Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset1;
81     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
82     int              vdwioffset2;
83     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
84     int              vdwioffset3;
85     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->epsfac);
112     charge           = mdatoms->chargeA;
113
114     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
149                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
150
151         fix1             = _mm_setzero_pd();
152         fiy1             = _mm_setzero_pd();
153         fiz1             = _mm_setzero_pd();
154         fix2             = _mm_setzero_pd();
155         fiy2             = _mm_setzero_pd();
156         fiz2             = _mm_setzero_pd();
157         fix3             = _mm_setzero_pd();
158         fiy3             = _mm_setzero_pd();
159         fiz3             = _mm_setzero_pd();
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx10             = _mm_sub_pd(ix1,jx0);
180             dy10             = _mm_sub_pd(iy1,jy0);
181             dz10             = _mm_sub_pd(iz1,jz0);
182             dx20             = _mm_sub_pd(ix2,jx0);
183             dy20             = _mm_sub_pd(iy2,jy0);
184             dz20             = _mm_sub_pd(iz2,jz0);
185             dx30             = _mm_sub_pd(ix3,jx0);
186             dy30             = _mm_sub_pd(iy3,jy0);
187             dz30             = _mm_sub_pd(iz3,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
191             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
192             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
193
194             rinv10           = gmx_mm_invsqrt_pd(rsq10);
195             rinv20           = gmx_mm_invsqrt_pd(rsq20);
196             rinv30           = gmx_mm_invsqrt_pd(rsq30);
197
198             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
199             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
200             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
204
205             fjx0             = _mm_setzero_pd();
206             fjy0             = _mm_setzero_pd();
207             fjz0             = _mm_setzero_pd();
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r10              = _mm_mul_pd(rsq10,rinv10);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq10             = _mm_mul_pd(iq1,jq0);
217
218             /* EWALD ELECTROSTATICS */
219
220             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
221             ewrt             = _mm_mul_pd(r10,ewtabscale);
222             ewitab           = _mm_cvttpd_epi32(ewrt);
223             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
224             ewitab           = _mm_slli_epi32(ewitab,2);
225             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
226             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
227             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
228             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
229             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
230             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
231             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
232             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
233             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
234             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm_add_pd(velecsum,velec);
238
239             fscal            = felec;
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm_mul_pd(fscal,dx10);
243             ty               = _mm_mul_pd(fscal,dy10);
244             tz               = _mm_mul_pd(fscal,dz10);
245
246             /* Update vectorial force */
247             fix1             = _mm_add_pd(fix1,tx);
248             fiy1             = _mm_add_pd(fiy1,ty);
249             fiz1             = _mm_add_pd(fiz1,tz);
250
251             fjx0             = _mm_add_pd(fjx0,tx);
252             fjy0             = _mm_add_pd(fjy0,ty);
253             fjz0             = _mm_add_pd(fjz0,tz);
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r20              = _mm_mul_pd(rsq20,rinv20);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq20             = _mm_mul_pd(iq2,jq0);
263
264             /* EWALD ELECTROSTATICS */
265
266             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
267             ewrt             = _mm_mul_pd(r20,ewtabscale);
268             ewitab           = _mm_cvttpd_epi32(ewrt);
269             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
270             ewitab           = _mm_slli_epi32(ewitab,2);
271             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
272             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
273             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
274             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
275             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
276             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
277             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
278             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
279             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
280             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_pd(velecsum,velec);
284
285             fscal            = felec;
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx20);
289             ty               = _mm_mul_pd(fscal,dy20);
