99d358b661093c506b5d4c5b4a3ac55e028c7299
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     invsqrta         = fr->invsqrta;
100     dvda             = fr->dvda;
101     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
102     gbtab            = fr->gbtab.data;
103     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
129
130         fix0             = _mm_setzero_pd();
131         fiy0             = _mm_setzero_pd();
132         fiz0             = _mm_setzero_pd();
133
134         /* Load parameters for i particles */
135         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
136         isai0            = _mm_load1_pd(invsqrta+inr+0);
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_pd();
140         vgbsum           = _mm_setzero_pd();
141         dvdasum          = _mm_setzero_pd();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             j_coord_offsetA  = DIM*jnrA;
151             j_coord_offsetB  = DIM*jnrB;
152
153             /* load j atom coordinates */
154             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
155                                               &jx0,&jy0,&jz0);
156
157             /* Calculate displacement vector */
158             dx00             = _mm_sub_pd(ix0,jx0);
159             dy00             = _mm_sub_pd(iy0,jy0);
160             dz00             = _mm_sub_pd(iz0,jz0);
161
162             /* Calculate squared distance and things based on it */
163             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
164
165             rinv00           = gmx_mm_invsqrt_pd(rsq00);
166
167             /* Load parameters for j particles */
168             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
169             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
181             isaprod          = _mm_mul_pd(isai0,isaj0);
182             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
183             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
184
185             /* Calculate generalized born table index - this is a separate table from the normal one,
186              * but we use the same procedure by multiplying r with scale and truncating to integer.
187              */
188             rt               = _mm_mul_pd(r00,gbscale);
189             gbitab           = _mm_cvttpd_epi32(rt);
190             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
191             gbitab           = _mm_slli_epi32(gbitab,2);
192
193             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
194             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
195             GMX_MM_TRANSPOSE2_PD(Y,F);
196             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
197             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
198             GMX_MM_TRANSPOSE2_PD(G,H);
199             Heps             = _mm_mul_pd(gbeps,H);
200             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
201             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
202             vgb              = _mm_mul_pd(gbqqfactor,VV);
203
204             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
205             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
206             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
207             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
208             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
209             velec            = _mm_mul_pd(qq00,rinv00);
210             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
211
212             /* Update potential sum for this i atom from the interaction with this j atom. */
213             velecsum         = _mm_add_pd(velecsum,velec);
214             vgbsum           = _mm_add_pd(vgbsum,vgb);
215
216             fscal            = felec;
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm_mul_pd(fscal,dx00);
220             ty               = _mm_mul_pd(fscal,dy00);
221             tz               = _mm_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm_add_pd(fix0,tx);
225             fiy0             = _mm_add_pd(fiy0,ty);
226             fiz0             = _mm_add_pd(fiz0,tz);
227
228             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
229
230             /* Inner loop uses 58 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             jnrA             = jjnr[jidx];
237             j_coord_offsetA  = DIM*jnrA;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241                                               &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm_invsqrt_pd(rsq00);
252
253             /* Load parameters for j particles */
254             jq0              = _mm_load_sd(charge+jnrA+0);
255             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm_mul_pd(iq0,jq0);
265
266             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
267             isaprod          = _mm_mul_pd(isai0,isaj0);
268             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
269             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
270
271             /* Calculate generalized born table index - this is a separate table from the normal one,
272              * but we use the same procedure by multiplying r with scale and truncating to integer.
