76f8ceda0fd366ab51bcb1e46d6437b65e6e250a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomW4W4_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Water4
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx1A,vdwjidx1B;
73     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
74     int              vdwjidx2A,vdwjidx2B;
75     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
76     int              vdwjidx3A,vdwjidx3B;
77     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
78     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
79     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
80     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
81     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
82     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
83     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
84     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
85     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
86     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
118     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
119     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
120
121     jq1              = _mm_set1_pd(charge[inr+1]);
122     jq2              = _mm_set1_pd(charge[inr+2]);
123     jq3              = _mm_set1_pd(charge[inr+3]);
124     qq11             = _mm_mul_pd(iq1,jq1);
125     qq12             = _mm_mul_pd(iq1,jq2);
126     qq13             = _mm_mul_pd(iq1,jq3);
127     qq21             = _mm_mul_pd(iq2,jq1);
128     qq22             = _mm_mul_pd(iq2,jq2);
129     qq23             = _mm_mul_pd(iq2,jq3);
130     qq31             = _mm_mul_pd(iq3,jq1);
131     qq32             = _mm_mul_pd(iq3,jq2);
132     qq33             = _mm_mul_pd(iq3,jq3);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
158                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
159
160         fix1             = _mm_setzero_pd();
161         fiy1             = _mm_setzero_pd();
162         fiz1             = _mm_setzero_pd();
163         fix2             = _mm_setzero_pd();
164         fiy2             = _mm_setzero_pd();
165         fiz2             = _mm_setzero_pd();
166         fix3             = _mm_setzero_pd();
167         fiy3             = _mm_setzero_pd();
168         fiz3             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
185                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
186
187             /* Calculate displacement vector */
188             dx11             = _mm_sub_pd(ix1,jx1);
189             dy11             = _mm_sub_pd(iy1,jy1);
190             dz11             = _mm_sub_pd(iz1,jz1);
191             dx12             = _mm_sub_pd(ix1,jx2);
192             dy12             = _mm_sub_pd(iy1,jy2);
193             dz12             = _mm_sub_pd(iz1,jz2);
194             dx13             = _mm_sub_pd(ix1,jx3);
195             dy13             = _mm_sub_pd(iy1,jy3);
196             dz13             = _mm_sub_pd(iz1,jz3);
197             dx21             = _mm_sub_pd(ix2,jx1);
198             dy21             = _mm_sub_pd(iy2,jy1);
199             dz21             = _mm_sub_pd(iz2,jz1);
200             dx22             = _mm_sub_pd(ix2,jx2);
201             dy22             = _mm_sub_pd(iy2,jy2);
202             dz22             = _mm_sub_pd(iz2,jz2);
203             dx23             = _mm_sub_pd(ix2,jx3);
204             dy23             = _mm_sub_pd(iy2,jy3);
205             dz23             = _mm_sub_pd(iz2,jz3);
206             dx31             = _mm_sub_pd(ix3,jx1);
207             dy31             = _mm_sub_pd(iy3,jy1);
208             dz31             = _mm_sub_pd(iz3,jz1);
209             dx32             = _mm_sub_pd(ix3,jx2);
210             dy32             = _mm_sub_pd(iy3,jy2);
211             dz32             = _mm_sub_pd(iz3,jz2);
212             dx33             = _mm_sub_pd(ix3,jx3);
213             dy33             = _mm_sub_pd(iy3,jy3);
214             dz33             = _mm_sub_pd(iz3,jz3);
215
216             /* Calculate squared distance and things based on it */
217             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
218             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
219             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
220             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
221             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
222             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
223             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
224             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
225             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
226
227             rinv11           = gmx_mm_invsqrt_pd(rsq11);
228             rinv12           = gmx_mm_invsqrt_pd(rsq12);
229             rinv13           = gmx_mm_invsqrt_pd(rsq13);
230             rinv21           = gmx_mm_invsqrt_pd(rsq21);
231             rinv22           = gmx_mm_invsqrt_pd(rsq22);
232             rinv23           = gmx_mm_invsqrt_pd(rsq23);
233             rinv31           = gmx_mm_invsqrt_pd(rsq31);
234             rinv32           = gmx_mm_invsqrt_pd(rsq32);
235             rinv33           = gmx_mm_invsqrt_pd(rsq33);
236
237             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
238             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
239             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
240             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
241             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
242             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
243             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
244             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
245             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
246
247             fjx1             = _mm_setzero_pd();
248             fjy1             = _mm_setzero_pd();
249             fjz1             = _mm_setzero_pd();
250             fjx2             = _mm_setzero_pd();
251             fjy2             = _mm_setzero_pd();
252             fjz2             = _mm_setzero_pd();
253             fjx3             = _mm_setzero_pd();
254             fjy3             = _mm_setzero_pd();
255             fjz3             = _mm_setzero_pd();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r11              = _mm_mul_pd(rsq11,rinv11);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_pd(r11,ewtabscale);
267             ewitab           = _mm_cvttpd_epi32(ewrt);
268             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
269             ewitab           = _mm_slli_epi32(ewitab,2);
270             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
271             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
272             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
273             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
274             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
276             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
277             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
278             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
279             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx11);
288             ty               = _mm_mul_pd(fscal,dy11);
289             tz               = _mm_mul_pd(fscal,dz11);
290
291             /* Update vectorial force */
292             fix1             = _mm_add_pd(fix1,tx);
293             fiy1             = _mm_add_pd(fiy1,ty);
294             fiz1             = _mm_add_pd(fiz1,tz);
295
296             fjx1             = _mm_add_pd(fjx1,tx);
297             fjy1             = _mm_add_pd(fjy1,ty);
298             fjz1             = _mm_add_pd(fjz1,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r12              = _mm_mul_pd(rsq12,rinv12);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r12,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
315             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
316             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
317             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
318             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
319             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
320             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
321             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
322             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_pd(fscal,dx12);
331             ty               = _mm_mul_pd(fscal,dy12);
332             tz               = _mm_mul_pd(fscal,dz12);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_pd(fix1,tx);
336             fiy1             = _mm_add_pd(fiy1,ty);
337             fiz1             = _mm_add_pd(fiz1,tz);
338
339             fjx2             = _mm_add_pd(fjx2,tx);
340             fjy2             = _mm_add_pd(fjy2,ty);
341             fjz2             = _mm_add_pd(fjz2,tz);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r13              = _mm_mul_pd(rsq13,rinv13);
348
349             /* EWALD ELECTROSTATICS */
350
351             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
352             ewrt             = _mm_mul_pd(r13,ewtabscale);
353             ewitab           = _mm_cvttpd_epi32(ewrt);
354             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
355             ewitab           = _mm_slli_epi32(ewitab,2);
356             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
357             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
358             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
359             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
360             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
361             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
362             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
363             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
364             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
365             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _mm_add_pd(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx13);
374             ty               = _mm_mul_pd(fscal,dy13);
375             tz               = _mm_mul_pd(fscal,dz13);
376
377             /* Update vectorial force */
378             fix1             = _mm_add_pd(fix1,tx);
379             fiy1             = _mm_add_pd(fiy1,ty);
380             fiz1             = _mm_add_pd(fiz1,tz);
381
382             fjx3             = _mm_add_pd(fjx3,tx);
383             fjy3             = _mm_add_pd(fjy3,ty);
384             fjz3             = _mm_add_pd(fjz3,tz);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r21              = _mm_mul_pd(rsq21,rinv21);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r21,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
406             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
407             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velecsum         = _mm_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_pd(fscal,dx21);
