8f91a0222666a83fb9871220755abd95d1b65160
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     invsqrta         = fr->invsqrta;
109     dvda             = fr->dvda;
110     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
111     gbtab            = fr->gbtab.data;
112     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145         isai0            = _mm_load1_pd(invsqrta+inr+0);
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vgbsum           = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152         dvdasum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
198             isaprod          = _mm_mul_pd(isai0,isaj0);
199             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
200             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
201
202             /* Calculate generalized born table index - this is a separate table from the normal one,
203              * but we use the same procedure by multiplying r with scale and truncating to integer.
204              */
205             rt               = _mm_mul_pd(r00,gbscale);
206             gbitab           = _mm_cvttpd_epi32(rt);
207             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
208             gbitab           = _mm_slli_epi32(gbitab,2);
209
210             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
211             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
212             GMX_MM_TRANSPOSE2_PD(Y,F);
213             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
214             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
215             GMX_MM_TRANSPOSE2_PD(G,H);
216             Heps             = _mm_mul_pd(gbeps,H);
217             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
218             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
219             vgb              = _mm_mul_pd(gbqqfactor,VV);
220
221             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
222             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
223             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
224             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
225             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
226             velec            = _mm_mul_pd(qq00,rinv00);
227             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
233             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
234             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
235             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_pd(velecsum,velec);
239             vgbsum           = _mm_add_pd(vgbsum,vgb);
240             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
241
242             fscal            = _mm_add_pd(felec,fvdw);
243
244             /* Calculate temporary vectorial force */
245             tx               = _mm_mul_pd(fscal,dx00);
246             ty               = _mm_mul_pd(fscal,dy00);
247             tz               = _mm_mul_pd(fscal,dz00);
248
249             /* Update vectorial force */
250             fix0             = _mm_add_pd(fix0,tx);
251             fiy0             = _mm_add_pd(fiy0,ty);
252             fiz0             = _mm_add_pd(fiz0,tz);
253
254             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
255
256             /* Inner loop uses 71 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             jnrA             = jjnr[jidx];
263             j_coord_offsetA  = DIM*jnrA;
264
265             /* load j atom coordinates */
266             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
267                                               &jx0,&jy0,&jz0);
268
269             /* Calculate displacement vector */
270             dx00             = _mm_sub_pd(ix0,jx0);
271             dy00             = _mm_sub_pd(iy0,jy0);
272             dz00             = _mm_sub_pd(iz0,jz0);
273
274             /* Calculate squared distance and things based on it */
275             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
276
277             rinv00           = gmx_mm_invsqrt_pd(rsq00);
278
279             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
280
281             /* Load parameters for j particles */
282             jq0              = _mm_load_sd(charge+jnrA+0);
283             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
284             vdwjidx0A        = 2*vdwtype[jnrA+0];
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             r00              = _mm_mul_pd(rsq00,rinv00);
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq00             = _mm_mul_pd(iq0,jq0);
294             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
295
296             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
297             isaprod          = _mm_mul_pd(isai0,isaj0);
298             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
299             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
300
301             /* Calculate generalized born table index - this is a separate table from the normal one,
302              * but we use the same procedure by multiplying r with scale and truncating to integer.