273              */
274             rt               = _mm_mul_pd(r00,gbscale);
275             gbitab           = _mm_cvttpd_epi32(rt);
276             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
277             gbitab           = _mm_slli_epi32(gbitab,2);
278
279             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
280             F                = _mm_setzero_pd();
281             GMX_MM_TRANSPOSE2_PD(Y,F);
282             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
283             H                = _mm_setzero_pd();
284             GMX_MM_TRANSPOSE2_PD(G,H);
285             Heps             = _mm_mul_pd(gbeps,H);
286             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
287             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
288             vgb              = _mm_mul_pd(gbqqfactor,VV);
289
290             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
292             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
293             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
294             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
295             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
296             velec            = _mm_mul_pd(qq00,rinv00);
297             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
301             velecsum         = _mm_add_pd(velecsum,velec);
302             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
303             vgbsum           = _mm_add_pd(vgbsum,vgb);
304
305             fscal            = felec;
306
307             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_pd(fscal,dx00);
311             ty               = _mm_mul_pd(fscal,dy00);
312             tz               = _mm_mul_pd(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm_add_pd(fix0,tx);
316             fiy0             = _mm_add_pd(fiy0,ty);
317             fiz0             = _mm_add_pd(fiz0,tz);
318
319             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
320
321             /* Inner loop uses 58 flops */
322         }
323
324         /* End of innermost loop */
325
326         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
327                                               f+i_coord_offset,fshift+i_shift_offset);
328
329         ggid                        = gid[iidx];
330         /* Update potential energies */
331         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
332         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
333         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
334         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
335
336         /* Increment number of inner iterations */
337         inneriter                  += j_index_end - j_index_start;
338
339         /* Outer loop uses 9 flops */
340     }
341
342     /* Increment number of outer iterations */
343     outeriter        += nri;
344
345     /* Update outer/inner flops */
346
347     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
348 }
349 /*
350  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
351  * Electrostatics interaction: GeneralizedBorn
352  * VdW interaction:            None
353  * Geometry:                   Particle-Particle
354  * Calculate force/pot:        Force
355  */
356 void
357 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_double
358                     (t_nblist * gmx_restrict                nlist,
359                      rvec * gmx_restrict                    xx,
360                      rvec * gmx_restrict                    ff,
361                      t_forcerec * gmx_restrict              fr,
362                      t_mdatoms * gmx_restrict               mdatoms,
363                      nb_kernel_data_t * gmx_restrict        kernel_data,
364                      t_nrnb * gmx_restrict                  nrnb)
365 {
366     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
367      * just 0 for non-waters.
368      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
369      * jnr indices corresponding to data put in the four positions in the SIMD register.
370      */
371     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
372     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
373     int              jnrA,jnrB;
374     int              j_coord_offsetA,j_coord_offsetB;
375     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
376     real             rcutoff_scalar;
377     real             *shiftvec,*fshift,*x,*f;
378     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
379     int              vdwioffset0;
380     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
381     int              vdwjidx0A,vdwjidx0B;
382     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
383     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
384     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
385     real             *charge;
386     __m128i          gbitab;
387     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
388     __m128d          minushalf = _mm_set1_pd(-0.5);
389     real             *invsqrta,*dvda,*gbtab;
390     __m128i          vfitab;
391     __m128i          ifour       = _mm_set1_epi32(4);
392     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
393     real             *vftab;
394     __m128d          dummy_mask,cutoff_mask;
395     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
396     __m128d          one     = _mm_set1_pd(1.0);
397     __m128d          two     = _mm_set1_pd(2.0);
398     x                = xx[0];
399     f                = ff[0];
400
401     nri              = nlist->nri;
402     iinr             = nlist->iinr;
403     jindex           = nlist->jindex;
404     jjnr             = nlist->jjnr;
405     shiftidx         = nlist->shift;
406     gid              = nlist->gid;
407     shiftvec         = fr->shift_vec[0];
408     fshift           = fr->fshift[0];
409     facel            = _mm_set1_pd(fr->epsfac);
410     charge           = mdatoms->chargeA;
411
412     invsqrta         = fr->invsqrta;
413     dvda             = fr->dvda;
414     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
415     gbtab            = fr->gbtab.data;
416     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
417
418     /* Avoid stupid compiler warnings */
419     jnrA = jnrB = 0;
420     j_coord_offsetA = 0;
421     j_coord_offsetB = 0;
422
423     outeriter        = 0;
424     inneriter        = 0;
425
426     /* Start outer loop over neighborlists */
427     for(iidx=0; iidx<nri; iidx++)
428     {
429         /* Load shift vector for this list */
430         i_shift_offset   = DIM*shiftidx[iidx];
431
432         /* Load limits for loop over neighbors */
433         j_index_start    = jindex[iidx];
434         j_index_end      = jindex[iidx+1];
435
436         /* Get outer coordinate index */
437         inr              = iinr[iidx];
438         i_coord_offset   = DIM*inr;
439
440         /* Load i particle coords and add shift vector */
441         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
442
443         fix0             = _mm_setzero_pd();
444         fiy0             = _mm_setzero_pd();
445         fiz0             = _mm_setzero_pd();
446
447         /* Load parameters for i particles */
448         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
449         isai0            = _mm_load1_pd(invsqrta+inr+0);
450
451         dvdasum          = _mm_setzero_pd();
452
453         /* Start inner kernel loop */
454         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
455         {
456
457             /* Get j neighbor index, and coordinate index */
458             jnrA             = jjnr[jidx];
459             jnrB             = jjnr[jidx+1];
460             j_coord_offsetA  = DIM*jnrA;
461             j_coord_offsetB  = DIM*jnrB;
462
463             /* load j atom coordinates */
464             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
465                                               &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm_sub_pd(ix0,jx0);
469             dy00             = _mm_sub_pd(iy0,jy0);
470             dz00             = _mm_sub_pd(iz0,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
474
475             rinv00           = gmx_mm_invsqrt_pd(rsq00);
476
477             /* Load parameters for j particles */
478             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
479             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r00              = _mm_mul_pd(rsq00,rinv00);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq00             = _mm_mul_pd(iq0,jq0);
489
490             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
491             isaprod          = _mm_mul_pd(isai0,isaj0);
492             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
493             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
494
495             /* Calculate generalized born table index - this is a separate table from the normal one,
496              * but we use the same procedure by multiplying r with scale and truncating to integer.