417             ty               = _mm_mul_pd(fscal,dy21);
418             tz               = _mm_mul_pd(fscal,dz21);
419
420             /* Update vectorial force */
421             fix2             = _mm_add_pd(fix2,tx);
422             fiy2             = _mm_add_pd(fiy2,ty);
423             fiz2             = _mm_add_pd(fiz2,tz);
424
425             fjx1             = _mm_add_pd(fjx1,tx);
426             fjy1             = _mm_add_pd(fjy1,ty);
427             fjz1             = _mm_add_pd(fjz1,tz);
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             r22              = _mm_mul_pd(rsq22,rinv22);
434
435             /* EWALD ELECTROSTATICS */
436
437             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
438             ewrt             = _mm_mul_pd(r22,ewtabscale);
439             ewitab           = _mm_cvttpd_epi32(ewrt);
440             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
441             ewitab           = _mm_slli_epi32(ewitab,2);
442             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
443             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
444             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
445             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
446             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
447             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
448             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
449             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
450             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
451             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velecsum         = _mm_add_pd(velecsum,velec);
455
456             fscal            = felec;
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm_mul_pd(fscal,dx22);
460             ty               = _mm_mul_pd(fscal,dy22);
461             tz               = _mm_mul_pd(fscal,dz22);
462
463             /* Update vectorial force */
464             fix2             = _mm_add_pd(fix2,tx);
465             fiy2             = _mm_add_pd(fiy2,ty);
466             fiz2             = _mm_add_pd(fiz2,tz);
467
468             fjx2             = _mm_add_pd(fjx2,tx);
469             fjy2             = _mm_add_pd(fjy2,ty);
470             fjz2             = _mm_add_pd(fjz2,tz);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r23              = _mm_mul_pd(rsq23,rinv23);
477
478             /* EWALD ELECTROSTATICS */
479
480             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
481             ewrt             = _mm_mul_pd(r23,ewtabscale);
482             ewitab           = _mm_cvttpd_epi32(ewrt);
483             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
484             ewitab           = _mm_slli_epi32(ewitab,2);
485             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
486             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
487             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
488             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
489             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
490             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
491             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
492             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
493             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
494             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velecsum         = _mm_add_pd(velecsum,velec);
498
499             fscal            = felec;
500
501             /* Calculate temporary vectorial force */
502             tx               = _mm_mul_pd(fscal,dx23);
503             ty               = _mm_mul_pd(fscal,dy23);
504             tz               = _mm_mul_pd(fscal,dz23);
505
506             /* Update vectorial force */
507             fix2             = _mm_add_pd(fix2,tx);
508             fiy2             = _mm_add_pd(fiy2,ty);
509             fiz2             = _mm_add_pd(fiz2,tz);
510
511             fjx3             = _mm_add_pd(fjx3,tx);
512             fjy3             = _mm_add_pd(fjy3,ty);
513             fjz3             = _mm_add_pd(fjz3,tz);
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r31              = _mm_mul_pd(rsq31,rinv31);
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524             ewrt             = _mm_mul_pd(r31,ewtabscale);
525             ewitab           = _mm_cvttpd_epi32(ewrt);
526             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
527             ewitab           = _mm_slli_epi32(ewitab,2);
528             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
529             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
530             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
531             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
532             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
533             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
534             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
535             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
536             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
537             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             velecsum         = _mm_add_pd(velecsum,velec);
541
542             fscal            = felec;
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_pd(fscal,dx31);
546             ty               = _mm_mul_pd(fscal,dy31);
547             tz               = _mm_mul_pd(fscal,dz31);
548
549             /* Update vectorial force */
550             fix3             = _mm_add_pd(fix3,tx);
551             fiy3             = _mm_add_pd(fiy3,ty);
552             fiz3             = _mm_add_pd(fiz3,tz);
553
554             fjx1             = _mm_add_pd(fjx1,tx);
555             fjy1             = _mm_add_pd(fjy1,ty);
556             fjz1             = _mm_add_pd(fjz1,tz);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r32              = _mm_mul_pd(rsq32,rinv32);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _mm_mul_pd(r32,ewtabscale);
568             ewitab           = _mm_cvttpd_epi32(ewrt);
569             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
570             ewitab           = _mm_slli_epi32(ewitab,2);
571             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
572             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
573             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
574             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
575             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
576             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
577             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
578             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
579             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
580             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velecsum         = _mm_add_pd(velecsum,velec);
584
585             fscal            = felec;
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm_mul_pd(fscal,dx32);
589             ty               = _mm_mul_pd(fscal,dy32);
590             tz               = _mm_mul_pd(fscal,dz32);
591
592             /* Update vectorial force */
593             fix3             = _mm_add_pd(fix3,tx);
594             fiy3             = _mm_add_pd(fiy3,ty);
595             fiz3             = _mm_add_pd(fiz3,tz);
596
597             fjx2             = _mm_add_pd(fjx2,tx);
598             fjy2             = _mm_add_pd(fjy2,ty);
599             fjz2             = _mm_add_pd(fjz2,tz);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r33              = _mm_mul_pd(rsq33,rinv33);
606
607             /* EWALD ELECTROSTATICS */
608
609             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
610             ewrt             = _mm_mul_pd(r33,ewtabscale);
611             ewitab           = _mm_cvttpd_epi32(ewrt);
612             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
613             ewitab           = _mm_slli_epi32(ewitab,2);
614             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
615             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
616             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
617             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
618             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
619             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
620             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
621             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
622             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
623             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velecsum         = _mm_add_pd(velecsum,velec);
627
628             fscal            = felec;
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_pd(fscal,dx33);
632             ty               = _mm_mul_pd(fscal,dy33);
633             tz               = _mm_mul_pd(fscal,dz33);
634
635             /* Update vectorial force */
636             fix3             = _mm_add_pd(fix3,tx);
637             fiy3             = _mm_add_pd(fiy3,ty);
638             fiz3             = _mm_add_pd(fiz3,tz);
639
640             fjx3             = _mm_add_pd(fjx3,tx);
641             fjy3             = _mm_add_pd(fjy3,ty);
642             fjz3             = _mm_add_pd(fjz3,tz);
643
644             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
645
646             /* Inner loop uses 369 flops */
647         }
648
649         if(jidx<j_index_end)
650         {
651
652             jnrA             = jjnr[jidx];
653             j_coord_offsetA  = DIM*jnrA;
654
655             /* load j atom coordinates */
656             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
657                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
658
659             /* Calculate displacement vector */
660             dx11             = _mm_sub_pd(ix1,jx1);
661             dy11             = _mm_sub_pd(iy1,jy1);
662             dz11             = _mm_sub_pd(iz1,jz1);
663             dx12             = _mm_sub_pd(ix1,jx2);
664             dy12             = _mm_sub_pd(iy1,jy2);
665             dz12             = _mm_sub_pd(iz1,jz2);
666             dx13             = _mm_sub_pd(ix1,jx3);
667             dy13             = _mm_sub_pd(iy1,jy3);
668             dz13             = _mm_sub_pd(iz1,jz3);
669             dx21             = _mm_sub_pd(ix2,jx1);
670             dy21             = _mm_sub_pd(iy2,jy1);
671             dz21             = _mm_sub_pd(iz2,jz1);
672             dx22             = _mm_sub_pd(ix2,jx2);
673             dy22             = _mm_sub_pd(iy2,jy2);
674             dz22             = _mm_sub_pd(iz2,jz2);
675             dx23             = _mm_sub_pd(ix2,jx3);
676             dy23             = _mm_sub_pd(iy2,jy3);
677             dz23             = _mm_sub_pd(iz2,jz3);
678             dx31             = _mm_sub_pd(ix3,jx1);
679             dy31             = _mm_sub_pd(iy3,jy1);
680             dz31             = _mm_sub_pd(iz3,jz1);
