Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomW3W3_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     int              vdwjidx1A,vdwjidx1B;
88     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
89     int              vdwjidx2A,vdwjidx2B;
90     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
91     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
93     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
94     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
96     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
97     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
99     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
100     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122
123     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133
134     jq0              = _mm_set1_pd(charge[inr+0]);
135     jq1              = _mm_set1_pd(charge[inr+1]);
136     jq2              = _mm_set1_pd(charge[inr+2]);
137     qq00             = _mm_mul_pd(iq0,jq0);
138     qq01             = _mm_mul_pd(iq0,jq1);
139     qq02             = _mm_mul_pd(iq0,jq2);
140     qq10             = _mm_mul_pd(iq1,jq0);
141     qq11             = _mm_mul_pd(iq1,jq1);
142     qq12             = _mm_mul_pd(iq1,jq2);
143     qq20             = _mm_mul_pd(iq2,jq0);
144     qq21             = _mm_mul_pd(iq2,jq1);
145     qq22             = _mm_mul_pd(iq2,jq2);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172
173         fix0             = _mm_setzero_pd();
174         fiy0             = _mm_setzero_pd();
175         fiz0             = _mm_setzero_pd();
176         fix1             = _mm_setzero_pd();
177         fiy1             = _mm_setzero_pd();
178         fiz1             = _mm_setzero_pd();
179         fix2             = _mm_setzero_pd();
180         fiy2             = _mm_setzero_pd();
181         fiz2             = _mm_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx01             = _mm_sub_pd(ix0,jx1);
205             dy01             = _mm_sub_pd(iy0,jy1);
206             dz01             = _mm_sub_pd(iz0,jz1);
207             dx02             = _mm_sub_pd(ix0,jx2);
208             dy02             = _mm_sub_pd(iy0,jy2);
209             dz02             = _mm_sub_pd(iz0,jz2);
210             dx10             = _mm_sub_pd(ix1,jx0);
211             dy10             = _mm_sub_pd(iy1,jy0);
212             dz10             = _mm_sub_pd(iz1,jz0);
213             dx11             = _mm_sub_pd(ix1,jx1);
214             dy11             = _mm_sub_pd(iy1,jy1);
215             dz11             = _mm_sub_pd(iz1,jz1);
216             dx12             = _mm_sub_pd(ix1,jx2);
217             dy12             = _mm_sub_pd(iy1,jy2);
218             dz12             = _mm_sub_pd(iz1,jz2);
219             dx20             = _mm_sub_pd(ix2,jx0);
220             dy20             = _mm_sub_pd(iy2,jy0);
221             dz20             = _mm_sub_pd(iz2,jz0);
222             dx21             = _mm_sub_pd(ix2,jx1);
223             dy21             = _mm_sub_pd(iy2,jy1);
224             dz21             = _mm_sub_pd(iz2,jz1);
225             dx22             = _mm_sub_pd(ix2,jx2);
226             dy22             = _mm_sub_pd(iy2,jy2);
227             dz22             = _mm_sub_pd(iz2,jz2);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
231             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
232             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
233             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
234             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
235             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
236             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
237             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
238             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
239
240             rinv00           = sse41_invsqrt_d(rsq00);
241             rinv01           = sse41_invsqrt_d(rsq01);
242             rinv02           = sse41_invsqrt_d(rsq02);
243             rinv10           = sse41_invsqrt_d(rsq10);
244             rinv11           = sse41_invsqrt_d(rsq11);
245             rinv12           = sse41_invsqrt_d(rsq12);
246             rinv20           = sse41_invsqrt_d(rsq20);
247             rinv21           = sse41_invsqrt_d(rsq21);
248             rinv22           = sse41_invsqrt_d(rsq22);
249
250             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
251             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
252             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
253             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
254             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
255             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
256             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
257             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
258             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
259
260             fjx0             = _mm_setzero_pd();
261             fjy0             = _mm_setzero_pd();
262             fjz0             = _mm_setzero_pd();
263             fjx1             = _mm_setzero_pd();
264             fjy1             = _mm_setzero_pd();
265             fjz1             = _mm_setzero_pd();
266             fjx2             = _mm_setzero_pd();
267             fjy2             = _mm_setzero_pd();
268             fjz2             = _mm_setzero_pd();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _mm_mul_pd(rsq00,rinv00);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
279             ewrt             = _mm_mul_pd(r00,ewtabscale);
280             ewitab           = _mm_cvttpd_epi32(ewrt);
281             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
