c885a9a5d469533d622ca3fef7e7d93f7bfe1dbd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          gbitab;
88     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
89     __m128d          minushalf = _mm_set1_pd(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
96     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     invsqrta         = fr->invsqrta;
123     dvda             = fr->dvda;
124     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
125     gbtab            = fr->gbtab.data;
126     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
159         isai0            = _mm_load1_pd(invsqrta+inr+0);
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vgbsum           = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166         dvdasum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _mm_mul_pd(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm_mul_pd(iq0,jq0);
208             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _mm_mul_pd(isai0,isaj0);
213             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
214             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _mm_mul_pd(r00,gbscale);
220             gbitab           = _mm_cvttpd_epi32(rt);
221             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
222             gbitab           = _mm_slli_epi32(gbitab,2);
223
224             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
225             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
226             GMX_MM_TRANSPOSE2_PD(Y,F);
227             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
228             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
229             GMX_MM_TRANSPOSE2_PD(G,H);
230             Heps             = _mm_mul_pd(gbeps,H);
231             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
232             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
233             vgb              = _mm_mul_pd(gbqqfactor,VV);
234
235             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
236             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
237             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
238             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
239             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
240             velec            = _mm_mul_pd(qq00,rinv00);
241             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
249             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _mm_add_pd(velecsum,velec);
253             vgbsum           = _mm_add_pd(vgbsum,vgb);
254             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
255
256             fscal            = _mm_add_pd(felec,fvdw);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm_mul_pd(fscal,dx00);
260             ty               = _mm_mul_pd(fscal,dy00);
261             tz               = _mm_mul_pd(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm_add_pd(fix0,tx);
265             fiy0             = _mm_add_pd(fiy0,ty);
266             fiz0             = _mm_add_pd(fiz0,tz);
267
268             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
269
270             /* Inner loop uses 71 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             jnrA             = jjnr[jidx];
277             j_coord_offsetA  = DIM*jnrA;
278
279             /* load j atom coordinates */
280             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_pd(ix0,jx0);
285             dy00             = _mm_sub_pd(iy0,jy0);
286             dz00             = _mm_sub_pd(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_pd(rsq00);
292
293             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             jq0              = _mm_load_sd(charge+jnrA+0);
297             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
298             vdwjidx0A        = 2*vdwtype[jnrA+0];
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r00              = _mm_mul_pd(rsq00,rinv00);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq00             = _mm_mul_pd(iq0,jq0);
308             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
309
310             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
311             isaprod          = _mm_mul_pd(isai0,isaj0);
312             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
313             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
314
315             /* Calculate generalized born table index - this is a separate table from the normal one,
316              * but we use the same procedure by multiplying r with scale and truncating to integer.
317              */
318             rt               = _mm_mul_pd(r00,gbscale);
319             gbitab           = _mm_cvttpd_epi32(rt);
320             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
321             gbitab           = _mm_slli_epi32(gbitab,2);
322
323             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
324             F                = _mm_setzero_pd();
325             GMX_MM_TRANSPOSE2_PD(Y,F);
326             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
327             H                = _mm_setzero_pd();
328             GMX_MM_TRANSPOSE2_PD(G,H);
329             Heps             = _mm_mul_pd(gbeps,H);
330             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
331             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
332             vgb              = _mm_mul_pd(gbqqfactor,VV);
333
334             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
335             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
336             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
337             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
338             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
339             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
340             velec            = _mm_mul_pd(qq00,rinv00);
341             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
342
343             /* LENNARD-JONES DISPERSION/REPULSION */
344
345             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
346             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
347             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
348             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
349             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
353             velecsum         = _mm_add_pd(velecsum,velec);
354             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
355             vgbsum           = _mm_add_pd(vgbsum,vgb);
356             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
357             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
358
359             fscal            = _mm_add_pd(felec,fvdw);
360
361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm_mul_pd(fscal,dx00);
365             ty               = _mm_mul_pd(fscal,dy00);
366             tz               = _mm_mul_pd(fscal,dz00);
367
368             /* Update vectorial force */
369             fix0             = _mm_add_pd(fix0,tx);
370             fiy0             = _mm_add_pd(fiy0,ty);
371             fiz0             = _mm_add_pd(fiz0,tz);
372
373             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
374
375             /* Inner loop uses 71 flops */
376         }
377
378         /* End of innermost loop */
379
380         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
381                                               f+i_coord_offset,fshift+i_shift_offset);
382
383         ggid                        = gid[iidx];
384         /* Update potential energies */
385         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
386         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
387         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
388         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
389         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
390
391         /* Increment number of inner iterations */
392         inneriter                  += j_index_end - j_index_start;
393
394         /* Outer loop uses 10 flops */
395     }
396
397     /* Increment number of outer iterations */
398     outeriter        += nri;
399
400     /* Update outer/inner flops */
401
402     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
403 }
404 /*
405  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
406  * Electrostatics interaction: GeneralizedBorn
407  * VdW interaction:            LennardJones
408  * Geometry:                   Particle-Particle
409  * Calculate force/pot:        Force
410  */
411 void
412 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
413                     (t_nblist                    * gmx_restrict       nlist,
414                      rvec                        * gmx_restrict          xx,
415                      rvec                        * gmx_restrict          ff,
416                      t_forcerec                  * gmx_restrict          fr,
417                      t_mdatoms                   * gmx_restrict     mdatoms,
418                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
419                      t_nrnb                      * gmx_restrict        nrnb)
420 {
421     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
422      * just 0 for non-waters.
