Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: None
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         vvdwsum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             /* Load parameters for j particles */
179             vdwjidx0A        = 2*vdwtype[jnrA+0];
180             vdwjidx0B        = 2*vdwtype[jnrB+0];
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             r00              = _mm_mul_pd(rsq00,rinv00);
187
188             /* Compute parameters for interactions between i and j atoms */
189             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
190                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
191
192             /* Calculate table index by multiplying r with table scale and truncate to integer */
193             rt               = _mm_mul_pd(r00,vftabscale);
194             vfitab           = _mm_cvttpd_epi32(rt);
195             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
196             vfitab           = _mm_slli_epi32(vfitab,3);
197
198             /* CUBIC SPLINE TABLE DISPERSION */
199             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
200             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
201             GMX_MM_TRANSPOSE2_PD(Y,F);
202             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
203             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
204             GMX_MM_TRANSPOSE2_PD(G,H);
205             Heps             = _mm_mul_pd(vfeps,H);
206             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
207             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
208             vvdw6            = _mm_mul_pd(c6_00,VV);
209             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
210             fvdw6            = _mm_mul_pd(c6_00,FF);
211
212             /* CUBIC SPLINE TABLE REPULSION */
213             vfitab           = _mm_add_epi32(vfitab,ifour);
214             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
215             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
216             GMX_MM_TRANSPOSE2_PD(Y,F);
217             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
218             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
219             GMX_MM_TRANSPOSE2_PD(G,H);
220             Heps             = _mm_mul_pd(vfeps,H);
221             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
222             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
223             vvdw12           = _mm_mul_pd(c12_00,VV);
224             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
225             fvdw12           = _mm_mul_pd(c12_00,FF);
226             vvdw             = _mm_add_pd(vvdw12,vvdw6);
227             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
231
232             fscal            = fvdw;
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_pd(fscal,dx00);
236             ty               = _mm_mul_pd(fscal,dy00);
237             tz               = _mm_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_pd(fix0,tx);
241             fiy0             = _mm_add_pd(fiy0,ty);
242             fiz0             = _mm_add_pd(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245
246             /* Inner loop uses 56 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             /* Load parameters for j particles */
270             vdwjidx0A        = 2*vdwtype[jnrA+0];
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             r00              = _mm_mul_pd(rsq00,rinv00);
277
278             /* Compute parameters for interactions between i and j atoms */
279             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
280
281             /* Calculate table index by multiplying r with table scale and truncate to integer */
282             rt               = _mm_mul_pd(r00,vftabscale);
283             vfitab           = _mm_cvttpd_epi32(rt);
284             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
285             vfitab           = _mm_slli_epi32(vfitab,3);
286
287             /* CUBIC SPLINE TABLE DISPERSION */
288             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
289             F                = _mm_setzero_pd();
290             GMX_MM_TRANSPOSE2_PD(Y,F);
291             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
292             H                = _mm_setzero_pd();
293             GMX_MM_TRANSPOSE2_PD(G,H);
294             Heps             = _mm_mul_pd(vfeps,H);
295             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
296             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
297             vvdw6            = _mm_mul_pd(c6_00,VV);
298             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
299             fvdw6            = _mm_mul_pd(c6_00,FF);
300
301             /* CUBIC SPLINE TABLE REPULSION */
302             vfitab           = _mm_add_epi32(vfitab,ifour);
303             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
304             F                = _mm_setzero_pd();
305             GMX_MM_TRANSPOSE2_PD(Y,F);
306             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
307             H                = _mm_setzero_pd();
308             GMX_MM_TRANSPOSE2_PD(G,H);
309             Heps             = _mm_mul_pd(vfeps,H);
310             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
311             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
312             vvdw12           = _mm_mul_pd(c12_00,VV);
313             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
314             fvdw12           = _mm_mul_pd(c12_00,FF);
