Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          gbitab;
87     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
88     __m128d          minushalf = _mm_set1_pd(-0.5);
89     real             *invsqrta,*dvda,*gbtab;
90     __m128i          vfitab;
91     __m128i          ifour       = _mm_set1_epi32(4);
92     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
93     real             *vftab;
94     __m128d          dummy_mask,cutoff_mask;
95     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96     __m128d          one     = _mm_set1_pd(1.0);
97     __m128d          two     = _mm_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_pd(fr->ic->epsfac);
110     charge           = mdatoms->chargeA;
111
112     invsqrta         = fr->invsqrta;
113     dvda             = fr->dvda;
114     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
115     gbtab            = fr->gbtab->data;
116     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149         isai0            = _mm_load1_pd(invsqrta+inr+0);
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         dvdasum          = _mm_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_pd(ix0,jx0);
172             dy00             = _mm_sub_pd(iy0,jy0);
173             dz00             = _mm_sub_pd(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177
178             rinv00           = sse41_invsqrt_d(rsq00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             r00              = _mm_mul_pd(rsq00,rinv00);
189
190             /* Compute parameters for interactions between i and j atoms */
191             qq00             = _mm_mul_pd(iq0,jq0);
192
193             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
194             isaprod          = _mm_mul_pd(isai0,isaj0);
195             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
196             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
197
198             /* Calculate generalized born table index - this is a separate table from the normal one,
199              * but we use the same procedure by multiplying r with scale and truncating to integer.
200              */
201             rt               = _mm_mul_pd(r00,gbscale);
202             gbitab           = _mm_cvttpd_epi32(rt);
203             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
204             gbitab           = _mm_slli_epi32(gbitab,2);
205
206             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
207             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
208             GMX_MM_TRANSPOSE2_PD(Y,F);
209             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
210             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
211             GMX_MM_TRANSPOSE2_PD(G,H);
212             Heps             = _mm_mul_pd(gbeps,H);
213             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
214             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
215             vgb              = _mm_mul_pd(gbqqfactor,VV);
216
217             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
218             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
219             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
220             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
221             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
222             velec            = _mm_mul_pd(qq00,rinv00);
223             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             velecsum         = _mm_add_pd(velecsum,velec);
227             vgbsum           = _mm_add_pd(vgbsum,vgb);
228
229             fscal            = felec;
230
231             /* Calculate temporary vectorial force */
232             tx               = _mm_mul_pd(fscal,dx00);
233             ty               = _mm_mul_pd(fscal,dy00);
234             tz               = _mm_mul_pd(fscal,dz00);
235
236             /* Update vectorial force */
237             fix0             = _mm_add_pd(fix0,tx);
238             fiy0             = _mm_add_pd(fiy0,ty);
239             fiz0             = _mm_add_pd(fiz0,tz);
240
241             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
242
243             /* Inner loop uses 58 flops */
244         }
245
246         if(jidx<j_index_end)
247         {
248
249             jnrA             = jjnr[jidx];
250             j_coord_offsetA  = DIM*jnrA;
251
252             /* load j atom coordinates */
253             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
254                                               &jx0,&jy0,&jz0);
255
256             /* Calculate displacement vector */
257             dx00             = _mm_sub_pd(ix0,jx0);
258             dy00             = _mm_sub_pd(iy0,jy0);
259             dz00             = _mm_sub_pd(iz0,jz0);
260
261             /* Calculate squared distance and things based on it */
262             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
263
264             rinv00           = sse41_invsqrt_d(rsq00);
265
266             /* Load parameters for j particles */
267             jq0              = _mm_load_sd(charge+jnrA+0);
268             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _mm_mul_pd(rsq00,rinv00);
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq00             = _mm_mul_pd(iq0,jq0);
278
279             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
280             isaprod          = _mm_mul_pd(isai0,isaj0);
281             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
282             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
283
284             /* Calculate generalized born table index - this is a separate table from the normal one,
285              * but we use the same procedure by multiplying r with scale and truncating to integer.