285             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
286             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
287             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
288             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
289             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
290             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
291             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
292             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_pd(fscal,dx00);
301             ty               = _mm_mul_pd(fscal,dy00);
302             tz               = _mm_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_pd(fix0,tx);
306             fiy0             = _mm_add_pd(fiy0,ty);
307             fiz0             = _mm_add_pd(fiz0,tz);
308
309             fjx0             = _mm_add_pd(fjx0,tx);
310             fjy0             = _mm_add_pd(fjy0,ty);
311             fjz0             = _mm_add_pd(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r01              = _mm_mul_pd(rsq01,rinv01);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _mm_mul_pd(r01,ewtabscale);
323             ewitab           = _mm_cvttpd_epi32(ewrt);
324             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
325             ewitab           = _mm_slli_epi32(ewitab,2);
326             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
327             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
328             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
329             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
330             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
331             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
332             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
333             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
334             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
335             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_pd(velecsum,velec);
339
340             fscal            = felec;
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm_mul_pd(fscal,dx01);
344             ty               = _mm_mul_pd(fscal,dy01);
345             tz               = _mm_mul_pd(fscal,dz01);
346
347             /* Update vectorial force */
348             fix0             = _mm_add_pd(fix0,tx);
349             fiy0             = _mm_add_pd(fiy0,ty);
350             fiz0             = _mm_add_pd(fiz0,tz);
351
352             fjx1             = _mm_add_pd(fjx1,tx);
353             fjy1             = _mm_add_pd(fjy1,ty);
354             fjz1             = _mm_add_pd(fjz1,tz);
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             r02              = _mm_mul_pd(rsq02,rinv02);
361
362             /* EWALD ELECTROSTATICS */
363
364             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
365             ewrt             = _mm_mul_pd(r02,ewtabscale);
366             ewitab           = _mm_cvttpd_epi32(ewrt);
367             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
368             ewitab           = _mm_slli_epi32(ewitab,2);
369             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
370             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
371             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
372             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
373             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
374             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
375             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
376             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
377             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
378             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velecsum         = _mm_add_pd(velecsum,velec);
382
383             fscal            = felec;
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_pd(fscal,dx02);
387             ty               = _mm_mul_pd(fscal,dy02);
388             tz               = _mm_mul_pd(fscal,dz02);
389
390             /* Update vectorial force */
391             fix0             = _mm_add_pd(fix0,tx);
392             fiy0             = _mm_add_pd(fiy0,ty);
393             fiz0             = _mm_add_pd(fiz0,tz);
394
395             fjx2             = _mm_add_pd(fjx2,tx);
396             fjy2             = _mm_add_pd(fjy2,ty);
397             fjz2             = _mm_add_pd(fjz2,tz);
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             r10              = _mm_mul_pd(rsq10,rinv10);
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408             ewrt             = _mm_mul_pd(r10,ewtabscale);
409             ewitab           = _mm_cvttpd_epi32(ewrt);
410             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
411             ewitab           = _mm_slli_epi32(ewitab,2);
412             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
413             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
414             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
415             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
416             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
417             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
418             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
419             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
420             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
421             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velecsum         = _mm_add_pd(velecsum,velec);
425
426             fscal            = felec;
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_pd(fscal,dx10);