681             dx32             = _mm_sub_pd(ix3,jx2);
682             dy32             = _mm_sub_pd(iy3,jy2);
683             dz32             = _mm_sub_pd(iz3,jz2);
684             dx33             = _mm_sub_pd(ix3,jx3);
685             dy33             = _mm_sub_pd(iy3,jy3);
686             dz33             = _mm_sub_pd(iz3,jz3);
687
688             /* Calculate squared distance and things based on it */
689             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
690             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
691             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
692             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
693             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
694             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
695             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
696             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
697             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
698
699             rinv11           = gmx_mm_invsqrt_pd(rsq11);
700             rinv12           = gmx_mm_invsqrt_pd(rsq12);
701             rinv13           = gmx_mm_invsqrt_pd(rsq13);
702             rinv21           = gmx_mm_invsqrt_pd(rsq21);
703             rinv22           = gmx_mm_invsqrt_pd(rsq22);
704             rinv23           = gmx_mm_invsqrt_pd(rsq23);
705             rinv31           = gmx_mm_invsqrt_pd(rsq31);
706             rinv32           = gmx_mm_invsqrt_pd(rsq32);
707             rinv33           = gmx_mm_invsqrt_pd(rsq33);
708
709             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
710             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
711             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
712             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
713             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
714             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
715             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
716             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
717             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
718
719             fjx1             = _mm_setzero_pd();
720             fjy1             = _mm_setzero_pd();
721             fjz1             = _mm_setzero_pd();
722             fjx2             = _mm_setzero_pd();
723             fjy2             = _mm_setzero_pd();
724             fjz2             = _mm_setzero_pd();
725             fjx3             = _mm_setzero_pd();
726             fjy3             = _mm_setzero_pd();
727             fjz3             = _mm_setzero_pd();
728
729             /**************************
730              * CALCULATE INTERACTIONS *
731              **************************/
732
733             r11              = _mm_mul_pd(rsq11,rinv11);
734
735             /* EWALD ELECTROSTATICS */
736
737             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
738             ewrt             = _mm_mul_pd(r11,ewtabscale);
739             ewitab           = _mm_cvttpd_epi32(ewrt);
740             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
741             ewitab           = _mm_slli_epi32(ewitab,2);
742             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
743             ewtabD           = _mm_setzero_pd();
744             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
745             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
746             ewtabFn          = _mm_setzero_pd();
747             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
748             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
749             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
750             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
751             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
752
753             /* Update potential sum for this i atom from the interaction with this j atom. */
754             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
755             velecsum         = _mm_add_pd(velecsum,velec);
756
757             fscal            = felec;
758
759             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
760
761             /* Calculate temporary vectorial force */
762             tx               = _mm_mul_pd(fscal,dx11);
763             ty               = _mm_mul_pd(fscal,dy11);
764             tz               = _mm_mul_pd(fscal,dz11);
765
766             /* Update vectorial force */
767             fix1             = _mm_add_pd(fix1,tx);
768             fiy1             = _mm_add_pd(fiy1,ty);
769             fiz1             = _mm_add_pd(fiz1,tz);
770
771             fjx1             = _mm_add_pd(fjx1,tx);
772             fjy1             = _mm_add_pd(fjy1,ty);
773             fjz1             = _mm_add_pd(fjz1,tz);
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             r12              = _mm_mul_pd(rsq12,rinv12);
780
781             /* EWALD ELECTROSTATICS */
782
783             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
784             ewrt             = _mm_mul_pd(r12,ewtabscale);
785             ewitab           = _mm_cvttpd_epi32(ewrt);
786             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
787             ewitab           = _mm_slli_epi32(ewitab,2);
788             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
789             ewtabD           = _mm_setzero_pd();
790             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
791             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
792             ewtabFn          = _mm_setzero_pd();
793             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
794             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
795             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
796             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
797             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
798
799             /* Update potential sum for this i atom from the interaction with this j atom. */
800             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
801             velecsum         = _mm_add_pd(velecsum,velec);
802
803             fscal            = felec;
804
805             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
806
807             /* Calculate temporary vectorial force */
808             tx               = _mm_mul_pd(fscal,dx12);
809             ty               = _mm_mul_pd(fscal,dy12);
810             tz               = _mm_mul_pd(fscal,dz12);
811
812             /* Update vectorial force */
813             fix1             = _mm_add_pd(fix1,tx);
814             fiy1             = _mm_add_pd(fiy1,ty);
815             fiz1             = _mm_add_pd(fiz1,tz);
816
817             fjx2             = _mm_add_pd(fjx2,tx);
818             fjy2             = _mm_add_pd(fjy2,ty);
819             fjz2             = _mm_add_pd(fjz2,tz);
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             r13              = _mm_mul_pd(rsq13,rinv13);
826
827             /* EWALD ELECTROSTATICS */
828
829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
830             ewrt             = _mm_mul_pd(r13,ewtabscale);
831             ewitab           = _mm_cvttpd_epi32(ewrt);
832             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
833             ewitab           = _mm_slli_epi32(ewitab,2);
834             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
835             ewtabD           = _mm_setzero_pd();
836             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
837             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
838             ewtabFn          = _mm_setzero_pd();
839             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
840             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
841             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
842             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
843             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
844
845             /* Update potential sum for this i atom from the interaction with this j atom. */
846             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
847             velecsum         = _mm_add_pd(velecsum,velec);
848
849             fscal            = felec;
850
851             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
852
853             /* Calculate temporary vectorial force */
854             tx               = _mm_mul_pd(fscal,dx13);
855             ty               = _mm_mul_pd(fscal,dy13);
856             tz               = _mm_mul_pd(fscal,dz13);
857
858             /* Update vectorial force */
859             fix1             = _mm_add_pd(fix1,tx);
860             fiy1             = _mm_add_pd(fiy1,ty);
861             fiz1             = _mm_add_pd(fiz1,tz);
862
863             fjx3             = _mm_add_pd(fjx3,tx);
864             fjy3             = _mm_add_pd(fjy3,ty);
865             fjz3             = _mm_add_pd(fjz3,tz);
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             r21              = _mm_mul_pd(rsq21,rinv21);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_pd(r21,ewtabscale);
877             ewitab           = _mm_cvttpd_epi32(ewrt);
878             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
879             ewitab           = _mm_slli_epi32(ewitab,2);
880             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
881             ewtabD           = _mm_setzero_pd();
882             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
883             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
884             ewtabFn          = _mm_setzero_pd();
885             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
886             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
887             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
888             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
889             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
890
891             /* Update potential sum for this i atom from the interaction with this j atom. */
892             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
893             velecsum         = _mm_add_pd(velecsum,velec);
894
895             fscal            = felec;
896
897             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm_mul_pd(fscal,dx21);
901             ty               = _mm_mul_pd(fscal,dy21);
902             tz               = _mm_mul_pd(fscal,dz21);
903
904             /* Update vectorial force */
905             fix2             = _mm_add_pd(fix2,tx);
906             fiy2             = _mm_add_pd(fiy2,ty);
907             fiz2             = _mm_add_pd(fiz2,tz);
908
909             fjx1             = _mm_add_pd(fjx1,tx);
910             fjy1             = _mm_add_pd(fjy1,ty);
911             fjz1             = _mm_add_pd(fjz1,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r22              = _mm_mul_pd(rsq22,rinv22);
918
919             /* EWALD ELECTROSTATICS */
920
921             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
