Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     invsqrta         = fr->invsqrta;
116     dvda             = fr->dvda;
117     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
118     gbtab            = fr->gbtab.data;
119     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         isai0            = _mm_load1_pd(invsqrta+inr+0);
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vgbsum           = _mm_setzero_pd();
157         dvdasum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195
196             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
197             isaprod          = _mm_mul_pd(isai0,isaj0);
198             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
199             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
200
201             /* Calculate generalized born table index - this is a separate table from the normal one,
202              * but we use the same procedure by multiplying r with scale and truncating to integer.
203              */
204             rt               = _mm_mul_pd(r00,gbscale);
205             gbitab           = _mm_cvttpd_epi32(rt);
206             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
207             gbitab           = _mm_slli_epi32(gbitab,2);
208
209             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
210             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
211             GMX_MM_TRANSPOSE2_PD(Y,F);
212             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
213             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
214             GMX_MM_TRANSPOSE2_PD(G,H);
215             Heps             = _mm_mul_pd(gbeps,H);
216             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
217             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
218             vgb              = _mm_mul_pd(gbqqfactor,VV);
219
220             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
221             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
222             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
223             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
224             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
225             velec            = _mm_mul_pd(qq00,rinv00);
226             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _mm_add_pd(velecsum,velec);
230             vgbsum           = _mm_add_pd(vgbsum,vgb);
231
232             fscal            = felec;
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_pd(fscal,dx00);
236             ty               = _mm_mul_pd(fscal,dy00);
237             tz               = _mm_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_pd(fix0,tx);
241             fiy0             = _mm_add_pd(fiy0,ty);
242             fiz0             = _mm_add_pd(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245
246             /* Inner loop uses 58 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_pd(iq0,jq0);
281
282             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
283             isaprod          = _mm_mul_pd(isai0,isaj0);
284             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
285             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
286
287             /* Calculate generalized born table index - this is a separate table from the normal one,
288              * but we use the same procedure by multiplying r with scale and truncating to integer.
289              */
290             rt               = _mm_mul_pd(r00,gbscale);
291             gbitab           = _mm_cvttpd_epi32(rt);
292             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
293             gbitab           = _mm_slli_epi32(gbitab,2);
294
295             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
296             F                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(Y,F);
298             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
299             H                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(G,H);
301             Heps             = _mm_mul_pd(gbeps,H);
302             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
303             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
304             vgb              = _mm_mul_pd(gbqqfactor,VV);
305
306             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
307             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
308             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
309             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
310             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
311             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
312             velec            = _mm_mul_pd(qq00,rinv00);
313             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
317             velecsum         = _mm_add_pd(velecsum,velec);
318             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
319             vgbsum           = _mm_add_pd(vgbsum,vgb);
320
321             fscal            = felec;
322
323             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx00);
327             ty               = _mm_mul_pd(fscal,dy00);
328             tz               = _mm_mul_pd(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm_add_pd(fix0,tx);
332             fiy0             = _mm_add_pd(fiy0,ty);
333             fiz0             = _mm_add_pd(fiz0,tz);
334
335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
336
337             /* Inner loop uses 58 flops */
338         }
339
340         /* End of innermost loop */
341
342         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
343                                               f+i_coord_offset,fshift+i_shift_offset);
344
345         ggid                        = gid[iidx];
346         /* Update potential energies */
347         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
348         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
349         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
350         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
351
352         /* Increment number of inner iterations */
353         inneriter                  += j_index_end - j_index_start;
354
355         /* Outer loop uses 9 flops */
356     }
357
358     /* Increment number of outer iterations */
359     outeriter        += nri;
360
361     /* Update outer/inner flops */
362
363     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
364 }
365 /*
366  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
367  * Electrostatics interaction: GeneralizedBorn
368  * VdW interaction:            None
369  * Geometry:                   Particle-Particle
370  * Calculate force/pot:        Force
371  */
372 void
373 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
374                     (t_nblist                    * gmx_restrict       nlist,
375                      rvec                        * gmx_restrict          xx,
376                      rvec                        * gmx_restrict          ff,
377                      t_forcerec                  * gmx_restrict          fr,
378                      t_mdatoms                   * gmx_restrict     mdatoms,
379                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
380                      t_nrnb                      * gmx_restrict        nrnb)
381 {
382     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
383      * just 0 for non-waters.