290             tz               = _mm_mul_pd(fscal,dz20);
291
292             /* Update vectorial force */
293             fix2             = _mm_add_pd(fix2,tx);
294             fiy2             = _mm_add_pd(fiy2,ty);
295             fiz2             = _mm_add_pd(fiz2,tz);
296
297             fjx0             = _mm_add_pd(fjx0,tx);
298             fjy0             = _mm_add_pd(fjy0,ty);
299             fjz0             = _mm_add_pd(fjz0,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r30              = _mm_mul_pd(rsq30,rinv30);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq30             = _mm_mul_pd(iq3,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_pd(r30,ewtabscale);
314             ewitab           = _mm_cvttpd_epi32(ewrt);
315             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
320             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
321             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
322             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
323             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
324             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
325             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
326             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_pd(fscal,dx30);
335             ty               = _mm_mul_pd(fscal,dy30);
336             tz               = _mm_mul_pd(fscal,dz30);
337
338             /* Update vectorial force */
339             fix3             = _mm_add_pd(fix3,tx);
340             fiy3             = _mm_add_pd(fiy3,ty);
341             fiz3             = _mm_add_pd(fiz3,tz);
342
343             fjx0             = _mm_add_pd(fjx0,tx);
344             fjy0             = _mm_add_pd(fjy0,ty);
345             fjz0             = _mm_add_pd(fjz0,tz);
346
347             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
348
349             /* Inner loop uses 126 flops */
350         }
351
352         if(jidx<j_index_end)
353         {
354
355             jnrA             = jjnr[jidx];
356             j_coord_offsetA  = DIM*jnrA;
357
358             /* load j atom coordinates */
359             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
360                                               &jx0,&jy0,&jz0);
361
362             /* Calculate displacement vector */
363             dx10             = _mm_sub_pd(ix1,jx0);
364             dy10             = _mm_sub_pd(iy1,jy0);
365             dz10             = _mm_sub_pd(iz1,jz0);
366             dx20             = _mm_sub_pd(ix2,jx0);
367             dy20             = _mm_sub_pd(iy2,jy0);
368             dz20             = _mm_sub_pd(iz2,jz0);
369             dx30             = _mm_sub_pd(ix3,jx0);
370             dy30             = _mm_sub_pd(iy3,jy0);
371             dz30             = _mm_sub_pd(iz3,jz0);
372
373             /* Calculate squared distance and things based on it */
374             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
375             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
376             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
377
378             rinv10           = gmx_mm_invsqrt_pd(rsq10);
379             rinv20           = gmx_mm_invsqrt_pd(rsq20);
380             rinv30           = gmx_mm_invsqrt_pd(rsq30);
381
382             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
383             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
384             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
385
386             /* Load parameters for j particles */
387             jq0              = _mm_load_sd(charge+jnrA+0);
388
389             fjx0             = _mm_setzero_pd();
390             fjy0             = _mm_setzero_pd();
391             fjz0             = _mm_setzero_pd();
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             r10              = _mm_mul_pd(rsq10,rinv10);
398
399             /* Compute parameters for interactions between i and j atoms */
400             qq10             = _mm_mul_pd(iq1,jq0);
401
402             /* EWALD ELECTROSTATICS */
403
404             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
405             ewrt             = _mm_mul_pd(r10,ewtabscale);
406             ewitab           = _mm_cvttpd_epi32(ewrt);
407             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
408             ewitab           = _mm_slli_epi32(ewitab,2);
409             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
410             ewtabD           = _mm_setzero_pd();
411             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
412             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
413             ewtabFn          = _mm_setzero_pd();
414             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
415             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
416             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
417             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
418             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
422             velecsum         = _mm_add_pd(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_pd(fscal,dx10);
430             ty               = _mm_mul_pd(fscal,dy10);
431             tz               = _mm_mul_pd(fscal,dz10);
432
433             /* Update vectorial force */
434             fix1             = _mm_add_pd(fix1,tx);
435             fiy1             = _mm_add_pd(fiy1,ty);
436             fiz1             = _mm_add_pd(fiz1,tz);
437
438             fjx0             = _mm_add_pd(fjx0,tx);