922             ewrt             = _mm_mul_pd(r22,ewtabscale);
923             ewitab           = _mm_cvttpd_epi32(ewrt);
924             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
925             ewitab           = _mm_slli_epi32(ewitab,2);
926             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
927             ewtabD           = _mm_setzero_pd();
928             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
929             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
930             ewtabFn          = _mm_setzero_pd();
931             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
932             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
933             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
934             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
935             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
936
937             /* Update potential sum for this i atom from the interaction with this j atom. */
938             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
939             velecsum         = _mm_add_pd(velecsum,velec);
940
941             fscal            = felec;
942
943             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm_mul_pd(fscal,dx22);
947             ty               = _mm_mul_pd(fscal,dy22);
948             tz               = _mm_mul_pd(fscal,dz22);
949
950             /* Update vectorial force */
951             fix2             = _mm_add_pd(fix2,tx);
952             fiy2             = _mm_add_pd(fiy2,ty);
953             fiz2             = _mm_add_pd(fiz2,tz);
954
955             fjx2             = _mm_add_pd(fjx2,tx);
956             fjy2             = _mm_add_pd(fjy2,ty);
957             fjz2             = _mm_add_pd(fjz2,tz);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r23              = _mm_mul_pd(rsq23,rinv23);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _mm_mul_pd(r23,ewtabscale);
969             ewitab           = _mm_cvttpd_epi32(ewrt);
970             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
971             ewitab           = _mm_slli_epi32(ewitab,2);
972             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
973             ewtabD           = _mm_setzero_pd();
974             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
975             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
976             ewtabFn          = _mm_setzero_pd();
977             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
978             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
979             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
980             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
981             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
982
983             /* Update potential sum for this i atom from the interaction with this j atom. */
984             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
985             velecsum         = _mm_add_pd(velecsum,velec);
986
987             fscal            = felec;
988
989             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_pd(fscal,dx23);
993             ty               = _mm_mul_pd(fscal,dy23);
994             tz               = _mm_mul_pd(fscal,dz23);
995
996             /* Update vectorial force */
997             fix2             = _mm_add_pd(fix2,tx);
998             fiy2             = _mm_add_pd(fiy2,ty);
999             fiz2             = _mm_add_pd(fiz2,tz);
1000
1001             fjx3             = _mm_add_pd(fjx3,tx);
1002             fjy3             = _mm_add_pd(fjy3,ty);
1003             fjz3             = _mm_add_pd(fjz3,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r31              = _mm_mul_pd(rsq31,rinv31);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_pd(r31,ewtabscale);
1015             ewitab           = _mm_cvttpd_epi32(ewrt);
1016             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1017             ewitab           = _mm_slli_epi32(ewitab,2);
1018             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1019             ewtabD           = _mm_setzero_pd();
1020             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1021             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1022             ewtabFn          = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1024             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1025             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1026             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1027             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1028
1029             /* Update potential sum for this i atom from the interaction with this j atom. */
1030             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1031             velecsum         = _mm_add_pd(velecsum,velec);
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_pd(fscal,dx31);
1039             ty               = _mm_mul_pd(fscal,dy31);
1040             tz               = _mm_mul_pd(fscal,dz31);
1041
1042             /* Update vectorial force */
1043             fix3             = _mm_add_pd(fix3,tx);
1044             fiy3             = _mm_add_pd(fiy3,ty);
1045             fiz3             = _mm_add_pd(fiz3,tz);
1046
1047             fjx1             = _mm_add_pd(fjx1,tx);
1048             fjy1             = _mm_add_pd(fjy1,ty);
1049             fjz1             = _mm_add_pd(fjz1,tz);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r32              = _mm_mul_pd(rsq32,rinv32);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r32,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1063             ewitab           = _mm_slli_epi32(ewitab,2);
1064             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1065             ewtabD           = _mm_setzero_pd();
1066             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1067             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1068             ewtabFn          = _mm_setzero_pd();
1069             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1070             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1071             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1072             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1073             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1074
1075             /* Update potential sum for this i atom from the interaction with this j atom. */
1076             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1077             velecsum         = _mm_add_pd(velecsum,velec);
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm_mul_pd(fscal,dx32);
1085             ty               = _mm_mul_pd(fscal,dy32);
1086             tz               = _mm_mul_pd(fscal,dz32);
1087
1088             /* Update vectorial force */
1089             fix3             = _mm_add_pd(fix3,tx);
1090             fiy3             = _mm_add_pd(fiy3,ty);
1091             fiz3             = _mm_add_pd(fiz3,tz);
1092
1093             fjx2             = _mm_add_pd(fjx2,tx);
1094             fjy2             = _mm_add_pd(fjy2,ty);
1095             fjz2             = _mm_add_pd(fjz2,tz);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r33              = _mm_mul_pd(rsq33,rinv33);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm_mul_pd(r33,ewtabscale);
1107             ewitab           = _mm_cvttpd_epi32(ewrt);
1108             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1109             ewitab           = _mm_slli_epi32(ewitab,2);
1110             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1111             ewtabD           = _mm_setzero_pd();
1112             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1113             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1114             ewtabFn          = _mm_setzero_pd();
1115             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1116             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1117             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1118             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1119             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1120
1121             /* Update potential sum for this i atom from the interaction with this j atom. */
1122             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1123             velecsum         = _mm_add_pd(velecsum,velec);
1124
1125             fscal            = felec;
1126
1127             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1128
1129             /* Calculate temporary vectorial force */
1130             tx               = _mm_mul_pd(fscal,dx33);
1131             ty               = _mm_mul_pd(fscal,dy33);
1132             tz               = _mm_mul_pd(fscal,dz33);
1133
1134             /* Update vectorial force */
1135             fix3             = _mm_add_pd(fix3,tx);
1136             fiy3             = _mm_add_pd(fiy3,ty);
1137             fiz3             = _mm_add_pd(fiz3,tz);
1138
1139             fjx3             = _mm_add_pd(fjx3,tx);
1140             fjy3             = _mm_add_pd(fjy3,ty);
1141             fjz3             = _mm_add_pd(fjz3,tz);
1142
1143             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1144
1145             /* Inner loop uses 369 flops */
1146         }
1147
1148         /* End of innermost loop */
1149
1150         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1151                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1152
1153         ggid                        = gid[iidx];
1154         /* Update potential energies */
1155         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1156
1157         /* Increment number of inner iterations */
1158         inneriter                  += j_index_end - j_index_start;
1159
1160         /* Outer loop uses 19 flops */
1161     }
1162
1163     /* Increment number of outer iterations */
1164     outeriter        += nri;
1165
1166     /* Update outer/inner flops */
1167
1168     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*369);
1169 }
1170 /*
1171  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_sse4_1_double
1172  * Electrostatics interaction: Ewald
1173  * VdW interaction:            None
1174  * Geometry:                   Water4-Water4
1175  * Calculate force/pot:        Force
1176  */
1177 void
1178 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_sse4_1_double
1179                     (t_nblist * gmx_restrict                nlist,
1180                      rvec * gmx_restrict                    xx,
1181                      rvec * gmx_restrict                    ff,
1182                      t_forcerec * gmx_restrict              fr,
1183                      t_mdatoms * gmx_restrict               mdatoms,
1184                      nb_kernel_data_t * gmx_restrict        kernel_data,
1185                      t_nrnb * gmx_restrict                  nrnb)
1186 {
1187     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1188      * just 0 for non-waters.
1189      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1190      * jnr indices corresponding to data put in the four positions in the SIMD register.
