Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     invsqrta         = fr->invsqrta;
100     dvda             = fr->dvda;
101     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
102     gbtab            = fr->gbtab.data;
103     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
129
130         fix0             = _mm_setzero_pd();
131         fiy0             = _mm_setzero_pd();
132         fiz0             = _mm_setzero_pd();
133
134         /* Load parameters for i particles */
135         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
136         isai0            = _mm_load1_pd(invsqrta+inr+0);
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_pd();
140         vgbsum           = _mm_setzero_pd();
141         dvdasum          = _mm_setzero_pd();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             j_coord_offsetA  = DIM*jnrA;
151             j_coord_offsetB  = DIM*jnrB;
152
153             /* load j atom coordinates */
154             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
155                                               &jx0,&jy0,&jz0);
156
157             /* Calculate displacement vector */
158             dx00             = _mm_sub_pd(ix0,jx0);
159             dy00             = _mm_sub_pd(iy0,jy0);
160             dz00             = _mm_sub_pd(iz0,jz0);
161
162             /* Calculate squared distance and things based on it */
163             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
164
165             rinv00           = gmx_mm_invsqrt_pd(rsq00);
166
167             /* Load parameters for j particles */
168             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
169             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
181             isaprod          = _mm_mul_pd(isai0,isaj0);
182             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
183             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
184
185             /* Calculate generalized born table index - this is a separate table from the normal one,
186              * but we use the same procedure by multiplying r with scale and truncating to integer.
187              */
188             rt               = _mm_mul_pd(r00,gbscale);
189             gbitab           = _mm_cvttpd_epi32(rt);
190             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
191             gbitab           = _mm_slli_epi32(gbitab,2);
192
193             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
194             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
195             GMX_MM_TRANSPOSE2_PD(Y,F);
196             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
197             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
198             GMX_MM_TRANSPOSE2_PD(G,H);
199             Heps             = _mm_mul_pd(gbeps,H);
200             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
201             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
202             vgb              = _mm_mul_pd(gbqqfactor,VV);
203
204             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
205             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
206             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
207             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
208             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
209             velec            = _mm_mul_pd(qq00,rinv00);
210             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
211
212             /* Update potential sum for this i atom from the interaction with this j atom. */
213             velecsum         = _mm_add_pd(velecsum,velec);
214             vgbsum           = _mm_add_pd(vgbsum,vgb);
215
216             fscal            = felec;
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm_mul_pd(fscal,dx00);
220             ty               = _mm_mul_pd(fscal,dy00);
221             tz               = _mm_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm_add_pd(fix0,tx);
225             fiy0             = _mm_add_pd(fiy0,ty);
226             fiz0             = _mm_add_pd(fiz0,tz);
227
228             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
229
230             /* Inner loop uses 58 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             jnrA             = jjnr[jidx];
237             j_coord_offsetA  = DIM*jnrA;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241                                               &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm_invsqrt_pd(rsq00);
252
253             /* Load parameters for j particles */
254             jq0              = _mm_load_sd(charge+jnrA+0);
255             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm_mul_pd(iq0,jq0);
265
266             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
267             isaprod          = _mm_mul_pd(isai0,isaj0);
268             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
269             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
270
271             /* Calculate generalized born table index - this is a separate table from the normal one,
272              * but we use the same procedure by multiplying r with scale and truncating to integer.