315             vvdw             = _mm_add_pd(vvdw12,vvdw6);
316             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
320             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
321
322             fscal            = fvdw;
323
324             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm_mul_pd(fscal,dx00);
328             ty               = _mm_mul_pd(fscal,dy00);
329             tz               = _mm_mul_pd(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm_add_pd(fix0,tx);
333             fiy0             = _mm_add_pd(fiy0,ty);
334             fiz0             = _mm_add_pd(fiz0,tz);
335
336             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
337
338             /* Inner loop uses 56 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 7 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*56);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_double
365  * Electrostatics interaction: None
366  * VdW interaction:            CubicSplineTable
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_double
372                     (t_nblist                    * gmx_restrict       nlist,
373                      rvec                        * gmx_restrict          xx,
374                      rvec                        * gmx_restrict          ff,
375                      t_forcerec                  * gmx_restrict          fr,
376                      t_mdatoms                   * gmx_restrict     mdatoms,
377                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378                      t_nrnb                      * gmx_restrict        nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB;
388     int              j_coord_offsetA,j_coord_offsetB;
389     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
390     real             rcutoff_scalar;
391     real             *shiftvec,*fshift,*x,*f;
392     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393     int              vdwioffset0;
394     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395     int              vdwjidx0A,vdwjidx0B;
396     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398     int              nvdwtype;
399     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
400     int              *vdwtype;
401     real             *vdwparam;
402     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
403     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
404     __m128i          vfitab;
405     __m128i          ifour       = _mm_set1_epi32(4);
406     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
407     real             *vftab;
408     __m128d          dummy_mask,cutoff_mask;
409     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
410     __m128d          one     = _mm_set1_pd(1.0);
411     __m128d          two     = _mm_set1_pd(2.0);
412     x                = xx[0];
413     f                = ff[0];
414
415     nri              = nlist->nri;
416     iinr             = nlist->iinr;
417     jindex           = nlist->jindex;
418     jjnr             = nlist->jjnr;
419     shiftidx         = nlist->shift;
420     gid              = nlist->gid;
421     shiftvec         = fr->shift_vec[0];
422     fshift           = fr->fshift[0];
423     nvdwtype         = fr->ntype;
424     vdwparam         = fr->nbfp;
425     vdwtype          = mdatoms->typeA;
426
427     vftab            = kernel_data->table_vdw->data;
428     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
429
430     /* Avoid stupid compiler warnings */
431     jnrA = jnrB = 0;
432     j_coord_offsetA = 0;
433     j_coord_offsetB = 0;
434
435     outeriter        = 0;
436     inneriter        = 0;
437
438     /* Start outer loop over neighborlists */
439     for(iidx=0; iidx<nri; iidx++)
440     {
441         /* Load shift vector for this list */
442         i_shift_offset   = DIM*shiftidx[iidx];
443
444         /* Load limits for loop over neighbors */
445         j_index_start    = jindex[iidx];
446         j_index_end      = jindex[iidx+1];
447
448         /* Get outer coordinate index */
449         inr              = iinr[iidx];
450         i_coord_offset   = DIM*inr;
451
452         /* Load i particle coords and add shift vector */
453         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
454
455         fix0             = _mm_setzero_pd();
456         fiy0             = _mm_setzero_pd();
457         fiz0             = _mm_setzero_pd();
458
459         /* Load parameters for i particles */
460         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
461
462         /* Start inner kernel loop */
463         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrA             = jjnr[jidx];
468             jnrB             = jjnr[jidx+1];
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471
472             /* load j atom coordinates */
473             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474                                               &jx0,&jy0,&jz0);
475
476             /* Calculate displacement vector */
477             dx00             = _mm_sub_pd(ix0,jx0);
478             dy00             = _mm_sub_pd(iy0,jy0);
479             dz00             = _mm_sub_pd(iz0,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483
484             rinv00           = gmx_mm_invsqrt_pd(rsq00);
485
486             /* Load parameters for j particles */
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r00              = _mm_mul_pd(rsq00,rinv00);
495
496             /* Compute parameters for interactions between i and j atoms */
497             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
498                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