1191      */
1192     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1193     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1194     int              jnrA,jnrB;
1195     int              j_coord_offsetA,j_coord_offsetB;
1196     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1197     real             rcutoff_scalar;
1198     real             *shiftvec,*fshift,*x,*f;
1199     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1200     int              vdwioffset1;
1201     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1202     int              vdwioffset2;
1203     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1204     int              vdwioffset3;
1205     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1206     int              vdwjidx1A,vdwjidx1B;
1207     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1208     int              vdwjidx2A,vdwjidx2B;
1209     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1210     int              vdwjidx3A,vdwjidx3B;
1211     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1212     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1213     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1214     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1215     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1216     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1217     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1218     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1219     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1220     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1221     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1222     real             *charge;
1223     __m128i          ewitab;
1224     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1225     real             *ewtab;
1226     __m128d          dummy_mask,cutoff_mask;
1227     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1228     __m128d          one     = _mm_set1_pd(1.0);
1229     __m128d          two     = _mm_set1_pd(2.0);
1230     x                = xx[0];
1231     f                = ff[0];
1232
1233     nri              = nlist->nri;
1234     iinr             = nlist->iinr;
1235     jindex           = nlist->jindex;
1236     jjnr             = nlist->jjnr;
1237     shiftidx         = nlist->shift;
1238     gid              = nlist->gid;
1239     shiftvec         = fr->shift_vec[0];
1240     fshift           = fr->fshift[0];
1241     facel            = _mm_set1_pd(fr->epsfac);
1242     charge           = mdatoms->chargeA;
1243
1244     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1245     ewtab            = fr->ic->tabq_coul_F;
1246     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1247     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1248
1249     /* Setup water-specific parameters */
1250     inr              = nlist->iinr[0];
1251     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1252     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1253     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1254
1255     jq1              = _mm_set1_pd(charge[inr+1]);
1256     jq2              = _mm_set1_pd(charge[inr+2]);
1257     jq3              = _mm_set1_pd(charge[inr+3]);
1258     qq11             = _mm_mul_pd(iq1,jq1);
1259     qq12             = _mm_mul_pd(iq1,jq2);
1260     qq13             = _mm_mul_pd(iq1,jq3);
1261     qq21             = _mm_mul_pd(iq2,jq1);
1262     qq22             = _mm_mul_pd(iq2,jq2);
1263     qq23             = _mm_mul_pd(iq2,jq3);
1264     qq31             = _mm_mul_pd(iq3,jq1);
1265     qq32             = _mm_mul_pd(iq3,jq2);
1266     qq33             = _mm_mul_pd(iq3,jq3);
1267
1268     /* Avoid stupid compiler warnings */
1269     jnrA = jnrB = 0;
1270     j_coord_offsetA = 0;
1271     j_coord_offsetB = 0;
1272
1273     outeriter        = 0;
1274     inneriter        = 0;
1275
1276     /* Start outer loop over neighborlists */
1277     for(iidx=0; iidx<nri; iidx++)
1278     {
1279         /* Load shift vector for this list */
1280         i_shift_offset   = DIM*shiftidx[iidx];
1281
1282         /* Load limits for loop over neighbors */
1283         j_index_start    = jindex[iidx];
1284         j_index_end      = jindex[iidx+1];
1285
1286         /* Get outer coordinate index */
1287         inr              = iinr[iidx];
1288         i_coord_offset   = DIM*inr;
1289
1290         /* Load i particle coords and add shift vector */
1291         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1292                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1293
1294         fix1             = _mm_setzero_pd();
1295         fiy1             = _mm_setzero_pd();
1296         fiz1             = _mm_setzero_pd();
1297         fix2             = _mm_setzero_pd();
1298         fiy2             = _mm_setzero_pd();
1299         fiz2             = _mm_setzero_pd();
1300         fix3             = _mm_setzero_pd();
1301         fiy3             = _mm_setzero_pd();
1302         fiz3             = _mm_setzero_pd();
1303
1304         /* Start inner kernel loop */
1305         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1306         {
1307
1308             /* Get j neighbor index, and coordinate index */
1309             jnrA             = jjnr[jidx];
1310             jnrB             = jjnr[jidx+1];
1311             j_coord_offsetA  = DIM*jnrA;
1312             j_coord_offsetB  = DIM*jnrB;
1313
1314             /* load j atom coordinates */
1315             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1316                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1317
1318             /* Calculate displacement vector */
1319             dx11             = _mm_sub_pd(ix1,jx1);
1320             dy11             = _mm_sub_pd(iy1,jy1);
1321             dz11             = _mm_sub_pd(iz1,jz1);
1322             dx12             = _mm_sub_pd(ix1,jx2);
1323             dy12             = _mm_sub_pd(iy1,jy2);
1324             dz12             = _mm_sub_pd(iz1,jz2);
1325             dx13             = _mm_sub_pd(ix1,jx3);
1326             dy13             = _mm_sub_pd(iy1,jy3);
1327             dz13             = _mm_sub_pd(iz1,jz3);
1328             dx21             = _mm_sub_pd(ix2,jx1);
1329             dy21             = _mm_sub_pd(iy2,jy1);
1330             dz21             = _mm_sub_pd(iz2,jz1);
1331             dx22             = _mm_sub_pd(ix2,jx2);
1332             dy22             = _mm_sub_pd(iy2,jy2);
1333             dz22             = _mm_sub_pd(iz2,jz2);
1334             dx23             = _mm_sub_pd(ix2,jx3);
1335             dy23             = _mm_sub_pd(iy2,jy3);
1336             dz23             = _mm_sub_pd(iz2,jz3);
1337             dx31             = _mm_sub_pd(ix3,jx1);
1338             dy31             = _mm_sub_pd(iy3,jy1);
1339             dz31             = _mm_sub_pd(iz3,jz1);
1340             dx32             = _mm_sub_pd(ix3,jx2);
1341             dy32             = _mm_sub_pd(iy3,jy2);
1342             dz32             = _mm_sub_pd(iz3,jz2);
1343             dx33             = _mm_sub_pd(ix3,jx3);
1344             dy33             = _mm_sub_pd(iy3,jy3);
1345             dz33             = _mm_sub_pd(iz3,jz3);
1346
1347             /* Calculate squared distance and things based on it */
1348             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1349             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1350             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1351             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1352             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1353             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1354             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1355             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1356             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1357
1358             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1359             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1360             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1361             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1362             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1363             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1364             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1365             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1366             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1367
1368             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1369             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1370             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1371             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1372             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1373             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1374             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1375             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1376             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1377
1378             fjx1             = _mm_setzero_pd();
1379             fjy1             = _mm_setzero_pd();
1380             fjz1             = _mm_setzero_pd();
1381             fjx2             = _mm_setzero_pd();
1382             fjy2             = _mm_setzero_pd();
1383             fjz2             = _mm_setzero_pd();
1384             fjx3             = _mm_setzero_pd();
1385             fjy3             = _mm_setzero_pd();
1386             fjz3             = _mm_setzero_pd();
1387
1388             /**************************
1389              * CALCULATE INTERACTIONS *
1390              **************************/
1391
1392             r11              = _mm_mul_pd(rsq11,rinv11);
1393
1394             /* EWALD ELECTROSTATICS */
1395
1396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1397             ewrt             = _mm_mul_pd(r11,ewtabscale);
1398             ewitab           = _mm_cvttpd_epi32(ewrt);
1399             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1400             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1401                                          &ewtabF,&ewtabFn);