384      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
385      * jnr indices corresponding to data put in the four positions in the SIMD register.
386      */
387     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
388     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
389     int              jnrA,jnrB;
390     int              j_coord_offsetA,j_coord_offsetB;
391     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
392     real             rcutoff_scalar;
393     real             *shiftvec,*fshift,*x,*f;
394     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
395     int              vdwioffset0;
396     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
397     int              vdwjidx0A,vdwjidx0B;
398     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
399     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
400     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
401     real             *charge;
402     __m128i          gbitab;
403     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
404     __m128d          minushalf = _mm_set1_pd(-0.5);
405     real             *invsqrta,*dvda,*gbtab;
406     __m128i          vfitab;
407     __m128i          ifour       = _mm_set1_epi32(4);
408     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
409     real             *vftab;
410     __m128d          dummy_mask,cutoff_mask;
411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412     __m128d          one     = _mm_set1_pd(1.0);
413     __m128d          two     = _mm_set1_pd(2.0);
414     x                = xx[0];
415     f                = ff[0];
416
417     nri              = nlist->nri;
418     iinr             = nlist->iinr;
419     jindex           = nlist->jindex;
420     jjnr             = nlist->jjnr;
421     shiftidx         = nlist->shift;
422     gid              = nlist->gid;
423     shiftvec         = fr->shift_vec[0];
424     fshift           = fr->fshift[0];
425     facel            = _mm_set1_pd(fr->epsfac);
426     charge           = mdatoms->chargeA;
427
428     invsqrta         = fr->invsqrta;
429     dvda             = fr->dvda;
430     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
431     gbtab            = fr->gbtab.data;
432     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
433
434     /* Avoid stupid compiler warnings */
435     jnrA = jnrB = 0;
436     j_coord_offsetA = 0;
437     j_coord_offsetB = 0;
438
439     outeriter        = 0;
440     inneriter        = 0;
441
442     /* Start outer loop over neighborlists */
443     for(iidx=0; iidx<nri; iidx++)
444     {
445         /* Load shift vector for this list */
446         i_shift_offset   = DIM*shiftidx[iidx];
447
448         /* Load limits for loop over neighbors */
449         j_index_start    = jindex[iidx];
450         j_index_end      = jindex[iidx+1];
451
452         /* Get outer coordinate index */
453         inr              = iinr[iidx];
454         i_coord_offset   = DIM*inr;
455
456         /* Load i particle coords and add shift vector */
457         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
458
459         fix0             = _mm_setzero_pd();
460         fiy0             = _mm_setzero_pd();
461         fiz0             = _mm_setzero_pd();
462
463         /* Load parameters for i particles */
464         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
465         isai0            = _mm_load1_pd(invsqrta+inr+0);
466
467         dvdasum          = _mm_setzero_pd();
468
469         /* Start inner kernel loop */
470         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
471         {
472
473             /* Get j neighbor index, and coordinate index */
474             jnrA             = jjnr[jidx];
475             jnrB             = jjnr[jidx+1];
476             j_coord_offsetA  = DIM*jnrA;
477             j_coord_offsetB  = DIM*jnrB;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               &jx0,&jy0,&jz0);
482
483             /* Calculate displacement vector */
484             dx00             = _mm_sub_pd(ix0,jx0);
485             dy00             = _mm_sub_pd(iy0,jy0);
486             dz00             = _mm_sub_pd(iz0,jz0);
487
488             /* Calculate squared distance and things based on it */
489             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490
491             rinv00           = gmx_mm_invsqrt_pd(rsq00);
492
493             /* Load parameters for j particles */
494             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
495             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             r00              = _mm_mul_pd(rsq00,rinv00);
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq00             = _mm_mul_pd(iq0,jq0);
505
506             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
507             isaprod          = _mm_mul_pd(isai0,isaj0);
508             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
509             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
510
511             /* Calculate generalized born table index - this is a separate table from the normal one,
512              * but we use the same procedure by multiplying r with scale and truncating to integer.
