gmx_restrict       nlist,
366                      rvec                        * gmx_restrict          xx,
367                      rvec                        * gmx_restrict          ff,
368                      t_forcerec                  * gmx_restrict          fr,
369                      t_mdatoms                   * gmx_restrict     mdatoms,
370                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
371                      t_nrnb                      * gmx_restrict        nrnb)
372 {
373     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
374      * just 0 for non-waters.
375      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
376      * jnr indices corresponding to data put in the four positions in the SIMD register.
377      */
378     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
379     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
380     int              jnrA,jnrB;
381     int              j_coord_offsetA,j_coord_offsetB;
382     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
383     real             rcutoff_scalar;
384     real             *shiftvec,*fshift,*x,*f;
385     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
386     int              vdwioffset0;
387     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
388     int              vdwjidx0A,vdwjidx0B;
389     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
390     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
391     int              nvdwtype;
392     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
393     int              *vdwtype;
394     real             *vdwparam;
395     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
396     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
397     __m128d           c6grid_00;
398     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
399     real             *vdwgridparam;
400     __m128d           one_half = _mm_set1_pd(0.5);
401     __m128d           minus_one = _mm_set1_pd(-1.0);
402     __m128d          dummy_mask,cutoff_mask;
403     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
404     __m128d          one     = _mm_set1_pd(1.0);
405     __m128d          two     = _mm_set1_pd(2.0);
406     x                = xx[0];
407     f                = ff[0];
408
409     nri              = nlist->nri;
410     iinr             = nlist->iinr;
411     jindex           = nlist->jindex;
412     jjnr             = nlist->jjnr;
413     shiftidx         = nlist->shift;
414     gid              = nlist->gid;
415     shiftvec         = fr->shift_vec[0];
416     fshift           = fr->fshift[0];
417     nvdwtype         = fr->ntype;
418     vdwparam         = fr->nbfp;
419     vdwtype          = mdatoms->typeA;
420     vdwgridparam     = fr->ljpme_c6grid;
421     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
422     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
423     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
424
425     rcutoff_scalar   = fr->rvdw;
426     rcutoff          = _mm_set1_pd(rcutoff_scalar);
427     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
428
429     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
430     rvdw             = _mm_set1_pd(fr->rvdw);
431
432     /* Avoid stupid compiler warnings */
433     jnrA = jnrB = 0;
434     j_coord_offsetA = 0;
435     j_coord_offsetB = 0;
436
437     outeriter        = 0;
438     inneriter        = 0;
439
440     /* Start outer loop over neighborlists */
441     for(iidx=0; iidx<nri; iidx++)
442     {
443         /* Load shift vector for this list */
444         i_shift_offset   = DIM*shiftidx[iidx];
445
446         /* Load limits for loop over neighbors */
447         j_index_start    = jindex[iidx];
448         j_index_end      = jindex[iidx+1];
449
450         /* Get outer coordinate index */
451         inr              = iinr[iidx];
452         i_coord_offset   = DIM*inr;
453
454         /* Load i particle coords and add shift vector */
455         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
456
457         fix0             = _mm_setzero_pd();
458         fiy0             = _mm_setzero_pd();
459         fiz0             = _mm_setzero_pd();
460
461         /* Load parameters for i particles */
462         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
463
464         /* Start inner kernel loop */
465         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrA             = jjnr[jidx];
470             jnrB             = jjnr[jidx+1];
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473
474             /* load j atom coordinates */
475             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_pd(ix0,jx0);
480             dy00             = _mm_sub_pd(iy0,jy0);
481             dz00             = _mm_sub_pd(iz0,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
485
486             rinv00           = gmx_mm_invsqrt_pd(rsq00);
487
488             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
489
490             /* Load parameters for j particles */
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             if (gmx_mm_any_lt(rsq00,rcutoff2))
499             {
500
501             r00              = _mm_mul_pd(rsq00,rinv00);
502
503             /* Compute parameters for interactions between i and j atoms */
504             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
506             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
507                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
508
509             /* Analytical LJ-PME */
510             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
511             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
512             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
513             exponent         = gmx_simd_exp_d(ewcljrsq);
514             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
515             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
516             /* f6A = 6 * C6grid * (1 - poly) */
517             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
518             /* f6B = C6grid * exponent * beta^6 */
519             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
520             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
521             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
522
523             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
524
525             fscal            = fvdw;
526
527             fscal            = _mm_and_pd(fscal,cutoff_mask);
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx00);
531             ty               = _mm_mul_pd(fscal,dy00);
532             tz               = _mm_mul_pd(fscal,dz00);
533
534             /* Update vectorial force */
535             fix0             = _mm_add_pd(fix0,tx);
536             fiy0             = _mm_add_pd(fiy0,ty);
537             fiz0             = _mm_add_pd(fiz0,tz);
538
539             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
540
541             }
542
543             /* Inner loop uses 49 flops */
544         }
545
546         if(jidx<j_index_end)
547         {
548
549             jnrA             = jjnr[jidx];
550             j_coord_offsetA  = DIM*jnrA;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
554                                               &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm_sub_pd(ix0,jx0);
558             dy00             = _mm_sub_pd(iy0,jy0);
559             dz00             = _mm_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = gmx_mm_invsqrt_pd(rsq00);
565
566             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             vdwjidx0A        = 2*vdwtype[jnrA+0];
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             if (gmx_mm_any_lt(rsq00,rcutoff2))
576             {
577
578             r00              = _mm_mul_pd(rsq00,rinv00);
579
580             /* Compute parameters for interactions between i and j atoms */
581             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
582
583             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
584
585             /* Analytical LJ-PME */
586             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
587             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
588             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
589             exponent         = gmx_simd_exp_d(ewcljrsq);
590             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
591             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
592             /* f6A = 6 * C6grid * (1 - poly) */
593             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
594             /* f6B = C6grid * exponent * beta^6 */
595             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
596             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
597             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
598
599             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
600
601             fscal            = fvdw;
602
603             fscal            = _mm_and_pd(fscal,cutoff_mask);
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_pd(fscal,dx00);
609             ty               = _mm_mul_pd(fscal,dy00);
610             tz               = _mm_mul_pd(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm_add_pd(fix0,tx);
614             fiy0             = _mm_add_pd(fiy0,ty);
615             fiz0             = _mm_add_pd(fiz0,tz);
616
617             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
618
619             }
620
621             /* Inner loop uses 49 flops */
622         }
623
624         /* End of innermost loop */
625
626         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
627                                               f+i_coord_offset,fshift+i_shift_offset);
628
629         /* Increment number of inner iterations */
630         inneriter                  += j_index_end - j_index_start;
631
632         /* Outer loop uses 6 flops */
633     }
634
635     /* Increment number of outer iterations */
636     outeriter        += nri;
637
638     /* Update outer/inner flops */
639
640     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
641 }