423      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
424      * jnr indices corresponding to data put in the four positions in the SIMD register.
425      */
426     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
427     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
428     int              jnrA,jnrB;
429     int              j_coord_offsetA,j_coord_offsetB;
430     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
431     real             rcutoff_scalar;
432     real             *shiftvec,*fshift,*x,*f;
433     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
434     int              vdwioffset0;
435     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436     int              vdwjidx0A,vdwjidx0B;
437     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
438     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
439     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
440     real             *charge;
441     __m128i          gbitab;
442     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
443     __m128d          minushalf = _mm_set1_pd(-0.5);
444     real             *invsqrta,*dvda,*gbtab;
445     int              nvdwtype;
446     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
447     int              *vdwtype;
448     real             *vdwparam;
449     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
450     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
451     __m128i          vfitab;
452     __m128i          ifour       = _mm_set1_epi32(4);
453     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
454     real             *vftab;
455     __m128d          dummy_mask,cutoff_mask;
456     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
457     __m128d          one     = _mm_set1_pd(1.0);
458     __m128d          two     = _mm_set1_pd(2.0);
459     x                = xx[0];
460     f                = ff[0];
461
462     nri              = nlist->nri;
463     iinr             = nlist->iinr;
464     jindex           = nlist->jindex;
465     jjnr             = nlist->jjnr;
466     shiftidx         = nlist->shift;
467     gid              = nlist->gid;
468     shiftvec         = fr->shift_vec[0];
469     fshift           = fr->fshift[0];
470     facel            = _mm_set1_pd(fr->epsfac);
471     charge           = mdatoms->chargeA;
472     nvdwtype         = fr->ntype;
473     vdwparam         = fr->nbfp;
474     vdwtype          = mdatoms->typeA;
475
476     invsqrta         = fr->invsqrta;
477     dvda             = fr->dvda;
478     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
479     gbtab            = fr->gbtab.data;
480     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     /* Start outer loop over neighborlists */
491     for(iidx=0; iidx<nri; iidx++)
492     {
493         /* Load shift vector for this list */
494         i_shift_offset   = DIM*shiftidx[iidx];
495
496         /* Load limits for loop over neighbors */
497         j_index_start    = jindex[iidx];
498         j_index_end      = jindex[iidx+1];
499
500         /* Get outer coordinate index */
501         inr              = iinr[iidx];
502         i_coord_offset   = DIM*inr;
503
504         /* Load i particle coords and add shift vector */
505         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
506
507         fix0             = _mm_setzero_pd();
508         fiy0             = _mm_setzero_pd();
509         fiz0             = _mm_setzero_pd();
510
511         /* Load parameters for i particles */
512         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
513         isai0            = _mm_load1_pd(invsqrta+inr+0);
514         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
515
516         dvdasum          = _mm_setzero_pd();
517
518         /* Start inner kernel loop */
519         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
520         {
521
522             /* Get j neighbor index, and coordinate index */
523             jnrA             = jjnr[jidx];
524             jnrB             = jjnr[jidx+1];
525             j_coord_offsetA  = DIM*jnrA;
526             j_coord_offsetB  = DIM*jnrB;
527
528             /* load j atom coordinates */
529             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
530                                               &jx0,&jy0,&jz0);
531
532             /* Calculate displacement vector */
533             dx00             = _mm_sub_pd(ix0,jx0);
534             dy00             = _mm_sub_pd(iy0,jy0);
535             dz00             = _mm_sub_pd(iz0,jz0);
536
537             /* Calculate squared distance and things based on it */
538             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
539
540             rinv00           = gmx_mm_invsqrt_pd(rsq00);
541
542             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
543
544             /* Load parameters for j particles */
545             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
546             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
547             vdwjidx0A        = 2*vdwtype[jnrA+0];
548             vdwjidx0B        = 2*vdwtype[jnrB+0];
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r00              = _mm_mul_pd(rsq00,rinv00);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq00             = _mm_mul_pd(iq0,jq0);
558             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
559                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
560
561             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
562             isaprod          = _mm_mul_pd(isai0,isaj0);
563             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
564             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
565
566             /* Calculate generalized born table index - this is a separate table from the normal one,
567              * but we use the same procedure by multiplying r with scale and truncating to integer.