439             fjy0             = _mm_add_pd(fjy0,ty);
440             fjz0             = _mm_add_pd(fjz0,tz);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             r20              = _mm_mul_pd(rsq20,rinv20);
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq20             = _mm_mul_pd(iq2,jq0);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r20,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
457             ewitab           = _mm_slli_epi32(ewitab,2);
458             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
459             ewtabD           = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
461             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
462             ewtabFn          = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
464             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
465             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
466             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
467             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
471             velecsum         = _mm_add_pd(velecsum,velec);
472
473             fscal            = felec;
474
475             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
476
477             /* Calculate temporary vectorial force */
478             tx               = _mm_mul_pd(fscal,dx20);
479             ty               = _mm_mul_pd(fscal,dy20);
480             tz               = _mm_mul_pd(fscal,dz20);
481
482             /* Update vectorial force */
483             fix2             = _mm_add_pd(fix2,tx);
484             fiy2             = _mm_add_pd(fiy2,ty);
485             fiz2             = _mm_add_pd(fiz2,tz);
486
487             fjx0             = _mm_add_pd(fjx0,tx);
488             fjy0             = _mm_add_pd(fjy0,ty);
489             fjz0             = _mm_add_pd(fjz0,tz);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             r30              = _mm_mul_pd(rsq30,rinv30);
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq30             = _mm_mul_pd(iq3,jq0);
499
500             /* EWALD ELECTROSTATICS */
501
502             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
503             ewrt             = _mm_mul_pd(r30,ewtabscale);
504             ewitab           = _mm_cvttpd_epi32(ewrt);
505             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
506             ewitab           = _mm_slli_epi32(ewitab,2);
507             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
508             ewtabD           = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
510             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
511             ewtabFn          = _mm_setzero_pd();
512             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
513             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
514             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
515             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
516             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_pd(fscal,dx30);
528             ty               = _mm_mul_pd(fscal,dy30);
529             tz               = _mm_mul_pd(fscal,dz30);
530
531             /* Update vectorial force */
532             fix3             = _mm_add_pd(fix3,tx);
533             fiy3             = _mm_add_pd(fiy3,ty);
534             fiz3             = _mm_add_pd(fiz3,tz);
535
536             fjx0             = _mm_add_pd(fjx0,tx);
537             fjy0             = _mm_add_pd(fjy0,ty);
538             fjz0             = _mm_add_pd(fjz0,tz);
539
540             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
541
542             /* Inner loop uses 126 flops */
543         }
544
545         /* End of innermost loop */
546
547         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
548                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
549
550         ggid                        = gid[iidx];
551         /* Update potential energies */
552         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
553
554         /* Increment number of inner iterations */
555         inneriter                  += j_index_end - j_index_start;
556
557         /* Outer loop uses 19 flops */
558     }
559
560     /* Increment number of outer iterations */
561     outeriter        += nri;
562
563     /* Update outer/inner flops */
564
565     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
566 }
567 /*
568  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_double
569  * Electrostatics interaction: Ewald
570  * VdW interaction:            None
571  * Geometry:                   Water4-Particle
572  * Calculate force/pot:        Force
573  */
574 void
575 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_double
576                     (t_nblist                    * gmx_restrict       nlist,
577                      rvec                        * gmx_restrict          xx,
578                      rvec                        * gmx_restrict          ff,
579                      t_forcerec                  * gmx_restrict          fr,
580                      t_mdatoms                   * gmx_restrict     mdatoms,
581                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
582                      t_nrnb                      * gmx_restrict        nrnb)
583 {
584     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
585      * just 0 for non-waters.
586      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
587      * jnr indices corresponding to data put in the four positions in the SIMD register.