430             ty               = _mm_mul_pd(fscal,dy10);
431             tz               = _mm_mul_pd(fscal,dz10);
432
433             /* Update vectorial force */
434             fix1             = _mm_add_pd(fix1,tx);
435             fiy1             = _mm_add_pd(fiy1,ty);
436             fiz1             = _mm_add_pd(fiz1,tz);
437
438             fjx0             = _mm_add_pd(fjx0,tx);
439             fjy0             = _mm_add_pd(fjy0,ty);
440             fjz0             = _mm_add_pd(fjz0,tz);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             r11              = _mm_mul_pd(rsq11,rinv11);
447
448             /* EWALD ELECTROSTATICS */
449
450             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
451             ewrt             = _mm_mul_pd(r11,ewtabscale);
452             ewitab           = _mm_cvttpd_epi32(ewrt);
453             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
454             ewitab           = _mm_slli_epi32(ewitab,2);
455             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
456             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
457             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
458             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
459             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
460             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
461             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
462             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
463             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
464             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velecsum         = _mm_add_pd(velecsum,velec);
468
469             fscal            = felec;
470
471             /* Calculate temporary vectorial force */
472             tx               = _mm_mul_pd(fscal,dx11);
473             ty               = _mm_mul_pd(fscal,dy11);
474             tz               = _mm_mul_pd(fscal,dz11);
475
476             /* Update vectorial force */
477             fix1             = _mm_add_pd(fix1,tx);
478             fiy1             = _mm_add_pd(fiy1,ty);
479             fiz1             = _mm_add_pd(fiz1,tz);
480
481             fjx1             = _mm_add_pd(fjx1,tx);
482             fjy1             = _mm_add_pd(fjy1,ty);
483             fjz1             = _mm_add_pd(fjz1,tz);
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             r12              = _mm_mul_pd(rsq12,rinv12);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
494             ewrt             = _mm_mul_pd(r12,ewtabscale);
495             ewitab           = _mm_cvttpd_epi32(ewrt);
496             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
497             ewitab           = _mm_slli_epi32(ewitab,2);
498             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
499             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
500             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
501             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
502             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
503             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
504             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
505             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
506             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
507             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velecsum         = _mm_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_pd(fscal,dx12);
516             ty               = _mm_mul_pd(fscal,dy12);
517             tz               = _mm_mul_pd(fscal,dz12);
518
519             /* Update vectorial force */
520             fix1             = _mm_add_pd(fix1,tx);
521             fiy1             = _mm_add_pd(fiy1,ty);
522             fiz1             = _mm_add_pd(fiz1,tz);
523
524             fjx2             = _mm_add_pd(fjx2,tx);
525             fjy2             = _mm_add_pd(fjy2,ty);
526             fjz2             = _mm_add_pd(fjz2,tz);
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r20              = _mm_mul_pd(rsq20,rinv20);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm_mul_pd(r20,ewtabscale);
538             ewitab           = _mm_cvttpd_epi32(ewrt);
539             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
543             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
544             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
545             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
546             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
547             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
548             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
549             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
550             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velecsum         = _mm_add_pd(velecsum,velec);
554
555             fscal            = felec;
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_pd(fscal,dx20);
559             ty               = _mm_mul_pd(fscal,dy20);
560             tz               = _mm_mul_pd(fscal,dz20);
561
562             /* Update vectorial force */
563             fix2             = _mm_add_pd(fix2,tx);
564             fiy2             = _mm_add_pd(fiy2,ty);
565             fiz2             = _mm_add_pd(fiz2,tz);
566
567             fjx0             = _mm_add_pd(fjx0,tx);
568             fjy0             = _mm_add_pd(fjy0,ty);
569             fjz0             = _mm_add_pd(fjz0,tz);
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r21              = _mm_mul_pd(rsq21,rinv21);
576
577             /* EWALD ELECTROSTATICS */
578