513              */
514             rt               = _mm_mul_pd(r00,gbscale);
515             gbitab           = _mm_cvttpd_epi32(rt);
516             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
517             gbitab           = _mm_slli_epi32(gbitab,2);
518
519             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
520             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
521             GMX_MM_TRANSPOSE2_PD(Y,F);
522             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
523             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
524             GMX_MM_TRANSPOSE2_PD(G,H);
525             Heps             = _mm_mul_pd(gbeps,H);
526             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
527             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
528             vgb              = _mm_mul_pd(gbqqfactor,VV);
529
530             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
531             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
532             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
533             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
534             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
535             velec            = _mm_mul_pd(qq00,rinv00);
536             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
537
538             fscal            = felec;
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm_mul_pd(fscal,dx00);
542             ty               = _mm_mul_pd(fscal,dy00);
543             tz               = _mm_mul_pd(fscal,dz00);
544
545             /* Update vectorial force */
546             fix0             = _mm_add_pd(fix0,tx);
547             fiy0             = _mm_add_pd(fiy0,ty);
548             fiz0             = _mm_add_pd(fiz0,tz);
549
550             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
551
552             /* Inner loop uses 56 flops */
553         }
554
555         if(jidx<j_index_end)
556         {
557
558             jnrA             = jjnr[jidx];
559             j_coord_offsetA  = DIM*jnrA;
560
561             /* load j atom coordinates */
562             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
563                                               &jx0,&jy0,&jz0);
564
565             /* Calculate displacement vector */
566             dx00             = _mm_sub_pd(ix0,jx0);
567             dy00             = _mm_sub_pd(iy0,jy0);
568             dz00             = _mm_sub_pd(iz0,jz0);
569
570             /* Calculate squared distance and things based on it */
571             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
572
573             rinv00           = gmx_mm_invsqrt_pd(rsq00);
574
575             /* Load parameters for j particles */
576             jq0              = _mm_load_sd(charge+jnrA+0);
577             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r00              = _mm_mul_pd(rsq00,rinv00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _mm_mul_pd(iq0,jq0);
587
588             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
589             isaprod          = _mm_mul_pd(isai0,isaj0);
590             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
591             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
592
593             /* Calculate generalized born table index - this is a separate table from the normal one,
594              * but we use the same procedure by multiplying r with scale and truncating to integer.
595              */
596             rt               = _mm_mul_pd(r00,gbscale);
597             gbitab           = _mm_cvttpd_epi32(rt);
598             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
599             gbitab           = _mm_slli_epi32(gbitab,2);
600
601             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
602             F                = _mm_setzero_pd();
603             GMX_MM_TRANSPOSE2_PD(Y,F);
604             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
605             H                = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(G,H);
607             Heps             = _mm_mul_pd(gbeps,H);
608             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
609             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
610             vgb              = _mm_mul_pd(gbqqfactor,VV);
611
612             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
613             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
614             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
615             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
616             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
617             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
618             velec            = _mm_mul_pd(qq00,rinv00);
619             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
620
621             fscal            = felec;
622
623             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_pd(fscal,dx00);
627             ty               = _mm_mul_pd(fscal,dy00);
628             tz               = _mm_mul_pd(fscal,dz00);
629
630             /* Update vectorial force */
631             fix0             = _mm_add_pd(fix0,tx);
632             fiy0             = _mm_add_pd(fiy0,ty);
633             fiz0             = _mm_add_pd(fiz0,tz);
634
635             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
636
637             /* Inner loop uses 56 flops */
638         }
639
640         /* End of innermost loop */
641
642         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
643                                               f+i_coord_offset,fshift+i_shift_offset);
644
645         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
646         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
647
648         /* Increment number of inner iterations */
649         inneriter                  += j_index_end - j_index_start;
650
651         /* Outer loop uses 7 flops */
652     }
653
654     /* Increment number of outer iterations */
655     outeriter        += nri;
656
657     /* Update outer/inner flops */
658
659     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
660 }