588      */
589     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
590     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
591     int              jnrA,jnrB;
592     int              j_coord_offsetA,j_coord_offsetB;
593     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
594     real             rcutoff_scalar;
595     real             *shiftvec,*fshift,*x,*f;
596     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
597     int              vdwioffset1;
598     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
599     int              vdwioffset2;
600     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
601     int              vdwioffset3;
602     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
603     int              vdwjidx0A,vdwjidx0B;
604     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
605     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
606     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
607     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
608     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
609     real             *charge;
610     __m128i          ewitab;
611     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
612     real             *ewtab;
613     __m128d          dummy_mask,cutoff_mask;
614     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
615     __m128d          one     = _mm_set1_pd(1.0);
616     __m128d          two     = _mm_set1_pd(2.0);
617     x                = xx[0];
618     f                = ff[0];
619
620     nri              = nlist->nri;
621     iinr             = nlist->iinr;
622     jindex           = nlist->jindex;
623     jjnr             = nlist->jjnr;
624     shiftidx         = nlist->shift;
625     gid              = nlist->gid;
626     shiftvec         = fr->shift_vec[0];
627     fshift           = fr->fshift[0];
628     facel            = _mm_set1_pd(fr->epsfac);
629     charge           = mdatoms->chargeA;
630
631     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
632     ewtab            = fr->ic->tabq_coul_F;
633     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
634     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
635
636     /* Setup water-specific parameters */
637     inr              = nlist->iinr[0];
638     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
639     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
640     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
641
642     /* Avoid stupid compiler warnings */
643     jnrA = jnrB = 0;
644     j_coord_offsetA = 0;
645     j_coord_offsetB = 0;
646
647     outeriter        = 0;
648     inneriter        = 0;
649
650     /* Start outer loop over neighborlists */
651     for(iidx=0; iidx<nri; iidx++)
652     {
653         /* Load shift vector for this list */
654         i_shift_offset   = DIM*shiftidx[iidx];
655
656         /* Load limits for loop over neighbors */
657         j_index_start    = jindex[iidx];
658         j_index_end      = jindex[iidx+1];
659
660         /* Get outer coordinate index */
661         inr              = iinr[iidx];
662         i_coord_offset   = DIM*inr;
663
664         /* Load i particle coords and add shift vector */
665         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
666                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
667
668         fix1             = _mm_setzero_pd();
669         fiy1             = _mm_setzero_pd();
670         fiz1             = _mm_setzero_pd();
671         fix2             = _mm_setzero_pd();
672         fiy2             = _mm_setzero_pd();
673         fiz2             = _mm_setzero_pd();
674         fix3             = _mm_setzero_pd();
675         fiy3             = _mm_setzero_pd();
676         fiz3             = _mm_setzero_pd();
677
678         /* Start inner kernel loop */
679         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
680         {
681
682             /* Get j neighbor index, and coordinate index */
683             jnrA             = jjnr[jidx];
684             jnrB             = jjnr[jidx+1];
685             j_coord_offsetA  = DIM*jnrA;
686             j_coord_offsetB  = DIM*jnrB;
687
688             /* load j atom coordinates */
689             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
690                                               &jx0,&jy0,&jz0);
691
692             /* Calculate displacement vector */
693             dx10             = _mm_sub_pd(ix1,jx0);
694             dy10             = _mm_sub_pd(iy1,jy0);
695             dz10             = _mm_sub_pd(iz1,jz0);
696             dx20             = _mm_sub_pd(ix2,jx0);
697             dy20             = _mm_sub_pd(iy2,jy0);
698             dz20             = _mm_sub_pd(iz2,jz0);
699             dx30             = _mm_sub_pd(ix3,jx0);
700             dy30             = _mm_sub_pd(iy3,jy0);
701             dz30             = _mm_sub_pd(iz3,jz0);
702
703             /* Calculate squared distance and things based on it */
704             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
705             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
706             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
707
708             rinv10           = gmx_mm_invsqrt_pd(rsq10);
709             rinv20           = gmx_mm_invsqrt_pd(rsq20);
710             rinv30           = gmx_mm_invsqrt_pd(rsq30);
711
712             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
713             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
714             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
715