579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580             ewrt             = _mm_mul_pd(r21,ewtabscale);
581             ewitab           = _mm_cvttpd_epi32(ewrt);
582             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
583             ewitab           = _mm_slli_epi32(ewitab,2);
584             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
585             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
586             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
587             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
588             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
589             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
590             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
591             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
592             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
593             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velecsum         = _mm_add_pd(velecsum,velec);
597
598             fscal            = felec;
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_pd(fscal,dx21);
602             ty               = _mm_mul_pd(fscal,dy21);
603             tz               = _mm_mul_pd(fscal,dz21);
604
605             /* Update vectorial force */
606             fix2             = _mm_add_pd(fix2,tx);
607             fiy2             = _mm_add_pd(fiy2,ty);
608             fiz2             = _mm_add_pd(fiz2,tz);
609
610             fjx1             = _mm_add_pd(fjx1,tx);
611             fjy1             = _mm_add_pd(fjy1,ty);
612             fjz1             = _mm_add_pd(fjz1,tz);
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             r22              = _mm_mul_pd(rsq22,rinv22);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_pd(r22,ewtabscale);
624             ewitab           = _mm_cvttpd_epi32(ewrt);
625             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
626             ewitab           = _mm_slli_epi32(ewitab,2);
627             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
628             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
629             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
630             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
631             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
632             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
633             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
634             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
635             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
636             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velecsum         = _mm_add_pd(velecsum,velec);
640
641             fscal            = felec;
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_pd(fscal,dx22);
645             ty               = _mm_mul_pd(fscal,dy22);
646             tz               = _mm_mul_pd(fscal,dz22);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_pd(fix2,tx);
650             fiy2             = _mm_add_pd(fiy2,ty);
651             fiz2             = _mm_add_pd(fiz2,tz);
652
653             fjx2             = _mm_add_pd(fjx2,tx);
654             fjy2             = _mm_add_pd(fjy2,ty);
655             fjz2             = _mm_add_pd(fjz2,tz);
656
657             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
658
659             /* Inner loop uses 369 flops */
660         }
661
662         if(jidx<j_index_end)
663         {
664
665             jnrA             = jjnr[jidx];
666             j_coord_offsetA  = DIM*jnrA;
667
668             /* load j atom coordinates */
669             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
670                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
671
672             /* Calculate displacement vector */
673             dx00             = _mm_sub_pd(ix0,jx0);
674             dy00             = _mm_sub_pd(iy0,jy0);
675             dz00             = _mm_sub_pd(iz0,jz0);
676             dx01             = _mm_sub_pd(ix0,jx1);
677             dy01             = _mm_sub_pd(iy0,jy1);
678             dz01             = _mm_sub_pd(iz0,jz1);
679             dx02             = _mm_sub_pd(ix0,jx2);
680             dy02             = _mm_sub_pd(iy0,jy2);
681             dz02             = _mm_sub_pd(iz0,jz2);
682             dx10             = _mm_sub_pd(ix1,jx0);
683             dy10             = _mm_sub_pd(iy1,jy0);
684             dz10             = _mm_sub_pd(iz1,jz0);
685             dx11             = _mm_sub_pd(ix1,jx1);
686             dy11             = _mm_sub_pd(iy1,jy1);
687             dz11             = _mm_sub_pd(iz1,jz1);
688             dx12             = _mm_sub_pd(ix1,jx2);
689             dy12             = _mm_sub_pd(iy1,jy2);
690             dz12             = _mm_sub_pd(iz1,jz2);
691             dx20             = _mm_sub_pd(ix2,jx0);
692             dy20             = _mm_sub_pd(iy2,jy0);
693             dz20             = _mm_sub_pd(iz2,jz0);
694             dx21             = _mm_sub_pd(ix2,jx1);
695             dy21             = _mm_sub_pd(iy2,jy1);
696             dz21             = _mm_sub_pd(iz2,jz1);
697             dx22             = _mm_sub_pd(ix2,jx2);
698             dy22             = _mm_sub_pd(iy2,jy2);
699             dz22             = _mm_sub_pd(iz2,jz2);
700
701             /* Calculate squared distance and things based on it */
702             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
703             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
704             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
705             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
706             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
