aed6e61e2f18e935f2c1631d9de79449c788b67e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          gbitab;
88     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
89     __m128d          minushalf = _mm_set1_pd(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     invsqrta         = fr->invsqrta;
114     dvda             = fr->dvda;
115     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
116     gbtab            = fr->gbtab.data;
117     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
150         isai0            = _mm_load1_pd(invsqrta+inr+0);
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154         vgbsum           = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             r00              = _mm_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193
194             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
195             isaprod          = _mm_mul_pd(isai0,isaj0);
196             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
197             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
198
199             /* Calculate generalized born table index - this is a separate table from the normal one,
200              * but we use the same procedure by multiplying r with scale and truncating to integer.
201              */
202             rt               = _mm_mul_pd(r00,gbscale);
203             gbitab           = _mm_cvttpd_epi32(rt);
204             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
205             gbitab           = _mm_slli_epi32(gbitab,2);
206
207             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
208             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
209             GMX_MM_TRANSPOSE2_PD(Y,F);
210             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
211             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
212             GMX_MM_TRANSPOSE2_PD(G,H);
213             Heps             = _mm_mul_pd(gbeps,H);
214             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
215             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
216             vgb              = _mm_mul_pd(gbqqfactor,VV);
217
218             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
219             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
220             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
221             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
222             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
223             velec            = _mm_mul_pd(qq00,rinv00);
224             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velecsum         = _mm_add_pd(velecsum,velec);
228             vgbsum           = _mm_add_pd(vgbsum,vgb);
229
230             fscal            = felec;
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_pd(fscal,dx00);
234             ty               = _mm_mul_pd(fscal,dy00);
235             tz               = _mm_mul_pd(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm_add_pd(fix0,tx);
239             fiy0             = _mm_add_pd(fiy0,ty);
240             fiz0             = _mm_add_pd(fiz0,tz);
241
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
243
244             /* Inner loop uses 58 flops */
245         }
246
247         if(jidx<j_index_end)
248         {
249
250             jnrA             = jjnr[jidx];
251             j_coord_offsetA  = DIM*jnrA;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_pd(ix0,jx0);
259             dy00             = _mm_sub_pd(iy0,jy0);
260             dz00             = _mm_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = gmx_mm_invsqrt_pd(rsq00);
266
267             /* Load parameters for j particles */
268             jq0              = _mm_load_sd(charge+jnrA+0);
269             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r00              = _mm_mul_pd(rsq00,rinv00);
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq00             = _mm_mul_pd(iq0,jq0);
279
280             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
281             isaprod          = _mm_mul_pd(isai0,isaj0);
282             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
283             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
284
285             /* Calculate generalized born table index - this is a separate table from the normal one,
286              * but we use the same procedure by multiplying r with scale and truncating to integer.
287              */
288             rt               = _mm_mul_pd(r00,gbscale);
289             gbitab           = _mm_cvttpd_epi32(rt);
290             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
291             gbitab           = _mm_slli_epi32(gbitab,2);
292
293             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
294             F                = _mm_setzero_pd();
295             GMX_MM_TRANSPOSE2_PD(Y,F);
296             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
297             H                = _mm_setzero_pd();
298             GMX_MM_TRANSPOSE2_PD(G,H);
299             Heps             = _mm_mul_pd(gbeps,H);
300             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
301             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
302             vgb              = _mm_mul_pd(gbqqfactor,VV);
303
304             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
305             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
306             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
307             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
308             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
309             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
310             velec            = _mm_mul_pd(qq00,rinv00);
311             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
315             velecsum         = _mm_add_pd(velecsum,velec);
316             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
317             vgbsum           = _mm_add_pd(vgbsum,vgb);
318
319             fscal            = felec;
320
321             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm_mul_pd(fscal,dx00);
325             ty               = _mm_mul_pd(fscal,dy00);