273              */
274             rt               = _mm_mul_pd(r00,gbscale);
275             gbitab           = _mm_cvttpd_epi32(rt);
276             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
277             gbitab           = _mm_slli_epi32(gbitab,2);
278
279             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
280             F                = _mm_setzero_pd();
281             GMX_MM_TRANSPOSE2_PD(Y,F);
282             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
283             H                = _mm_setzero_pd();
284             GMX_MM_TRANSPOSE2_PD(G,H);
285             Heps             = _mm_mul_pd(gbeps,H);
286             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
287             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
288             vgb              = _mm_mul_pd(gbqqfactor,VV);
289
290             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
292             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
293             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
294             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
295             velec            = _mm_mul_pd(qq00,rinv00);
296             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
300             velecsum         = _mm_add_pd(velecsum,velec);
301             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
302             vgbsum           = _mm_add_pd(vgbsum,vgb);
303
304             fscal            = felec;
305
306             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_pd(fscal,dx00);
310             ty               = _mm_mul_pd(fscal,dy00);
311             tz               = _mm_mul_pd(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm_add_pd(fix0,tx);
315             fiy0             = _mm_add_pd(fiy0,ty);
316             fiz0             = _mm_add_pd(fiz0,tz);
317
318             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
319
320             /* Inner loop uses 58 flops */
321         }
322
323         /* End of innermost loop */
324
325         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
326                                               f+i_coord_offset,fshift+i_shift_offset);
327
328         ggid                        = gid[iidx];
329         /* Update potential energies */
330         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
331         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
332         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
333         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
334
335         /* Increment number of inner iterations */
336         inneriter                  += j_index_end - j_index_start;
337
338         /* Outer loop uses 9 flops */
339     }
340
341     /* Increment number of outer iterations */
342     outeriter        += nri;
343
344     /* Update outer/inner flops */
345
346     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
347 }
348 /*
349  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
350  * Electrostatics interaction: GeneralizedBorn
351  * VdW interaction:            None
352  * Geometry:                   Particle-Particle
353  * Calculate force/pot:        Force
354  */
355 void
356 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
357                     (t_nblist * gmx_restrict                nlist,
358                      rvec * gmx_restrict                    xx,
359                      rvec * gmx_restrict                    ff,
360                      t_forcerec * gmx_restrict              fr,
361                      t_mdatoms * gmx_restrict               mdatoms,
362                      nb_kernel_data_t * gmx_restrict        kernel_data,
363                      t_nrnb * gmx_restrict                  nrnb)
364 {
365     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
366      * just 0 for non-waters.
367      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
368      * jnr indices corresponding to data put in the four positions in the SIMD register.
369      */
370     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
371     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
372     int              jnrA,jnrB;
373     int              j_coord_offsetA,j_coord_offsetB;
374     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
375     real             rcutoff_scalar;
376     real             *shiftvec,*fshift,*x,*f;
377     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
378     int              vdwioffset0;
379     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
380     int              vdwjidx0A,vdwjidx0B;
381     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
382     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
383     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
384     real             *charge;
385     __m128i          gbitab;
386     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
387     __m128d          minushalf = _mm_set1_pd(-0.5);
388     real             *invsqrta,*dvda,*gbtab;
389     __m128i          vfitab;
390     __m128i          ifour       = _mm_set1_epi32(4);
391     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
392     real             *vftab;
393     __m128d          dummy_mask,cutoff_mask;
394     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
395     __m128d          one     = _mm_set1_pd(1.0);
396     __m128d          two     = _mm_set1_pd(2.0);
397     x                = xx[0];
398     f                = ff[0];
399
400     nri              = nlist->nri;
401     iinr             = nlist->iinr;
402     jindex           = nlist->jindex;
403     jjnr             = nlist->jjnr;
404     shiftidx         = nlist->shift;
405     gid              = nlist->gid;
406     shiftvec         = fr->shift_vec[0];
407     fshift           = fr->fshift[0];
408     facel            = _mm_set1_pd(fr->epsfac);
409     charge           = mdatoms->chargeA;
410
411     invsqrta         = fr->invsqrta;
412     dvda             = fr->dvda;
413     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
414     gbtab            = fr->gbtab.data;
415     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
416
417     /* Avoid stupid compiler warnings */
418     jnrA = jnrB = 0;
419     j_coord_offsetA = 0;
420     j_coord_offsetB = 0;
421
422     outeriter        = 0;
423     inneriter        = 0;
424
425     /* Start outer loop over neighborlists */
426     for(iidx=0; iidx<nri; iidx++)
427     {
428         /* Load shift vector for this list */
429         i_shift_offset   = DIM*shiftidx[iidx];
430
431         /* Load limits for loop over neighbors */
432         j_index_start    = jindex[iidx];
433         j_index_end      = jindex[iidx+1];
434
435         /* Get outer coordinate index */
436         inr              = iinr[iidx];
437         i_coord_offset   = DIM*inr;
438
439         /* Load i particle coords and add shift vector */
440         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
441
442         fix0             = _mm_setzero_pd();
443         fiy0             = _mm_setzero_pd();
444         fiz0             = _mm_setzero_pd();
445
446         /* Load parameters for i particles */
447         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
448         isai0            = _mm_load1_pd(invsqrta+inr+0);
449
450         dvdasum          = _mm_setzero_pd();
451
452         /* Start inner kernel loop */
453         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
454         {
455
456             /* Get j neighbor index, and coordinate index */
457             jnrA             = jjnr[jidx];
458             jnrB             = jjnr[jidx+1];
459             j_coord_offsetA  = DIM*jnrA;
460             j_coord_offsetB  = DIM*jnrB;
461
462             /* load j atom coordinates */
463             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
464                                               &jx0,&jy0,&jz0);
465
466             /* Calculate displacement vector */
467             dx00             = _mm_sub_pd(ix0,jx0);
468             dy00             = _mm_sub_pd(iy0,jy0);
469             dz00             = _mm_sub_pd(iz0,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
473
474             rinv00           = gmx_mm_invsqrt_pd(rsq00);
475
476             /* Load parameters for j particles */
477             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
478             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488
489             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
490             isaprod          = _mm_mul_pd(isai0,isaj0);
491             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
492             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
493
494             /* Calculate generalized born table index - this is a separate table from the normal one,
495              * but we use the same procedure by multiplying r with scale and truncating to integer.