707             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
708             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
709             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
710             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
711
712             rinv00           = sse41_invsqrt_d(rsq00);
713             rinv01           = sse41_invsqrt_d(rsq01);
714             rinv02           = sse41_invsqrt_d(rsq02);
715             rinv10           = sse41_invsqrt_d(rsq10);
716             rinv11           = sse41_invsqrt_d(rsq11);
717             rinv12           = sse41_invsqrt_d(rsq12);
718             rinv20           = sse41_invsqrt_d(rsq20);
719             rinv21           = sse41_invsqrt_d(rsq21);
720             rinv22           = sse41_invsqrt_d(rsq22);
721
722             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
723             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
724             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
725             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
726             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
727             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
728             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
729             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
730             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
731
732             fjx0             = _mm_setzero_pd();
733             fjy0             = _mm_setzero_pd();
734             fjz0             = _mm_setzero_pd();
735             fjx1             = _mm_setzero_pd();
736             fjy1             = _mm_setzero_pd();
737             fjz1             = _mm_setzero_pd();
738             fjx2             = _mm_setzero_pd();
739             fjy2             = _mm_setzero_pd();
740             fjz2             = _mm_setzero_pd();
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             r00              = _mm_mul_pd(rsq00,rinv00);
747
748             /* EWALD ELECTROSTATICS */
749
750             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
751             ewrt             = _mm_mul_pd(r00,ewtabscale);
752             ewitab           = _mm_cvttpd_epi32(ewrt);
753             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
754             ewitab           = _mm_slli_epi32(ewitab,2);
755             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
756             ewtabD           = _mm_setzero_pd();
757             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
758             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
759             ewtabFn          = _mm_setzero_pd();
760             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
761             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
762             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
763             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
764             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
765
766             /* Update potential sum for this i atom from the interaction with this j atom. */
767             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
768             velecsum         = _mm_add_pd(velecsum,velec);
769
770             fscal            = felec;
771
772             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
773
774             /* Calculate temporary vectorial force */
775             tx               = _mm_mul_pd(fscal,dx00);
776             ty               = _mm_mul_pd(fscal,dy00);
777             tz               = _mm_mul_pd(fscal,dz00);
778
779             /* Update vectorial force */
780             fix0             = _mm_add_pd(fix0,tx);
781             fiy0             = _mm_add_pd(fiy0,ty);
782             fiz0             = _mm_add_pd(fiz0,tz);
783
784             fjx0             = _mm_add_pd(fjx0,tx);
785             fjy0             = _mm_add_pd(fjy0,ty);
786             fjz0             = _mm_add_pd(fjz0,tz);
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             r01              = _mm_mul_pd(rsq01,rinv01);
793
794             /* EWALD ELECTROSTATICS */
795
796             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
797             ewrt             = _mm_mul_pd(r01,ewtabscale);
798             ewitab           = _mm_cvttpd_epi32(ewrt);
799             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
800             ewitab           = _mm_slli_epi32(ewitab,2);
801             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
802             ewtabD           = _mm_setzero_pd();
803             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
804             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
805             ewtabFn          = _mm_setzero_pd();
806             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
807             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
808             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
809             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
810             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
811
812             /* Update potential sum for this i atom from the interaction with this j atom. */
813             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
814             velecsum         = _mm_add_pd(velecsum,velec);
815
816             fscal            = felec;
817
818             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm_mul_pd(fscal,dx01);
822             ty               = _mm_mul_pd(fscal,dy01);
823             tz               = _mm_mul_pd(fscal,dz01);
824
825             /* Update vectorial force */
826             fix0             = _mm_add_pd(fix0,tx);
827             fiy0             = _mm_add_pd(fiy0,ty);