716             /* Load parameters for j particles */
717             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
718
719             fjx0             = _mm_setzero_pd();
720             fjy0             = _mm_setzero_pd();
721             fjz0             = _mm_setzero_pd();
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             r10              = _mm_mul_pd(rsq10,rinv10);
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq10             = _mm_mul_pd(iq1,jq0);
731
732             /* EWALD ELECTROSTATICS */
733
734             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
735             ewrt             = _mm_mul_pd(r10,ewtabscale);
736             ewitab           = _mm_cvttpd_epi32(ewrt);
737             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
738             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
739                                          &ewtabF,&ewtabFn);
740             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
741             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
742
743             fscal            = felec;
744
745             /* Calculate temporary vectorial force */
746             tx               = _mm_mul_pd(fscal,dx10);
747             ty               = _mm_mul_pd(fscal,dy10);
748             tz               = _mm_mul_pd(fscal,dz10);
749
750             /* Update vectorial force */
751             fix1             = _mm_add_pd(fix1,tx);
752             fiy1             = _mm_add_pd(fiy1,ty);
753             fiz1             = _mm_add_pd(fiz1,tz);
754
755             fjx0             = _mm_add_pd(fjx0,tx);
756             fjy0             = _mm_add_pd(fjy0,ty);
757             fjz0             = _mm_add_pd(fjz0,tz);
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             r20              = _mm_mul_pd(rsq20,rinv20);
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq20             = _mm_mul_pd(iq2,jq0);
767
768             /* EWALD ELECTROSTATICS */
769
770             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
771             ewrt             = _mm_mul_pd(r20,ewtabscale);
772             ewitab           = _mm_cvttpd_epi32(ewrt);
773             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
774             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
775                                          &ewtabF,&ewtabFn);
776             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
777             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
778
779             fscal            = felec;
780
781             /* Calculate temporary vectorial force */
782             tx               = _mm_mul_pd(fscal,dx20);
783             ty               = _mm_mul_pd(fscal,dy20);
784             tz               = _mm_mul_pd(fscal,dz20);
785
786             /* Update vectorial force */
787             fix2             = _mm_add_pd(fix2,tx);
788             fiy2             = _mm_add_pd(fiy2,ty);
789             fiz2             = _mm_add_pd(fiz2,tz);
790
791             fjx0             = _mm_add_pd(fjx0,tx);
792             fjy0             = _mm_add_pd(fjy0,ty);
793             fjz0             = _mm_add_pd(fjz0,tz);
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             r30              = _mm_mul_pd(rsq30,rinv30);
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq30             = _mm_mul_pd(iq3,jq0);
803
804             /* EWALD ELECTROSTATICS */
805
806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
807             ewrt             = _mm_mul_pd(r30,ewtabscale);
808             ewitab           = _mm_cvttpd_epi32(ewrt);
809             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
810             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
811                                          &ewtabF,&ewtabFn);
812             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
813             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
814
815             fscal            = felec;
816
817             /* Calculate temporary vectorial force */
818             tx               = _mm_mul_pd(fscal,dx30);
819             ty               = _mm_mul_pd(fscal,dy30);
820             tz               = _mm_mul_pd(fscal,dz30);
821
822             /* Update vectorial force */
823             fix3             = _mm_add_pd(fix3,tx);
824             fiy3             = _mm_add_pd(fiy3,ty);
825             fiz3             = _mm_add_pd(fiz3,tz);
826
827             fjx0             = _mm_add_pd(fjx0,tx);
828             fjy0             = _mm_add_pd(fjy0,ty);
829             fjz0             = _mm_add_pd(fjz0,tz);
830
831             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
832
833             /* Inner loop uses 111 flops */
834         }
835
836         if(jidx<j_index_end)
837         {
838
839             jnrA             = jjnr[jidx];
840             j_coord_offsetA  = DIM*jnrA;
841
842             /* load j atom coordinates */
843             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
844                                               &jx0,&jy0,&jz0);
845
846             /* Calculate displacement vector */
847             dx10             = _mm_sub_pd(ix1,jx0);
848             dy10             = _mm_sub_pd(iy1,jy0);
849             dz10             = _mm_sub_pd(iz1,jz0);
850             dx20             = _mm_sub_pd(ix2,jx0);
851             dy20             = _mm_sub_pd(iy2,jy0);
852             dz20             = _mm_sub_pd(iz2,jz0);
853             dx30             = _mm_sub_pd(ix3,jx0);
854             dy30             = _mm_sub_pd(iy3,jy0);
855             dz30             = _mm_sub_pd(iz3,jz0);