303              */
304             rt               = _mm_mul_pd(r00,gbscale);
305             gbitab           = _mm_cvttpd_epi32(rt);
306             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
307             gbitab           = _mm_slli_epi32(gbitab,2);
308
309             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
310             F                = _mm_setzero_pd();
311             GMX_MM_TRANSPOSE2_PD(Y,F);
312             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
313             H                = _mm_setzero_pd();
314             GMX_MM_TRANSPOSE2_PD(G,H);
315             Heps             = _mm_mul_pd(gbeps,H);
316             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
317             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
318             vgb              = _mm_mul_pd(gbqqfactor,VV);
319
320             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
321             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
322             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
323             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
324             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
325             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
326             velec            = _mm_mul_pd(qq00,rinv00);
327             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
328
329             /* LENNARD-JONES DISPERSION/REPULSION */
330
331             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
332             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
333             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
334             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
335             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
339             velecsum         = _mm_add_pd(velecsum,velec);
340             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
341             vgbsum           = _mm_add_pd(vgbsum,vgb);
342             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
343             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
344
345             fscal            = _mm_add_pd(felec,fvdw);
346
347             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx00);
351             ty               = _mm_mul_pd(fscal,dy00);
352             tz               = _mm_mul_pd(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_pd(fix0,tx);
356             fiy0             = _mm_add_pd(fiy0,ty);
357             fiz0             = _mm_add_pd(fiz0,tz);
358
359             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
360
361             /* Inner loop uses 71 flops */
362         }
363
364         /* End of innermost loop */
365
366         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
367                                               f+i_coord_offset,fshift+i_shift_offset);
368
369         ggid                        = gid[iidx];
370         /* Update potential energies */
371         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
372         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
373         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
374         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
375         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 10 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
392  * Electrostatics interaction: GeneralizedBorn
393  * VdW interaction:            LennardJones
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
399                     (t_nblist * gmx_restrict                nlist,
400                      rvec * gmx_restrict                    xx,
401                      rvec * gmx_restrict                    ff,
402                      t_forcerec * gmx_restrict              fr,
403                      t_mdatoms * gmx_restrict               mdatoms,
404                      nb_kernel_data_t * gmx_restrict        kernel_data,
405                      t_nrnb * gmx_restrict                  nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     __m128i          gbitab;
428     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
429     __m128d          minushalf = _mm_set1_pd(-0.5);
430     real             *invsqrta,*dvda,*gbtab;
431     int              nvdwtype;
432     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
433     int              *vdwtype;
434     real             *vdwparam;
435     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
436     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
437     __m128i          vfitab;
438     __m128i          ifour       = _mm_set1_epi32(4);
439     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
440     real             *vftab;
441     __m128d          dummy_mask,cutoff_mask;
442     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
443     __m128d          one     = _mm_set1_pd(1.0);
444     __m128d          two     = _mm_set1_pd(2.0);
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     facel            = _mm_set1_pd(fr->epsfac);
457     charge           = mdatoms->chargeA;
458     nvdwtype         = fr->ntype;
459     vdwparam         = fr->nbfp;
460     vdwtype          = mdatoms->typeA;
461
462     invsqrta         = fr->invsqrta;
463     dvda             = fr->dvda;
464     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
465     gbtab            = fr->gbtab.data;
466     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     /* Start outer loop over neighborlists */
477     for(iidx=0; iidx<nri; iidx++)
478     {
479         /* Load shift vector for this list */
480         i_shift_offset   = DIM*shiftidx[iidx];
481
482         /* Load limits for loop over neighbors */
483         j_index_start    = jindex[iidx];
484         j_index_end      = jindex[iidx+1];
485
486         /* Get outer coordinate index */
487         inr              = iinr[iidx];
488         i_coord_offset   = DIM*inr;
489
490         /* Load i particle coords and add shift vector */
491         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
492
493         fix0             = _mm_setzero_pd();
494         fiy0             = _mm_setzero_pd();
495         fiz0             = _mm_setzero_pd();
496
497         /* Load parameters for i particles */
498         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
499         isai0            = _mm_load1_pd(invsqrta+inr+0);
500         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
501
502         dvdasum          = _mm_setzero_pd();
503
504         /* Start inner kernel loop */
505         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
506         {
507
508             /* Get j neighbor index, and coordinate index */
509             jnrA             = jjnr[jidx];
510             jnrB             = jjnr[jidx+1];
511             j_coord_offsetA  = DIM*jnrA;
512             j_coord_offsetB  = DIM*jnrB;
513
514             /* load j atom coordinates */
515             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
516                                               &jx0,&jy0,&jz0);
517
518             /* Calculate displacement vector */
519             dx00             = _mm_sub_pd(ix0,jx0);
520             dy00             = _mm_sub_pd(iy0,jy0);
521             dz00             = _mm_sub_pd(iz0,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
525
526             rinv00           = gmx_mm_invsqrt_pd(rsq00);
527
528             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
532             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
533             vdwjidx0A        = 2*vdwtype[jnrA+0];
534             vdwjidx0B        = 2*vdwtype[jnrB+0];
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r00              = _mm_mul_pd(rsq00,rinv00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq00             = _mm_mul_pd(iq0,jq0);
544             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
545                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
546
547             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
548             isaprod          = _mm_mul_pd(isai0,isaj0);
549             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
550             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
551
552             /* Calculate generalized born table index - this is a separate table from the normal one,
553              * but we use the same procedure by multiplying r with scale and truncating to integer.