828             fiz0             = _mm_add_pd(fiz0,tz);
829
830             fjx1             = _mm_add_pd(fjx1,tx);
831             fjy1             = _mm_add_pd(fjy1,ty);
832             fjz1             = _mm_add_pd(fjz1,tz);
833
834             /**************************
835              * CALCULATE INTERACTIONS *
836              **************************/
837
838             r02              = _mm_mul_pd(rsq02,rinv02);
839
840             /* EWALD ELECTROSTATICS */
841
842             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
843             ewrt             = _mm_mul_pd(r02,ewtabscale);
844             ewitab           = _mm_cvttpd_epi32(ewrt);
845             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
846             ewitab           = _mm_slli_epi32(ewitab,2);
847             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
848             ewtabD           = _mm_setzero_pd();
849             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
850             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
851             ewtabFn          = _mm_setzero_pd();
852             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
853             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
854             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
855             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
856             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
857
858             /* Update potential sum for this i atom from the interaction with this j atom. */
859             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
860             velecsum         = _mm_add_pd(velecsum,velec);
861
862             fscal            = felec;
863
864             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm_mul_pd(fscal,dx02);
868             ty               = _mm_mul_pd(fscal,dy02);
869             tz               = _mm_mul_pd(fscal,dz02);
870
871             /* Update vectorial force */
872             fix0             = _mm_add_pd(fix0,tx);
873             fiy0             = _mm_add_pd(fiy0,ty);
874             fiz0             = _mm_add_pd(fiz0,tz);
875
876             fjx2             = _mm_add_pd(fjx2,tx);
877             fjy2             = _mm_add_pd(fjy2,ty);
878             fjz2             = _mm_add_pd(fjz2,tz);
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             r10              = _mm_mul_pd(rsq10,rinv10);
885
886             /* EWALD ELECTROSTATICS */
887
888             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
889             ewrt             = _mm_mul_pd(r10,ewtabscale);
890             ewitab           = _mm_cvttpd_epi32(ewrt);
891             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
892             ewitab           = _mm_slli_epi32(ewitab,2);
893             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
894             ewtabD           = _mm_setzero_pd();
895             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
896             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
897             ewtabFn          = _mm_setzero_pd();
898             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
899             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
900             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
901             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
902             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
903
904             /* Update potential sum for this i atom from the interaction with this j atom. */
905             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
906             velecsum         = _mm_add_pd(velecsum,velec);
907
908             fscal            = felec;
909
910             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
911
912             /* Calculate temporary vectorial force */
913             tx               = _mm_mul_pd(fscal,dx10);
914             ty               = _mm_mul_pd(fscal,dy10);
915             tz               = _mm_mul_pd(fscal,dz10);
916
917             /* Update vectorial force */
918             fix1             = _mm_add_pd(fix1,tx);
919             fiy1             = _mm_add_pd(fiy1,ty);
920             fiz1             = _mm_add_pd(fiz1,tz);
921
922             fjx0             = _mm_add_pd(fjx0,tx);
923             fjy0             = _mm_add_pd(fjy0,ty);
924             fjz0             = _mm_add_pd(fjz0,tz);
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             r11              = _mm_mul_pd(rsq11,rinv11);
931
932             /* EWALD ELECTROSTATICS */
933
934             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
935             ewrt             = _mm_mul_pd(r11,ewtabscale);
936             ewitab           = _mm_cvttpd_epi32(ewrt);
937             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
938             ewitab           = _mm_slli_epi32(ewitab,2);
939             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
940             ewtabD           = _mm_setzero_pd();
941             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
942             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
943             ewtabFn          = _mm_setzero_pd();
944             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
945             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
946             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
947             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
948             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
949
950             /* Update potential sum for this i atom from the interaction with this j atom. */
951             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