856
857             /* Calculate squared distance and things based on it */
858             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
859             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
860             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
861
862             rinv10           = gmx_mm_invsqrt_pd(rsq10);
863             rinv20           = gmx_mm_invsqrt_pd(rsq20);
864             rinv30           = gmx_mm_invsqrt_pd(rsq30);
865
866             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
867             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
868             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
869
870             /* Load parameters for j particles */
871             jq0              = _mm_load_sd(charge+jnrA+0);
872
873             fjx0             = _mm_setzero_pd();
874             fjy0             = _mm_setzero_pd();
875             fjz0             = _mm_setzero_pd();
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r10              = _mm_mul_pd(rsq10,rinv10);
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq10             = _mm_mul_pd(iq1,jq0);
885
886             /* EWALD ELECTROSTATICS */
887
888             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
889             ewrt             = _mm_mul_pd(r10,ewtabscale);
890             ewitab           = _mm_cvttpd_epi32(ewrt);
891             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
892             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
893             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
894             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
895
896             fscal            = felec;
897
898             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_pd(fscal,dx10);
902             ty               = _mm_mul_pd(fscal,dy10);
903             tz               = _mm_mul_pd(fscal,dz10);
904
905             /* Update vectorial force */
906             fix1             = _mm_add_pd(fix1,tx);
907             fiy1             = _mm_add_pd(fiy1,ty);
908             fiz1             = _mm_add_pd(fiz1,tz);
909
910             fjx0             = _mm_add_pd(fjx0,tx);
911             fjy0             = _mm_add_pd(fjy0,ty);
912             fjz0             = _mm_add_pd(fjz0,tz);
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r20              = _mm_mul_pd(rsq20,rinv20);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq20             = _mm_mul_pd(iq2,jq0);
922
923             /* EWALD ELECTROSTATICS */
924
925             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
926             ewrt             = _mm_mul_pd(r20,ewtabscale);
927             ewitab           = _mm_cvttpd_epi32(ewrt);
928             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
929             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
930             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
931             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
932
933             fscal            = felec;
934
935             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_pd(fscal,dx20);
939             ty               = _mm_mul_pd(fscal,dy20);
940             tz               = _mm_mul_pd(fscal,dz20);
941
942             /* Update vectorial force */
943             fix2             = _mm_add_pd(fix2,tx);
944             fiy2             = _mm_add_pd(fiy2,ty);
945             fiz2             = _mm_add_pd(fiz2,tz);
946
947             fjx0             = _mm_add_pd(fjx0,tx);
948             fjy0             = _mm_add_pd(fjy0,ty);
949             fjz0             = _mm_add_pd(fjz0,tz);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             r30              = _mm_mul_pd(rsq30,rinv30);
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq30             = _mm_mul_pd(iq3,jq0);
959
960             /* EWALD ELECTROSTATICS */
961
962             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
963             ewrt             = _mm_mul_pd(r30,ewtabscale);
964             ewitab           = _mm_cvttpd_epi32(ewrt);
965             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
966             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
967             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
969
970             fscal            = felec;
971
972             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_pd(fscal,dx30);
976             ty               = _mm_mul_pd(fscal,dy30);
977             tz               = _mm_mul_pd(fscal,dz30);
978
979             /* Update vectorial force */
980             fix3             = _mm_add_pd(fix3,tx);
981             fiy3             = _mm_add_pd(fiy3,ty);
982             fiz3             = _mm_add_pd(fiz3,tz);
983
984             fjx0             = _mm_add_pd(fjx0,tx);
985             fjy0             = _mm_add_pd(fjy0,ty);
986             fjz0             = _mm_add_pd(fjz0,tz);
987
988             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 111 flops */
991         }
992
993         /* End of innermost loop */
994
995         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
996                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
997
998         /* Increment number of inner iterations */
999         inneriter                  += j_index_end - j_index_start;
1000
1001         /* Outer loop uses 18 flops */
1002     }
1003
1004     /* Increment number of outer iterations */
1005     outeriter        += nri;
1006
1007     /* Update outer/inner flops */
1008
1009     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
1010 }