326             tz               = _mm_mul_pd(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm_add_pd(fix0,tx);
330             fiy0             = _mm_add_pd(fiy0,ty);
331             fiz0             = _mm_add_pd(fiz0,tz);
332
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
334
335             /* Inner loop uses 58 flops */
336         }
337
338         /* End of innermost loop */
339
340         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
341                                               f+i_coord_offset,fshift+i_shift_offset);
342
343         ggid                        = gid[iidx];
344         /* Update potential energies */
345         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
346         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
347         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
348         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 9 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
365  * Electrostatics interaction: GeneralizedBorn
366  * VdW interaction:            None
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
372                     (t_nblist                    * gmx_restrict       nlist,
373                      rvec                        * gmx_restrict          xx,
374                      rvec                        * gmx_restrict          ff,
375                      t_forcerec                  * gmx_restrict          fr,
376                      t_mdatoms                   * gmx_restrict     mdatoms,
377                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378                      t_nrnb                      * gmx_restrict        nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB;
388     int              j_coord_offsetA,j_coord_offsetB;
389     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
390     real             rcutoff_scalar;
391     real             *shiftvec,*fshift,*x,*f;
392     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393     int              vdwioffset0;
394     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395     int              vdwjidx0A,vdwjidx0B;
396     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
399     real             *charge;
400     __m128i          gbitab;
401     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
402     __m128d          minushalf = _mm_set1_pd(-0.5);
403     real             *invsqrta,*dvda,*gbtab;
404     __m128i          vfitab;
405     __m128i          ifour       = _mm_set1_epi32(4);
406     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
407     real             *vftab;
408     __m128d          dummy_mask,cutoff_mask;
409     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
410     __m128d          one     = _mm_set1_pd(1.0);
411     __m128d          two     = _mm_set1_pd(2.0);
412     x                = xx[0];
413     f                = ff[0];
414
415     nri              = nlist->nri;
416     iinr             = nlist->iinr;
417     jindex           = nlist->jindex;
418     jjnr             = nlist->jjnr;
419     shiftidx         = nlist->shift;
420     gid              = nlist->gid;
421     shiftvec         = fr->shift_vec[0];
422     fshift           = fr->fshift[0];
423     facel            = _mm_set1_pd(fr->epsfac);
424     charge           = mdatoms->chargeA;
425
426     invsqrta         = fr->invsqrta;
427     dvda             = fr->dvda;
428     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
429     gbtab            = fr->gbtab.data;
430     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
431
432     /* Avoid stupid compiler warnings */
433     jnrA = jnrB = 0;
434     j_coord_offsetA = 0;
435     j_coord_offsetB = 0;
436
437     outeriter        = 0;
438     inneriter        = 0;
439
440     /* Start outer loop over neighborlists */
441     for(iidx=0; iidx<nri; iidx++)
442     {
443         /* Load shift vector for this list */
444         i_shift_offset   = DIM*shiftidx[iidx];
445
446         /* Load limits for loop over neighbors */
447         j_index_start    = jindex[iidx];
448         j_index_end      = jindex[iidx+1];
449
450         /* Get outer coordinate index */
451         inr              = iinr[iidx];
452         i_coord_offset   = DIM*inr;
453
454         /* Load i particle coords and add shift vector */
455         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
456
457         fix0             = _mm_setzero_pd();
458         fiy0             = _mm_setzero_pd();
459         fiz0             = _mm_setzero_pd();
460
461         /* Load parameters for i particles */
462         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
463         isai0            = _mm_load1_pd(invsqrta+inr+0);
464
465         dvdasum          = _mm_setzero_pd();
466
467         /* Start inner kernel loop */
468         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
469         {
470
471             /* Get j neighbor index, and coordinate index */
472             jnrA             = jjnr[jidx];
473             jnrB             = jjnr[jidx+1];
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476
477             /* load j atom coordinates */
478             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
479                                               &jx0,&jy0,&jz0);
480
481             /* Calculate displacement vector */
482             dx00             = _mm_sub_pd(ix0,jx0);
483             dy00             = _mm_sub_pd(iy0,jy0);
484             dz00             = _mm_sub_pd(iz0,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
488
489             rinv00           = gmx_mm_invsqrt_pd(rsq00);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
493             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r00              = _mm_mul_pd(rsq00,rinv00);
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq00             = _mm_mul_pd(iq0,jq0);
503
504             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
505             isaprod          = _mm_mul_pd(isai0,isaj0);
506             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
507             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
508
509             /* Calculate generalized born table index - this is a separate table from the normal one,
510              * but we use the same procedure by multiplying r with scale and truncating to integer.