952             velecsum         = _mm_add_pd(velecsum,velec);
953
954             fscal            = felec;
955
956             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_pd(fscal,dx11);
960             ty               = _mm_mul_pd(fscal,dy11);
961             tz               = _mm_mul_pd(fscal,dz11);
962
963             /* Update vectorial force */
964             fix1             = _mm_add_pd(fix1,tx);
965             fiy1             = _mm_add_pd(fiy1,ty);
966             fiz1             = _mm_add_pd(fiz1,tz);
967
968             fjx1             = _mm_add_pd(fjx1,tx);
969             fjy1             = _mm_add_pd(fjy1,ty);
970             fjz1             = _mm_add_pd(fjz1,tz);
971
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             r12              = _mm_mul_pd(rsq12,rinv12);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
981             ewrt             = _mm_mul_pd(r12,ewtabscale);
982             ewitab           = _mm_cvttpd_epi32(ewrt);
983             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
984             ewitab           = _mm_slli_epi32(ewitab,2);
985             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
986             ewtabD           = _mm_setzero_pd();
987             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
988             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
989             ewtabFn          = _mm_setzero_pd();
990             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
991             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
992             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
993             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
994             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
995
996             /* Update potential sum for this i atom from the interaction with this j atom. */
997             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
998             velecsum         = _mm_add_pd(velecsum,velec);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_pd(fscal,dx12);
1006             ty               = _mm_mul_pd(fscal,dy12);
1007             tz               = _mm_mul_pd(fscal,dz12);
1008
1009             /* Update vectorial force */
1010             fix1             = _mm_add_pd(fix1,tx);
1011             fiy1             = _mm_add_pd(fiy1,ty);
1012             fiz1             = _mm_add_pd(fiz1,tz);
1013
1014             fjx2             = _mm_add_pd(fjx2,tx);
1015             fjy2             = _mm_add_pd(fjy2,ty);
1016             fjz2             = _mm_add_pd(fjz2,tz);
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             r20              = _mm_mul_pd(rsq20,rinv20);
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1027             ewrt             = _mm_mul_pd(r20,ewtabscale);
1028             ewitab           = _mm_cvttpd_epi32(ewrt);
1029             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1030             ewitab           = _mm_slli_epi32(ewitab,2);
1031             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1032             ewtabD           = _mm_setzero_pd();
1033             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1034             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1035             ewtabFn          = _mm_setzero_pd();
1036             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1037             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1038             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1039             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1040             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1041
1042             /* Update potential sum for this i atom from the interaction with this j atom. */
1043             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1044             velecsum         = _mm_add_pd(velecsum,velec);
1045
1046             fscal            = felec;
1047
1048             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm_mul_pd(fscal,dx20);
1052             ty               = _mm_mul_pd(fscal,dy20);
1053             tz               = _mm_mul_pd(fscal,dz20);
1054
1055             /* Update vectorial force */
1056             fix2             = _mm_add_pd(fix2,tx);
1057             fiy2             = _mm_add_pd(fiy2,ty);
1058             fiz2             = _mm_add_pd(fiz2,tz);
1059
1060             fjx0             = _mm_add_pd(fjx0,tx);
1061             fjy0             = _mm_add_pd(fjy0,ty);
1062             fjz0             = _mm_add_pd(fjz0,tz);
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             r21              = _mm_mul_pd(rsq21,rinv21);
1069
1070             /* EWALD ELECTROSTATICS */
1071
1072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073             ewrt             = _mm_mul_pd(r21,ewtabscale);
1074             ewitab           = _mm_cvttpd_epi32(ewrt);
1075             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1076             ewitab           = _mm_slli_epi32(ewitab,2);
1077             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1078             ewtabD           = _mm_setzero_pd();
1079             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1080             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1081             ewtabFn          = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1083             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1084             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1085             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1086             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1087
1088             /* Update potential sum for this i atom from the interaction with this j atom. */