286              */
287             rt               = _mm_mul_pd(r00,gbscale);
288             gbitab           = _mm_cvttpd_epi32(rt);
289             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
290             gbitab           = _mm_slli_epi32(gbitab,2);
291
292             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
293             F                = _mm_setzero_pd();
294             GMX_MM_TRANSPOSE2_PD(Y,F);
295             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
296             H                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(G,H);
298             Heps             = _mm_mul_pd(gbeps,H);
299             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
300             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
301             vgb              = _mm_mul_pd(gbqqfactor,VV);
302
303             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
304             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
305             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
306             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
307             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
308             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
309             velec            = _mm_mul_pd(qq00,rinv00);
310             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
314             velecsum         = _mm_add_pd(velecsum,velec);
315             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
316             vgbsum           = _mm_add_pd(vgbsum,vgb);
317
318             fscal            = felec;
319
320             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_pd(fscal,dx00);
324             ty               = _mm_mul_pd(fscal,dy00);
325             tz               = _mm_mul_pd(fscal,dz00);
326
327             /* Update vectorial force */
328             fix0             = _mm_add_pd(fix0,tx);
329             fiy0             = _mm_add_pd(fiy0,ty);
330             fiz0             = _mm_add_pd(fiz0,tz);
331
332             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
333
334             /* Inner loop uses 58 flops */
335         }
336
337         /* End of innermost loop */
338
339         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
340                                               f+i_coord_offset,fshift+i_shift_offset);
341
342         ggid                        = gid[iidx];
343         /* Update potential energies */
344         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
345         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
346         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
347         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
348
349         /* Increment number of inner iterations */
350         inneriter                  += j_index_end - j_index_start;
351
352         /* Outer loop uses 9 flops */
353     }
354
355     /* Increment number of outer iterations */
356     outeriter        += nri;
357
358     /* Update outer/inner flops */
359
360     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
361 }
362 /*
363  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
364  * Electrostatics interaction: GeneralizedBorn
365  * VdW interaction:            None
366  * Geometry:                   Particle-Particle
367  * Calculate force/pot:        Force
368  */
369 void
370 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
371                     (t_nblist                    * gmx_restrict       nlist,
372                      rvec                        * gmx_restrict          xx,
373                      rvec                        * gmx_restrict          ff,
374                      struct t_forcerec           * gmx_restrict          fr,
375                      t_mdatoms                   * gmx_restrict     mdatoms,
376                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
377                      t_nrnb                      * gmx_restrict        nrnb)
378 {
379     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
380      * just 0 for non-waters.
381      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
382      * jnr indices corresponding to data put in the four positions in the SIMD register.
383      */
384     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
385     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
386     int              jnrA,jnrB;
387     int              j_coord_offsetA,j_coord_offsetB;
388     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
389     real             rcutoff_scalar;
390     real             *shiftvec,*fshift,*x,*f;
391     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
392     int              vdwioffset0;
393     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
394     int              vdwjidx0A,vdwjidx0B;
395     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
396     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
397     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
398     real             *charge;
399     __m128i          gbitab;
400     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
401     __m128d          minushalf = _mm_set1_pd(-0.5);
402     real             *invsqrta,*dvda,*gbtab;
403     __m128i          vfitab;
404     __m128i          ifour       = _mm_set1_epi32(4);
405     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
406     real             *vftab;
407     __m128d          dummy_mask,cutoff_mask;
408     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
409     __m128d          one     = _mm_set1_pd(1.0);
410     __m128d          two     = _mm_set1_pd(2.0);
411     x                = xx[0];
412     f                = ff[0];
413
414     nri              = nlist->nri;
415     iinr             = nlist->iinr;
416     jindex           = nlist->jindex;
417     jjnr             = nlist->jjnr;
418     shiftidx         = nlist->shift;
419     gid              = nlist->gid;
420     shiftvec         = fr->shift_vec[0];
421     fshift           = fr->fshift[0];
422     facel            = _mm_set1_pd(fr->ic->epsfac);
423     charge           = mdatoms->chargeA;
424
425     invsqrta         = fr->invsqrta;
426     dvda             = fr->dvda;
427     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
428     gbtab            = fr->gbtab->data;
429     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
430
431     /* Avoid stupid compiler warnings */
432     jnrA = jnrB = 0;
433     j_coord_offsetA = 0;
434     j_coord_offsetB = 0;
435
436     outeriter        = 0;
437     inneriter        = 0;
438
439     /* Start outer loop over neighborlists */
440     for(iidx=0; iidx<nri; iidx++)
441     {
442         /* Load shift vector for this list */
443         i_shift_offset   = DIM*shiftidx[iidx];
444
445         /* Load limits for loop over neighbors */
446         j_index_start    = jindex[iidx];
447         j_index_end      = jindex[iidx+1];
448
449         /* Get outer coordinate index */
450         inr              = iinr[iidx];
451         i_coord_offset   = DIM*inr;
452
453         /* Load i particle coords and add shift vector */
454         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
455
456         fix0             = _mm_setzero_pd();
457         fiy0             = _mm_setzero_pd();
458         fiz0             = _mm_setzero_pd();
459
460         /* Load parameters for i particles */
461         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
462         isai0            = _mm_load1_pd(invsqrta+inr+0);
463
464         dvdasum          = _mm_setzero_pd();
465
466         /* Start inner kernel loop */
467         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
468         {
469
470             /* Get j neighbor index, and coordinate index */
471             jnrA             = jjnr[jidx];
472             jnrB             = jjnr[jidx+1];
473             j_coord_offsetA  = DIM*jnrA;
474             j_coord_offsetB  = DIM*jnrB;
475
476             /* load j atom coordinates */
477             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
478                                               &jx0,&jy0,&jz0);
479
480             /* Calculate displacement vector */
481             dx00             = _mm_sub_pd(ix0,jx0);
482             dy00             = _mm_sub_pd(iy0,jy0);
483             dz00             = _mm_sub_pd(iz0,jz0);
484
485             /* Calculate squared distance and things based on it */
486             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
487
488             rinv00           = sse41_invsqrt_d(rsq00);
489
490             /* Load parameters for j particles */
491             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
492             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r00              = _mm_mul_pd(rsq00,rinv00);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq00             = _mm_mul_pd(iq0,jq0);
502
503             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
504             isaprod          = _mm_mul_pd(isai0,isaj0);
505             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
506             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
507
508             /* Calculate generalized born table index - this is a separate table from the normal one,
509              * but we use the same procedure by multiplying r with scale and truncating to integer.