554              */
555             rt               = _mm_mul_pd(r00,gbscale);
556             gbitab           = _mm_cvttpd_epi32(rt);
557             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
558             gbitab           = _mm_slli_epi32(gbitab,2);
559
560             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
561             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
562             GMX_MM_TRANSPOSE2_PD(Y,F);
563             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
564             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
565             GMX_MM_TRANSPOSE2_PD(G,H);
566             Heps             = _mm_mul_pd(gbeps,H);
567             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
568             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
569             vgb              = _mm_mul_pd(gbqqfactor,VV);
570
571             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
572             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
573             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
574             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
575             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
576             velec            = _mm_mul_pd(qq00,rinv00);
577             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
578
579             /* LENNARD-JONES DISPERSION/REPULSION */
580
581             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
582             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
583
584             fscal            = _mm_add_pd(felec,fvdw);
585
586             /* Calculate temporary vectorial force */
587             tx               = _mm_mul_pd(fscal,dx00);
588             ty               = _mm_mul_pd(fscal,dy00);
589             tz               = _mm_mul_pd(fscal,dz00);
590
591             /* Update vectorial force */
592             fix0             = _mm_add_pd(fix0,tx);
593             fiy0             = _mm_add_pd(fiy0,ty);
594             fiz0             = _mm_add_pd(fiz0,tz);
595
596             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
597
598             /* Inner loop uses 64 flops */
599         }
600
601         if(jidx<j_index_end)
602         {
603
604             jnrA             = jjnr[jidx];
605             j_coord_offsetA  = DIM*jnrA;
606
607             /* load j atom coordinates */
608             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
609                                               &jx0,&jy0,&jz0);
610
611             /* Calculate displacement vector */
612             dx00             = _mm_sub_pd(ix0,jx0);
613             dy00             = _mm_sub_pd(iy0,jy0);
614             dz00             = _mm_sub_pd(iz0,jz0);
615
616             /* Calculate squared distance and things based on it */
617             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
618
619             rinv00           = gmx_mm_invsqrt_pd(rsq00);
620
621             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
622
623             /* Load parameters for j particles */
624             jq0              = _mm_load_sd(charge+jnrA+0);
625             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
626             vdwjidx0A        = 2*vdwtype[jnrA+0];
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             r00              = _mm_mul_pd(rsq00,rinv00);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq00             = _mm_mul_pd(iq0,jq0);
636             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
637
638             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
639             isaprod          = _mm_mul_pd(isai0,isaj0);
640             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
641             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
642
643             /* Calculate generalized born table index - this is a separate table from the normal one,
644              * but we use the same procedure by multiplying r with scale and truncating to integer.
645              */
646             rt               = _mm_mul_pd(r00,gbscale);
647             gbitab           = _mm_cvttpd_epi32(rt);
648             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
649             gbitab           = _mm_slli_epi32(gbitab,2);
650
651             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
652             F                = _mm_setzero_pd();
653             GMX_MM_TRANSPOSE2_PD(Y,F);
654             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
655             H                = _mm_setzero_pd();
656             GMX_MM_TRANSPOSE2_PD(G,H);
657             Heps             = _mm_mul_pd(gbeps,H);
658             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
659             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
660             vgb              = _mm_mul_pd(gbqqfactor,VV);
661
662             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
663             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
664             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
665             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
666             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
667             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
668             velec            = _mm_mul_pd(qq00,rinv00);
669             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
670
671             /* LENNARD-JONES DISPERSION/REPULSION */
672
673             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
674             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
675
676             fscal            = _mm_add_pd(felec,fvdw);
677
678             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm_mul_pd(fscal,dx00);
682             ty               = _mm_mul_pd(fscal,dy00);
683             tz               = _mm_mul_pd(fscal,dz00);
684
685             /* Update vectorial force */
686             fix0             = _mm_add_pd(fix0,tx);
687             fiy0             = _mm_add_pd(fiy0,ty);
688             fiz0             = _mm_add_pd(fiz0,tz);
689
690             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
691
692             /* Inner loop uses 64 flops */
693         }
694
695         /* End of innermost loop */
696
697         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
698                                               f+i_coord_offset,fshift+i_shift_offset);
699
700         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
701         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
702
703         /* Increment number of inner iterations */
704         inneriter                  += j_index_end - j_index_start;
705
706         /* Outer loop uses 7 flops */
707     }
708
709     /* Increment number of outer iterations */
710     outeriter        += nri;
711
712     /* Update outer/inner flops */
713
714     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
715 }