499
500             /* Calculate table index by multiplying r with table scale and truncate to integer */
501             rt               = _mm_mul_pd(r00,vftabscale);
502             vfitab           = _mm_cvttpd_epi32(rt);
503             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
504             vfitab           = _mm_slli_epi32(vfitab,3);
505
506             /* CUBIC SPLINE TABLE DISPERSION */
507             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
508             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
509             GMX_MM_TRANSPOSE2_PD(Y,F);
510             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
511             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
512             GMX_MM_TRANSPOSE2_PD(G,H);
513             Heps             = _mm_mul_pd(vfeps,H);
514             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
515             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
516             fvdw6            = _mm_mul_pd(c6_00,FF);
517
518             /* CUBIC SPLINE TABLE REPULSION */
519             vfitab           = _mm_add_epi32(vfitab,ifour);
520             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
521             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
522             GMX_MM_TRANSPOSE2_PD(Y,F);
523             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
524             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
525             GMX_MM_TRANSPOSE2_PD(G,H);
526             Heps             = _mm_mul_pd(vfeps,H);
527             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
528             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
529             fvdw12           = _mm_mul_pd(c12_00,FF);
530             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
531
532             fscal            = fvdw;
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_pd(fscal,dx00);
536             ty               = _mm_mul_pd(fscal,dy00);
537             tz               = _mm_mul_pd(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm_add_pd(fix0,tx);
541             fiy0             = _mm_add_pd(fiy0,ty);
542             fiz0             = _mm_add_pd(fiz0,tz);
543
544             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
545
546             /* Inner loop uses 48 flops */
547         }
548
549         if(jidx<j_index_end)
550         {
551
552             jnrA             = jjnr[jidx];
553             j_coord_offsetA  = DIM*jnrA;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_pd(ix0,jx0);
561             dy00             = _mm_sub_pd(iy0,jy0);
562             dz00             = _mm_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinv00           = gmx_mm_invsqrt_pd(rsq00);
568
569             /* Load parameters for j particles */
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
580
581             /* Calculate table index by multiplying r with table scale and truncate to integer */
582             rt               = _mm_mul_pd(r00,vftabscale);
583             vfitab           = _mm_cvttpd_epi32(rt);
584             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
585             vfitab           = _mm_slli_epi32(vfitab,3);
586
587             /* CUBIC SPLINE TABLE DISPERSION */
588             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
589             F                = _mm_setzero_pd();
590             GMX_MM_TRANSPOSE2_PD(Y,F);
591             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
592             H                = _mm_setzero_pd();
593             GMX_MM_TRANSPOSE2_PD(G,H);
594             Heps             = _mm_mul_pd(vfeps,H);
595             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
596             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
597             fvdw6            = _mm_mul_pd(c6_00,FF);
598
599             /* CUBIC SPLINE TABLE REPULSION */
600             vfitab           = _mm_add_epi32(vfitab,ifour);
601             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
602             F                = _mm_setzero_pd();
603             GMX_MM_TRANSPOSE2_PD(Y,F);
604             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
605             H                = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(G,H);
607             Heps             = _mm_mul_pd(vfeps,H);
608             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
609             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
610             fvdw12           = _mm_mul_pd(c12_00,FF);
611             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
612
613             fscal            = fvdw;
614
615             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_pd(fscal,dx00);
619             ty               = _mm_mul_pd(fscal,dy00);
620             tz               = _mm_mul_pd(fscal,dz00);
621
622             /* Update vectorial force */
623             fix0             = _mm_add_pd(fix0,tx);
624             fiy0             = _mm_add_pd(fiy0,ty);
625             fiz0             = _mm_add_pd(fiz0,tz);
626
627             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
628
629             /* Inner loop uses 48 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         /* Increment number of inner iterations */
638         inneriter                  += j_index_end - j_index_start;
639
640         /* Outer loop uses 6 flops */
641     }
642
643     /* Increment number of outer iterations */
644     outeriter        += nri;
645
646     /* Update outer/inner flops */
647
648     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
649 }