1402             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1403             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1404
1405             fscal            = felec;
1406
1407             /* Calculate temporary vectorial force */
1408             tx               = _mm_mul_pd(fscal,dx11);
1409             ty               = _mm_mul_pd(fscal,dy11);
1410             tz               = _mm_mul_pd(fscal,dz11);
1411
1412             /* Update vectorial force */
1413             fix1             = _mm_add_pd(fix1,tx);
1414             fiy1             = _mm_add_pd(fiy1,ty);
1415             fiz1             = _mm_add_pd(fiz1,tz);
1416
1417             fjx1             = _mm_add_pd(fjx1,tx);
1418             fjy1             = _mm_add_pd(fjy1,ty);
1419             fjz1             = _mm_add_pd(fjz1,tz);
1420
1421             /**************************
1422              * CALCULATE INTERACTIONS *
1423              **************************/
1424
1425             r12              = _mm_mul_pd(rsq12,rinv12);
1426
1427             /* EWALD ELECTROSTATICS */
1428
1429             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1430             ewrt             = _mm_mul_pd(r12,ewtabscale);
1431             ewitab           = _mm_cvttpd_epi32(ewrt);
1432             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1433             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1434                                          &ewtabF,&ewtabFn);
1435             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1436             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1437
1438             fscal            = felec;
1439
1440             /* Calculate temporary vectorial force */
1441             tx               = _mm_mul_pd(fscal,dx12);
1442             ty               = _mm_mul_pd(fscal,dy12);
1443             tz               = _mm_mul_pd(fscal,dz12);
1444
1445             /* Update vectorial force */
1446             fix1             = _mm_add_pd(fix1,tx);
1447             fiy1             = _mm_add_pd(fiy1,ty);
1448             fiz1             = _mm_add_pd(fiz1,tz);
1449
1450             fjx2             = _mm_add_pd(fjx2,tx);
1451             fjy2             = _mm_add_pd(fjy2,ty);
1452             fjz2             = _mm_add_pd(fjz2,tz);
1453
1454             /**************************
1455              * CALCULATE INTERACTIONS *
1456              **************************/
1457
1458             r13              = _mm_mul_pd(rsq13,rinv13);
1459
1460             /* EWALD ELECTROSTATICS */
1461
1462             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1463             ewrt             = _mm_mul_pd(r13,ewtabscale);
1464             ewitab           = _mm_cvttpd_epi32(ewrt);
1465             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1466             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1467                                          &ewtabF,&ewtabFn);
1468             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1469             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1470
1471             fscal            = felec;
1472
1473             /* Calculate temporary vectorial force */
1474             tx               = _mm_mul_pd(fscal,dx13);
1475             ty               = _mm_mul_pd(fscal,dy13);
1476             tz               = _mm_mul_pd(fscal,dz13);
1477
1478             /* Update vectorial force */
1479             fix1             = _mm_add_pd(fix1,tx);
1480             fiy1             = _mm_add_pd(fiy1,ty);
1481             fiz1             = _mm_add_pd(fiz1,tz);
1482
1483             fjx3             = _mm_add_pd(fjx3,tx);
1484             fjy3             = _mm_add_pd(fjy3,ty);
1485             fjz3             = _mm_add_pd(fjz3,tz);
1486
1487             /**************************
1488              * CALCULATE INTERACTIONS *
1489              **************************/
1490
1491             r21              = _mm_mul_pd(rsq21,rinv21);
1492
1493             /* EWALD ELECTROSTATICS */
1494
1495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1496             ewrt             = _mm_mul_pd(r21,ewtabscale);
1497             ewitab           = _mm_cvttpd_epi32(ewrt);
1498             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1499             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1500                                          &ewtabF,&ewtabFn);
1501             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1502             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1503
1504             fscal            = felec;
1505
1506             /* Calculate temporary vectorial force */
1507             tx               = _mm_mul_pd(fscal,dx21);
1508             ty               = _mm_mul_pd(fscal,dy21);
1509             tz               = _mm_mul_pd(fscal,dz21);
1510
1511             /* Update vectorial force */
1512             fix2             = _mm_add_pd(fix2,tx);
1513             fiy2             = _mm_add_pd(fiy2,ty);
1514             fiz2             = _mm_add_pd(fiz2,tz);
1515
1516             fjx1             = _mm_add_pd(fjx1,tx);
1517             fjy1             = _mm_add_pd(fjy1,ty);
1518             fjz1             = _mm_add_pd(fjz1,tz);
1519
1520             /**************************
1521              * CALCULATE INTERACTIONS *
1522              **************************/
1523
1524             r22              = _mm_mul_pd(rsq22,rinv22);
1525
1526             /* EWALD ELECTROSTATICS */
1527
1528             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1529             ewrt             = _mm_mul_pd(r22,ewtabscale);
1530             ewitab           = _mm_cvttpd_epi32(ewrt);
1531             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1532             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1533                                          &ewtabF,&ewtabFn);
1534             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1535             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1536
1537             fscal            = felec;
1538
1539             /* Calculate temporary vectorial force */
1540             tx               = _mm_mul_pd(fscal,dx22);
1541             ty               = _mm_mul_pd(fscal,dy22);
1542             tz               = _mm_mul_pd(fscal,dz22);
1543
1544             /* Update vectorial force */
1545             fix2             = _mm_add_pd(fix2,tx);
1546             fiy2             = _mm_add_pd(fiy2,ty);
1547             fiz2             = _mm_add_pd(fiz2,tz);
1548
1549             fjx2             = _mm_add_pd(fjx2,tx);
1550             fjy2             = _mm_add_pd(fjy2,ty);
1551             fjz2             = _mm_add_pd(fjz2,tz);
1552
1553             /**************************
1554              * CALCULATE INTERACTIONS *
1555              **************************/
1556
1557             r23              = _mm_mul_pd(rsq23,rinv23);
1558
1559             /* EWALD ELECTROSTATICS */
1560
1561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1562             ewrt             = _mm_mul_pd(r23,ewtabscale);
1563             ewitab           = _mm_cvttpd_epi32(ewrt);
1564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1565             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1566                                          &ewtabF,&ewtabFn);
1567             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1568             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1569
1570             fscal            = felec;
1571
1572             /* Calculate temporary vectorial force */
1573             tx               = _mm_mul_pd(fscal,dx23);
1574             ty               = _mm_mul_pd(fscal,dy23);
1575             tz               = _mm_mul_pd(fscal,dz23);
1576
1577             /* Update vectorial force */
1578             fix2             = _mm_add_pd(fix2,tx);
1579             fiy2             = _mm_add_pd(fiy2,ty);
1580             fiz2             = _mm_add_pd(fiz2,tz);
1581
1582             fjx3             = _mm_add_pd(fjx3,tx);
1583             fjy3             = _mm_add_pd(fjy3,ty);
1584             fjz3             = _mm_add_pd(fjz3,tz);
1585
1586             /**************************
1587              * CALCULATE INTERACTIONS *
1588              **************************/
1589
1590             r31              = _mm_mul_pd(rsq31,rinv31);
1591
1592             /* EWALD ELECTROSTATICS */
1593
1594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1595             ewrt             = _mm_mul_pd(r31,ewtabscale);
1596             ewitab           = _mm_cvttpd_epi32(ewrt);
1597             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1598             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1599                                          &ewtabF,&ewtabFn);
1600             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1601             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1602
1603             fscal            = felec;
1604
1605             /* Calculate temporary vectorial force */
1606             tx               = _mm_mul_pd(fscal,dx31);
1607             ty               = _mm_mul_pd(fscal,dy31);
1608             tz               = _mm_mul_pd(fscal,dz31);
1609
1610             /* Update vectorial force */
1611             fix3             = _mm_add_pd(fix3,tx);
1612             fiy3             = _mm_add_pd(fiy3,ty);
1613             fiz3             = _mm_add_pd(fiz3,tz);
1614
1615             fjx1             = _mm_add_pd(fjx1,tx);
1616             fjy1             = _mm_add_pd(fjy1,ty);
1617             fjz1             = _mm_add_pd(fjz1,tz);
1618
1619             /**************************
1620              * CALCULATE INTERACTIONS *
1621              **************************/
1622
1623             r32              = _mm_mul_pd(rsq32,rinv32);
1624
1625             /* EWALD ELECTROSTATICS */
1626
1627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1628             ewrt             = _mm_mul_pd(r32,ewtabscale);
1629             ewitab           = _mm_cvttpd_epi32(ewrt);
1630             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1631             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1632                                          &ewtabF,&ewtabFn);
1633             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1634             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1635