511              */
512             rt               = _mm_mul_pd(r00,gbscale);
513             gbitab           = _mm_cvttpd_epi32(rt);
514             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
515             gbitab           = _mm_slli_epi32(gbitab,2);
516
517             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
518             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
519             GMX_MM_TRANSPOSE2_PD(Y,F);
520             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
521             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
522             GMX_MM_TRANSPOSE2_PD(G,H);
523             Heps             = _mm_mul_pd(gbeps,H);
524             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
525             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
526             vgb              = _mm_mul_pd(gbqqfactor,VV);
527
528             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
529             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
530             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
531             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
532             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
533             velec            = _mm_mul_pd(qq00,rinv00);
534             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
535
536             fscal            = felec;
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_pd(fscal,dx00);
540             ty               = _mm_mul_pd(fscal,dy00);
541             tz               = _mm_mul_pd(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm_add_pd(fix0,tx);
545             fiy0             = _mm_add_pd(fiy0,ty);
546             fiz0             = _mm_add_pd(fiz0,tz);
547
548             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
549
550             /* Inner loop uses 56 flops */
551         }
552
553         if(jidx<j_index_end)
554         {
555
556             jnrA             = jjnr[jidx];
557             j_coord_offsetA  = DIM*jnrA;
558
559             /* load j atom coordinates */
560             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
561                                               &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm_sub_pd(ix0,jx0);
565             dy00             = _mm_sub_pd(iy0,jy0);
566             dz00             = _mm_sub_pd(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
570
571             rinv00           = gmx_mm_invsqrt_pd(rsq00);
572
573             /* Load parameters for j particles */
574             jq0              = _mm_load_sd(charge+jnrA+0);
575             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r00              = _mm_mul_pd(rsq00,rinv00);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq00             = _mm_mul_pd(iq0,jq0);
585
586             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
587             isaprod          = _mm_mul_pd(isai0,isaj0);
588             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
589             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
590
591             /* Calculate generalized born table index - this is a separate table from the normal one,
592              * but we use the same procedure by multiplying r with scale and truncating to integer.
593              */
594             rt               = _mm_mul_pd(r00,gbscale);
595             gbitab           = _mm_cvttpd_epi32(rt);
596             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
597             gbitab           = _mm_slli_epi32(gbitab,2);
598
599             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
600             F                = _mm_setzero_pd();
601             GMX_MM_TRANSPOSE2_PD(Y,F);
602             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
603             H                = _mm_setzero_pd();
604             GMX_MM_TRANSPOSE2_PD(G,H);
605             Heps             = _mm_mul_pd(gbeps,H);
606             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
607             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
608             vgb              = _mm_mul_pd(gbqqfactor,VV);
609
610             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
611             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
612             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
613             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
614             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
615             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
616             velec            = _mm_mul_pd(qq00,rinv00);
617             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
618
619             fscal            = felec;
620
621             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_pd(fscal,dx00);
625             ty               = _mm_mul_pd(fscal,dy00);
626             tz               = _mm_mul_pd(fscal,dz00);
627
628             /* Update vectorial force */
629             fix0             = _mm_add_pd(fix0,tx);
630             fiy0             = _mm_add_pd(fiy0,ty);
631             fiz0             = _mm_add_pd(fiz0,tz);
632
633             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
634
635             /* Inner loop uses 56 flops */
636         }
637
638         /* End of innermost loop */
639
640         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
641                                               f+i_coord_offset,fshift+i_shift_offset);
642
643         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
644         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 7 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
658 }