510              */
511             rt               = _mm_mul_pd(r00,gbscale);
512             gbitab           = _mm_cvttpd_epi32(rt);
513             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
514             gbitab           = _mm_slli_epi32(gbitab,2);
515
516             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
517             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
518             GMX_MM_TRANSPOSE2_PD(Y,F);
519             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
520             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
521             GMX_MM_TRANSPOSE2_PD(G,H);
522             Heps             = _mm_mul_pd(gbeps,H);
523             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
524             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
525             vgb              = _mm_mul_pd(gbqqfactor,VV);
526
527             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
528             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
529             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
530             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
531             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
532             velec            = _mm_mul_pd(qq00,rinv00);
533             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
534
535             fscal            = felec;
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm_mul_pd(fscal,dx00);
539             ty               = _mm_mul_pd(fscal,dy00);
540             tz               = _mm_mul_pd(fscal,dz00);
541
542             /* Update vectorial force */
543             fix0             = _mm_add_pd(fix0,tx);
544             fiy0             = _mm_add_pd(fiy0,ty);
545             fiz0             = _mm_add_pd(fiz0,tz);
546
547             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
548
549             /* Inner loop uses 56 flops */
550         }
551
552         if(jidx<j_index_end)
553         {
554
555             jnrA             = jjnr[jidx];
556             j_coord_offsetA  = DIM*jnrA;
557
558             /* load j atom coordinates */
559             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
560                                               &jx0,&jy0,&jz0);
561
562             /* Calculate displacement vector */
563             dx00             = _mm_sub_pd(ix0,jx0);
564             dy00             = _mm_sub_pd(iy0,jy0);
565             dz00             = _mm_sub_pd(iz0,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
569
570             rinv00           = sse41_invsqrt_d(rsq00);
571
572             /* Load parameters for j particles */
573             jq0              = _mm_load_sd(charge+jnrA+0);
574             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r00              = _mm_mul_pd(rsq00,rinv00);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq00             = _mm_mul_pd(iq0,jq0);
584
585             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
586             isaprod          = _mm_mul_pd(isai0,isaj0);
587             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
588             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
589
590             /* Calculate generalized born table index - this is a separate table from the normal one,
591              * but we use the same procedure by multiplying r with scale and truncating to integer.
592              */
593             rt               = _mm_mul_pd(r00,gbscale);
594             gbitab           = _mm_cvttpd_epi32(rt);
595             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
596             gbitab           = _mm_slli_epi32(gbitab,2);
597
598             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
599             F                = _mm_setzero_pd();
600             GMX_MM_TRANSPOSE2_PD(Y,F);
601             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
602             H                = _mm_setzero_pd();
603             GMX_MM_TRANSPOSE2_PD(G,H);
604             Heps             = _mm_mul_pd(gbeps,H);
605             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
606             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
607             vgb              = _mm_mul_pd(gbqqfactor,VV);
608
609             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
610             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
611             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
612             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
613             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
614             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
615             velec            = _mm_mul_pd(qq00,rinv00);
616             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
617
618             fscal            = felec;
619
620             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_pd(fscal,dx00);
624             ty               = _mm_mul_pd(fscal,dy00);
625             tz               = _mm_mul_pd(fscal,dz00);
626
627             /* Update vectorial force */
628             fix0             = _mm_add_pd(fix0,tx);
629             fiy0             = _mm_add_pd(fiy0,ty);
630             fiz0             = _mm_add_pd(fiz0,tz);
631
632             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
633
634             /* Inner loop uses 56 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
640                                               f+i_coord_offset,fshift+i_shift_offset);
641
642         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
643         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
644
645         /* Increment number of inner iterations */
646         inneriter                  += j_index_end - j_index_start;
647
648         /* Outer loop uses 7 flops */
649     }
650
651     /* Increment number of outer iterations */
652     outeriter        += nri;
653
654     /* Update outer/inner flops */
655
656     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
657 }