1636             fscal            = felec;
1637
1638             /* Calculate temporary vectorial force */
1639             tx               = _mm_mul_pd(fscal,dx32);
1640             ty               = _mm_mul_pd(fscal,dy32);
1641             tz               = _mm_mul_pd(fscal,dz32);
1642
1643             /* Update vectorial force */
1644             fix3             = _mm_add_pd(fix3,tx);
1645             fiy3             = _mm_add_pd(fiy3,ty);
1646             fiz3             = _mm_add_pd(fiz3,tz);
1647
1648             fjx2             = _mm_add_pd(fjx2,tx);
1649             fjy2             = _mm_add_pd(fjy2,ty);
1650             fjz2             = _mm_add_pd(fjz2,tz);
1651
1652             /**************************
1653              * CALCULATE INTERACTIONS *
1654              **************************/
1655
1656             r33              = _mm_mul_pd(rsq33,rinv33);
1657
1658             /* EWALD ELECTROSTATICS */
1659
1660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1661             ewrt             = _mm_mul_pd(r33,ewtabscale);
1662             ewitab           = _mm_cvttpd_epi32(ewrt);
1663             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1664             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1665                                          &ewtabF,&ewtabFn);
1666             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1667             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1668
1669             fscal            = felec;
1670
1671             /* Calculate temporary vectorial force */
1672             tx               = _mm_mul_pd(fscal,dx33);
1673             ty               = _mm_mul_pd(fscal,dy33);
1674             tz               = _mm_mul_pd(fscal,dz33);
1675
1676             /* Update vectorial force */
1677             fix3             = _mm_add_pd(fix3,tx);
1678             fiy3             = _mm_add_pd(fiy3,ty);
1679             fiz3             = _mm_add_pd(fiz3,tz);
1680
1681             fjx3             = _mm_add_pd(fjx3,tx);
1682             fjy3             = _mm_add_pd(fjy3,ty);
1683             fjz3             = _mm_add_pd(fjz3,tz);
1684
1685             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1686
1687             /* Inner loop uses 324 flops */
1688         }
1689
1690         if(jidx<j_index_end)
1691         {
1692
1693             jnrA             = jjnr[jidx];
1694             j_coord_offsetA  = DIM*jnrA;
1695
1696             /* load j atom coordinates */
1697             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
1698                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1699
1700             /* Calculate displacement vector */
1701             dx11             = _mm_sub_pd(ix1,jx1);
1702             dy11             = _mm_sub_pd(iy1,jy1);
1703             dz11             = _mm_sub_pd(iz1,jz1);
1704             dx12             = _mm_sub_pd(ix1,jx2);
1705             dy12             = _mm_sub_pd(iy1,jy2);
1706             dz12             = _mm_sub_pd(iz1,jz2);
1707             dx13             = _mm_sub_pd(ix1,jx3);
1708             dy13             = _mm_sub_pd(iy1,jy3);
1709             dz13             = _mm_sub_pd(iz1,jz3);
1710             dx21             = _mm_sub_pd(ix2,jx1);
1711             dy21             = _mm_sub_pd(iy2,jy1);
1712             dz21             = _mm_sub_pd(iz2,jz1);
1713             dx22             = _mm_sub_pd(ix2,jx2);
1714             dy22             = _mm_sub_pd(iy2,jy2);
1715             dz22             = _mm_sub_pd(iz2,jz2);
1716             dx23             = _mm_sub_pd(ix2,jx3);
1717             dy23             = _mm_sub_pd(iy2,jy3);
1718             dz23             = _mm_sub_pd(iz2,jz3);
1719             dx31             = _mm_sub_pd(ix3,jx1);
1720             dy31             = _mm_sub_pd(iy3,jy1);
1721             dz31             = _mm_sub_pd(iz3,jz1);
1722             dx32             = _mm_sub_pd(ix3,jx2);
1723             dy32             = _mm_sub_pd(iy3,jy2);
1724             dz32             = _mm_sub_pd(iz3,jz2);
1725             dx33             = _mm_sub_pd(ix3,jx3);
1726             dy33             = _mm_sub_pd(iy3,jy3);
1727             dz33             = _mm_sub_pd(iz3,jz3);
1728
1729             /* Calculate squared distance and things based on it */
1730             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1731             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1732             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1733             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1734             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1735             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1736             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1737             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1738             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1739
1740             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1741             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1742             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1743             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1744             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1745             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1746             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1747             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1748             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1749
1750             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1751             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1752             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1753             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1754             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1755             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1756             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1757             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1758             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1759
1760             fjx1             = _mm_setzero_pd();
1761             fjy1             = _mm_setzero_pd();
1762             fjz1             = _mm_setzero_pd();
1763             fjx2             = _mm_setzero_pd();
1764             fjy2             = _mm_setzero_pd();
1765             fjz2             = _mm_setzero_pd();
1766             fjx3             = _mm_setzero_pd();
1767             fjy3             = _mm_setzero_pd();
1768             fjz3             = _mm_setzero_pd();
1769
1770             /**************************
1771              * CALCULATE INTERACTIONS *
1772              **************************/
1773
1774             r11              = _mm_mul_pd(rsq11,rinv11);
1775
1776             /* EWALD ELECTROSTATICS */
1777
1778             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1779             ewrt             = _mm_mul_pd(r11,ewtabscale);
1780             ewitab           = _mm_cvttpd_epi32(ewrt);
1781             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1782             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1783             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1784             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1785
1786             fscal            = felec;
1787
1788             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1789
1790             /* Calculate temporary vectorial force */
1791             tx               = _mm_mul_pd(fscal,dx11);
1792             ty               = _mm_mul_pd(fscal,dy11);
1793             tz               = _mm_mul_pd(fscal,dz11);
1794
1795             /* Update vectorial force */
1796             fix1             = _mm_add_pd(fix1,tx);
1797             fiy1             = _mm_add_pd(fiy1,ty);
1798             fiz1             = _mm_add_pd(fiz1,tz);
1799
1800             fjx1             = _mm_add_pd(fjx1,tx);
1801             fjy1             = _mm_add_pd(fjy1,ty);
1802             fjz1             = _mm_add_pd(fjz1,tz);
1803
1804             /**************************
1805              * CALCULATE INTERACTIONS *
1806              **************************/
1807
1808             r12              = _mm_mul_pd(rsq12,rinv12);
1809
1810             /* EWALD ELECTROSTATICS */
1811
1812             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1813             ewrt             = _mm_mul_pd(r12,ewtabscale);
1814             ewitab           = _mm_cvttpd_epi32(ewrt);
1815             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1816             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1817             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1818             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1819
1820             fscal            = felec;
1821
1822             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1823
1824             /* Calculate temporary vectorial force */
1825             tx               = _mm_mul_pd(fscal,dx12);
1826             ty               = _mm_mul_pd(fscal,dy12);
1827             tz               = _mm_mul_pd(fscal,dz12);
1828
1829             /* Update vectorial force */
1830             fix1             = _mm_add_pd(fix1,tx);
1831             fiy1             = _mm_add_pd(fiy1,ty);
1832             fiz1             = _mm_add_pd(fiz1,tz);
1833
1834             fjx2             = _mm_add_pd(fjx2,tx);
1835             fjy2             = _mm_add_pd(fjy2,ty);
1836             fjz2             = _mm_add_pd(fjz2,tz);
1837
1838             /**************************
1839              * CALCULATE INTERACTIONS *
1840              **************************/
1841
1842             r13              = _mm_mul_pd(rsq13,rinv13);
1843
1844             /* EWALD ELECTROSTATICS */
1845
1846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1847             ewrt             = _mm_mul_pd(r13,ewtabscale);
1848             ewitab           = _mm_cvttpd_epi32(ewrt);
1849             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1850             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1851             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1852             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1853