497              */
498             rt               = _mm_mul_pd(r00,gbscale);
499             gbitab           = _mm_cvttpd_epi32(rt);
500             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
501             gbitab           = _mm_slli_epi32(gbitab,2);
502
503             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
504             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
505             GMX_MM_TRANSPOSE2_PD(Y,F);
506             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
507             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
508             GMX_MM_TRANSPOSE2_PD(G,H);
509             Heps             = _mm_mul_pd(gbeps,H);
510             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
511             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
512             vgb              = _mm_mul_pd(gbqqfactor,VV);
513
514             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
515             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
516             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
517             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
518             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
519             velec            = _mm_mul_pd(qq00,rinv00);
520             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
521
522             fscal            = felec;
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm_mul_pd(fscal,dx00);
526             ty               = _mm_mul_pd(fscal,dy00);
527             tz               = _mm_mul_pd(fscal,dz00);
528
529             /* Update vectorial force */
530             fix0             = _mm_add_pd(fix0,tx);
531             fiy0             = _mm_add_pd(fiy0,ty);
532             fiz0             = _mm_add_pd(fiz0,tz);
533
534             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
535
536             /* Inner loop uses 56 flops */
537         }
538
539         if(jidx<j_index_end)
540         {
541
542             jnrA             = jjnr[jidx];
543             j_coord_offsetA  = DIM*jnrA;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
547                                               &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _mm_sub_pd(ix0,jx0);
551             dy00             = _mm_sub_pd(iy0,jy0);
552             dz00             = _mm_sub_pd(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
556
557             rinv00           = gmx_mm_invsqrt_pd(rsq00);
558
559             /* Load parameters for j particles */
560             jq0              = _mm_load_sd(charge+jnrA+0);
561             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             r00              = _mm_mul_pd(rsq00,rinv00);
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq00             = _mm_mul_pd(iq0,jq0);
571
572             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
573             isaprod          = _mm_mul_pd(isai0,isaj0);
574             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
575             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
576
577             /* Calculate generalized born table index - this is a separate table from the normal one,
578              * but we use the same procedure by multiplying r with scale and truncating to integer.
579              */
580             rt               = _mm_mul_pd(r00,gbscale);
581             gbitab           = _mm_cvttpd_epi32(rt);
582             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
583             gbitab           = _mm_slli_epi32(gbitab,2);
584
585             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
586             F                = _mm_setzero_pd();
587             GMX_MM_TRANSPOSE2_PD(Y,F);
588             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
589             H                = _mm_setzero_pd();
590             GMX_MM_TRANSPOSE2_PD(G,H);
591             Heps             = _mm_mul_pd(gbeps,H);
592             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
593             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
594             vgb              = _mm_mul_pd(gbqqfactor,VV);
595
596             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
597             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
598             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
599             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
600             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
601             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
602             velec            = _mm_mul_pd(qq00,rinv00);
603             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
604
605             fscal            = felec;
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_pd(fscal,dx00);
611             ty               = _mm_mul_pd(fscal,dy00);
612             tz               = _mm_mul_pd(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm_add_pd(fix0,tx);
616             fiy0             = _mm_add_pd(fiy0,ty);
617             fiz0             = _mm_add_pd(fiz0,tz);
618
619             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
620
621             /* Inner loop uses 56 flops */
622         }
623
624         /* End of innermost loop */
625
626         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
627                                               f+i_coord_offset,fshift+i_shift_offset);
628
629         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
630         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
631
632         /* Increment number of inner iterations */
633         inneriter                  += j_index_end - j_index_start;
634
635         /* Outer loop uses 7 flops */
636     }
637
638     /* Increment number of outer iterations */
639     outeriter        += nri;
640
641     /* Update outer/inner flops */
642
643     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
644 }