496              */
497             rt               = _mm_mul_pd(r00,gbscale);
498             gbitab           = _mm_cvttpd_epi32(rt);
499             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
500             gbitab           = _mm_slli_epi32(gbitab,2);
501
502             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
503             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
504             GMX_MM_TRANSPOSE2_PD(Y,F);
505             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
506             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
507             GMX_MM_TRANSPOSE2_PD(G,H);
508             Heps             = _mm_mul_pd(gbeps,H);
509             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
510             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
511             vgb              = _mm_mul_pd(gbqqfactor,VV);
512
513             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
514             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
515             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
516             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
517             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
518             velec            = _mm_mul_pd(qq00,rinv00);
519             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
520
521             fscal            = felec;
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_pd(fscal,dx00);
525             ty               = _mm_mul_pd(fscal,dy00);
526             tz               = _mm_mul_pd(fscal,dz00);
527
528             /* Update vectorial force */
529             fix0             = _mm_add_pd(fix0,tx);
530             fiy0             = _mm_add_pd(fiy0,ty);
531             fiz0             = _mm_add_pd(fiz0,tz);
532
533             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
534
535             /* Inner loop uses 56 flops */
536         }
537
538         if(jidx<j_index_end)
539         {
540
541             jnrA             = jjnr[jidx];
542             j_coord_offsetA  = DIM*jnrA;
543
544             /* load j atom coordinates */
545             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
546                                               &jx0,&jy0,&jz0);
547
548             /* Calculate displacement vector */
549             dx00             = _mm_sub_pd(ix0,jx0);
550             dy00             = _mm_sub_pd(iy0,jy0);
551             dz00             = _mm_sub_pd(iz0,jz0);
552
553             /* Calculate squared distance and things based on it */
554             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
555
556             rinv00           = gmx_mm_invsqrt_pd(rsq00);
557
558             /* Load parameters for j particles */
559             jq0              = _mm_load_sd(charge+jnrA+0);
560             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             r00              = _mm_mul_pd(rsq00,rinv00);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq00             = _mm_mul_pd(iq0,jq0);
570
571             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
572             isaprod          = _mm_mul_pd(isai0,isaj0);
573             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
574             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
575
576             /* Calculate generalized born table index - this is a separate table from the normal one,
577              * but we use the same procedure by multiplying r with scale and truncating to integer.
578              */
579             rt               = _mm_mul_pd(r00,gbscale);
580             gbitab           = _mm_cvttpd_epi32(rt);
581             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
582             gbitab           = _mm_slli_epi32(gbitab,2);
583
584             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
585             F                = _mm_setzero_pd();
586             GMX_MM_TRANSPOSE2_PD(Y,F);
587             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
588             H                = _mm_setzero_pd();
589             GMX_MM_TRANSPOSE2_PD(G,H);
590             Heps             = _mm_mul_pd(gbeps,H);
591             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
592             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
593             vgb              = _mm_mul_pd(gbqqfactor,VV);
594
595             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
596             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
597             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
598             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
599             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
600             velec            = _mm_mul_pd(qq00,rinv00);
601             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
602
603             fscal            = felec;
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_pd(fscal,dx00);
609             ty               = _mm_mul_pd(fscal,dy00);
610             tz               = _mm_mul_pd(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm_add_pd(fix0,tx);
614             fiy0             = _mm_add_pd(fiy0,ty);
615             fiz0             = _mm_add_pd(fiz0,tz);
616
617             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
618
619             /* Inner loop uses 56 flops */
620         }
621
622         /* End of innermost loop */
623
624         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
625                                               f+i_coord_offset,fshift+i_shift_offset);
626
627         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
628         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 7 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
642 }