568              */
569             rt               = _mm_mul_pd(r00,gbscale);
570             gbitab           = _mm_cvttpd_epi32(rt);
571             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
572             gbitab           = _mm_slli_epi32(gbitab,2);
573
574             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
575             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
576             GMX_MM_TRANSPOSE2_PD(Y,F);
577             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
578             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
579             GMX_MM_TRANSPOSE2_PD(G,H);
580             Heps             = _mm_mul_pd(gbeps,H);
581             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
582             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
583             vgb              = _mm_mul_pd(gbqqfactor,VV);
584
585             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
586             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
587             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
588             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
589             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
590             velec            = _mm_mul_pd(qq00,rinv00);
591             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
592
593             /* LENNARD-JONES DISPERSION/REPULSION */
594
595             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
596             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
597
598             fscal            = _mm_add_pd(felec,fvdw);
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_pd(fscal,dx00);
602             ty               = _mm_mul_pd(fscal,dy00);
603             tz               = _mm_mul_pd(fscal,dz00);
604
605             /* Update vectorial force */
606             fix0             = _mm_add_pd(fix0,tx);
607             fiy0             = _mm_add_pd(fiy0,ty);
608             fiz0             = _mm_add_pd(fiz0,tz);
609
610             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
611
612             /* Inner loop uses 64 flops */
613         }
614
615         if(jidx<j_index_end)
616         {
617
618             jnrA             = jjnr[jidx];
619             j_coord_offsetA  = DIM*jnrA;
620
621             /* load j atom coordinates */
622             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
623                                               &jx0,&jy0,&jz0);
624
625             /* Calculate displacement vector */
626             dx00             = _mm_sub_pd(ix0,jx0);
627             dy00             = _mm_sub_pd(iy0,jy0);
628             dz00             = _mm_sub_pd(iz0,jz0);
629
630             /* Calculate squared distance and things based on it */
631             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
632
633             rinv00           = gmx_mm_invsqrt_pd(rsq00);
634
635             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
636
637             /* Load parameters for j particles */
638             jq0              = _mm_load_sd(charge+jnrA+0);
639             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
640             vdwjidx0A        = 2*vdwtype[jnrA+0];
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             r00              = _mm_mul_pd(rsq00,rinv00);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq00             = _mm_mul_pd(iq0,jq0);
650             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
651
652             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
653             isaprod          = _mm_mul_pd(isai0,isaj0);
654             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
655             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
656
657             /* Calculate generalized born table index - this is a separate table from the normal one,
658              * but we use the same procedure by multiplying r with scale and truncating to integer.
659              */
660             rt               = _mm_mul_pd(r00,gbscale);
661             gbitab           = _mm_cvttpd_epi32(rt);
662             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
663             gbitab           = _mm_slli_epi32(gbitab,2);
664
665             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
666             F                = _mm_setzero_pd();
667             GMX_MM_TRANSPOSE2_PD(Y,F);
668             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
669             H                = _mm_setzero_pd();
670             GMX_MM_TRANSPOSE2_PD(G,H);
671             Heps             = _mm_mul_pd(gbeps,H);
672             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
673             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
674             vgb              = _mm_mul_pd(gbqqfactor,VV);
675
676             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
677             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
678             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
679             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
680             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
681             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
682             velec            = _mm_mul_pd(qq00,rinv00);
683             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
684
685             /* LENNARD-JONES DISPERSION/REPULSION */
686
687             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
688             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
689
690             fscal            = _mm_add_pd(felec,fvdw);
691
692             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm_mul_pd(fscal,dx00);
696             ty               = _mm_mul_pd(fscal,dy00);
697             tz               = _mm_mul_pd(fscal,dz00);
698
699             /* Update vectorial force */
700             fix0             = _mm_add_pd(fix0,tx);
701             fiy0             = _mm_add_pd(fiy0,ty);
702             fiz0             = _mm_add_pd(fiz0,tz);
703
704             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
705
706             /* Inner loop uses 64 flops */
707         }
708
709         /* End of innermost loop */
710
711         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
712                                               f+i_coord_offset,fshift+i_shift_offset);
713
714         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
715         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
716
717         /* Increment number of inner iterations */
718         inneriter                  += j_index_end - j_index_start;
719
720         /* Outer loop uses 7 flops */
721     }
722
723     /* Increment number of outer iterations */
724     outeriter        += nri;
725
726     /* Update outer/inner flops */
727
728     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
729 }