1854             fscal            = felec;
1855
1856             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1857
1858             /* Calculate temporary vectorial force */
1859             tx               = _mm_mul_pd(fscal,dx13);
1860             ty               = _mm_mul_pd(fscal,dy13);
1861             tz               = _mm_mul_pd(fscal,dz13);
1862
1863             /* Update vectorial force */
1864             fix1             = _mm_add_pd(fix1,tx);
1865             fiy1             = _mm_add_pd(fiy1,ty);
1866             fiz1             = _mm_add_pd(fiz1,tz);
1867
1868             fjx3             = _mm_add_pd(fjx3,tx);
1869             fjy3             = _mm_add_pd(fjy3,ty);
1870             fjz3             = _mm_add_pd(fjz3,tz);
1871
1872             /**************************
1873              * CALCULATE INTERACTIONS *
1874              **************************/
1875
1876             r21              = _mm_mul_pd(rsq21,rinv21);
1877
1878             /* EWALD ELECTROSTATICS */
1879
1880             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1881             ewrt             = _mm_mul_pd(r21,ewtabscale);
1882             ewitab           = _mm_cvttpd_epi32(ewrt);
1883             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1884             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1885             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1886             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1887
1888             fscal            = felec;
1889
1890             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1891
1892             /* Calculate temporary vectorial force */
1893             tx               = _mm_mul_pd(fscal,dx21);
1894             ty               = _mm_mul_pd(fscal,dy21);
1895             tz               = _mm_mul_pd(fscal,dz21);
1896
1897             /* Update vectorial force */
1898             fix2             = _mm_add_pd(fix2,tx);
1899             fiy2             = _mm_add_pd(fiy2,ty);
1900             fiz2             = _mm_add_pd(fiz2,tz);
1901
1902             fjx1             = _mm_add_pd(fjx1,tx);
1903             fjy1             = _mm_add_pd(fjy1,ty);
1904             fjz1             = _mm_add_pd(fjz1,tz);
1905
1906             /**************************
1907              * CALCULATE INTERACTIONS *
1908              **************************/
1909
1910             r22              = _mm_mul_pd(rsq22,rinv22);
1911
1912             /* EWALD ELECTROSTATICS */
1913
1914             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1915             ewrt             = _mm_mul_pd(r22,ewtabscale);
1916             ewitab           = _mm_cvttpd_epi32(ewrt);
1917             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1918             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1919             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1920             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1921
1922             fscal            = felec;
1923
1924             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1925
1926             /* Calculate temporary vectorial force */
1927             tx               = _mm_mul_pd(fscal,dx22);
1928             ty               = _mm_mul_pd(fscal,dy22);
1929             tz               = _mm_mul_pd(fscal,dz22);
1930
1931             /* Update vectorial force */
1932             fix2             = _mm_add_pd(fix2,tx);
1933             fiy2             = _mm_add_pd(fiy2,ty);
1934             fiz2             = _mm_add_pd(fiz2,tz);
1935
1936             fjx2             = _mm_add_pd(fjx2,tx);
1937             fjy2             = _mm_add_pd(fjy2,ty);
1938             fjz2             = _mm_add_pd(fjz2,tz);
1939
1940             /**************************
1941              * CALCULATE INTERACTIONS *
1942              **************************/
1943
1944             r23              = _mm_mul_pd(rsq23,rinv23);
1945
1946             /* EWALD ELECTROSTATICS */
1947
1948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1949             ewrt             = _mm_mul_pd(r23,ewtabscale);
1950             ewitab           = _mm_cvttpd_epi32(ewrt);
1951             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1952             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1953             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1954             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1955
1956             fscal            = felec;
1957
1958             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1959
1960             /* Calculate temporary vectorial force */
1961             tx               = _mm_mul_pd(fscal,dx23);
1962             ty               = _mm_mul_pd(fscal,dy23);
1963             tz               = _mm_mul_pd(fscal,dz23);
1964
1965             /* Update vectorial force */
1966             fix2             = _mm_add_pd(fix2,tx);
1967             fiy2             = _mm_add_pd(fiy2,ty);
1968             fiz2             = _mm_add_pd(fiz2,tz);
1969
1970             fjx3             = _mm_add_pd(fjx3,tx);
1971             fjy3             = _mm_add_pd(fjy3,ty);
1972             fjz3             = _mm_add_pd(fjz3,tz);
1973
1974             /**************************
1975              * CALCULATE INTERACTIONS *
1976              **************************/
1977
1978             r31              = _mm_mul_pd(rsq31,rinv31);
1979
1980             /* EWALD ELECTROSTATICS */
1981
1982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1983             ewrt             = _mm_mul_pd(r31,ewtabscale);
1984             ewitab           = _mm_cvttpd_epi32(ewrt);
1985             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1986             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1987             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1988             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1989
1990             fscal            = felec;
1991
1992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1993
1994             /* Calculate temporary vectorial force */
1995             tx               = _mm_mul_pd(fscal,dx31);
1996             ty               = _mm_mul_pd(fscal,dy31);
1997             tz               = _mm_mul_pd(fscal,dz31);
1998
1999             /* Update vectorial force */
2000             fix3             = _mm_add_pd(fix3,tx);
2001             fiy3             = _mm_add_pd(fiy3,ty);
2002             fiz3             = _mm_add_pd(fiz3,tz);
2003
2004             fjx1             = _mm_add_pd(fjx1,tx);
2005             fjy1             = _mm_add_pd(fjy1,ty);
2006             fjz1             = _mm_add_pd(fjz1,tz);
2007
2008             /**************************
2009              * CALCULATE INTERACTIONS *
2010              **************************/
2011
2012             r32              = _mm_mul_pd(rsq32,rinv32);
2013
2014             /* EWALD ELECTROSTATICS */
2015
2016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2017             ewrt             = _mm_mul_pd(r32,ewtabscale);
2018             ewitab           = _mm_cvttpd_epi32(ewrt);
2019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2020             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2021             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2022             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2023
2024             fscal            = felec;
2025
2026             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2027
2028             /* Calculate temporary vectorial force */
2029             tx               = _mm_mul_pd(fscal,dx32);
2030             ty               = _mm_mul_pd(fscal,dy32);
2031             tz               = _mm_mul_pd(fscal,dz32);
2032
2033             /* Update vectorial force */
2034             fix3             = _mm_add_pd(fix3,tx);
2035             fiy3             = _mm_add_pd(fiy3,ty);
2036             fiz3             = _mm_add_pd(fiz3,tz);
2037
2038             fjx2             = _mm_add_pd(fjx2,tx);
2039             fjy2             = _mm_add_pd(fjy2,ty);
2040             fjz2             = _mm_add_pd(fjz2,tz);
2041
2042             /**************************
2043              * CALCULATE INTERACTIONS *
2044              **************************/
2045
2046             r33              = _mm_mul_pd(rsq33,rinv33);
2047
2048             /* EWALD ELECTROSTATICS */
2049
2050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2051             ewrt             = _mm_mul_pd(r33,ewtabscale);
2052             ewitab           = _mm_cvttpd_epi32(ewrt);
2053             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2054             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2055             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2056             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2057
2058             fscal            = felec;
2059
2060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2061
2062             /* Calculate temporary vectorial force */
2063             tx               = _mm_mul_pd(fscal,dx33);
2064             ty               = _mm_mul_pd(fscal,dy33);
2065             tz               = _mm_mul_pd(fscal,dz33);
2066
2067             /* Update vectorial force */
2068             fix3             = _mm_add_pd(fix3,tx);
2069             fiy3             = _mm_add_pd(fiy3,ty);
2070             fiz3             = _mm_add_pd(fiz3,tz);
2071
2072             fjx3             = _mm_add_pd(fjx3,tx);
2073             fjy3             = _mm_add_pd(fjy3,ty);
2074             fjz3             = _mm_add_pd(fjz3,tz);
2075
2076             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2077
2078             /* Inner loop uses 324 flops */
2079         }
2080
2081         /* End of innermost loop */
2082
2083         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2084                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
2085
2086         /* Increment number of inner iterations */
2087         inneriter                  += j_index_end - j_index_start;
2088
2089         /* Outer loop uses 18 flops */
2090     }
2091
2092     /* Increment number of outer iterations */
2093     outeriter        += nri;
2094
2095     /* Update outer/inner flops */
2096
2097     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*324);
2098 }