1089             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1090             velecsum         = _mm_add_pd(velecsum,velec);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm_mul_pd(fscal,dx21);
1098             ty               = _mm_mul_pd(fscal,dy21);
1099             tz               = _mm_mul_pd(fscal,dz21);
1100
1101             /* Update vectorial force */
1102             fix2             = _mm_add_pd(fix2,tx);
1103             fiy2             = _mm_add_pd(fiy2,ty);
1104             fiz2             = _mm_add_pd(fiz2,tz);
1105
1106             fjx1             = _mm_add_pd(fjx1,tx);
1107             fjy1             = _mm_add_pd(fjy1,ty);
1108             fjz1             = _mm_add_pd(fjz1,tz);
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             r22              = _mm_mul_pd(rsq22,rinv22);
1115
1116             /* EWALD ELECTROSTATICS */
1117
1118             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1119             ewrt             = _mm_mul_pd(r22,ewtabscale);
1120             ewitab           = _mm_cvttpd_epi32(ewrt);
1121             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1122             ewitab           = _mm_slli_epi32(ewitab,2);
1123             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1124             ewtabD           = _mm_setzero_pd();
1125             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1126             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1127             ewtabFn          = _mm_setzero_pd();
1128             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1129             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1130             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1131             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1132             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1133
1134             /* Update potential sum for this i atom from the interaction with this j atom. */
1135             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1136             velecsum         = _mm_add_pd(velecsum,velec);
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm_mul_pd(fscal,dx22);
1144             ty               = _mm_mul_pd(fscal,dy22);
1145             tz               = _mm_mul_pd(fscal,dz22);
1146
1147             /* Update vectorial force */
1148             fix2             = _mm_add_pd(fix2,tx);
1149             fiy2             = _mm_add_pd(fiy2,ty);
1150             fiz2             = _mm_add_pd(fiz2,tz);
1151
1152             fjx2             = _mm_add_pd(fjx2,tx);
1153             fjy2             = _mm_add_pd(fjy2,ty);
1154             fjz2             = _mm_add_pd(fjz2,tz);
1155
1156             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1157
1158             /* Inner loop uses 369 flops */
1159         }
1160
1161         /* End of innermost loop */
1162
1163         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1164                                               f+i_coord_offset,fshift+i_shift_offset);
1165
1166         ggid                        = gid[iidx];
1167         /* Update potential energies */
1168         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1169
1170         /* Increment number of inner iterations */
1171         inneriter                  += j_index_end - j_index_start;
1172
1173         /* Outer loop uses 19 flops */
1174     }
1175
1176     /* Increment number of outer iterations */
1177     outeriter        += nri;
1178
1179     /* Update outer/inner flops */
1180
1181     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*369);
1182 }
1183 /*
1184  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse4_1_double
1185  * Electrostatics interaction: Ewald
1186  * VdW interaction:            None
1187  * Geometry:                   Water3-Water3
1188  * Calculate force/pot:        Force
1189  */
1190 void
1191 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse4_1_double
1192                     (t_nblist                    * gmx_restrict       nlist,
1193                      rvec                        * gmx_restrict          xx,
1194                      rvec                        * gmx_restrict          ff,
1195                      struct t_forcerec           * gmx_restrict          fr,
1196                      t_mdatoms                   * gmx_restrict     mdatoms,
1197                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1198                      t_nrnb                      * gmx_restrict        nrnb)
1199 {
1200     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1201      * just 0 for non-waters.
1202      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1203      * jnr indices corresponding to data put in the four positions in the SIMD register.
1204      */
1205     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1206     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1207     int              jnrA,jnrB;
1208     int              j_coord_offsetA,j_coord_offsetB;
1209     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1210     real             rcutoff_scalar;
1211     real             *shiftvec,*fshift,*x,*f;
1212     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1213     int              vdwioffset0;
1214     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1215     int              vdwioffset1;
1216     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1217     int              vdwioffset2;
1218     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1219     int              vdwjidx0A,vdwjidx0B;
1220     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1221     int              vdwjidx1A,vdwjidx1B;
1222     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1223     int              vdwjidx2A,vdwjidx2B;
1224     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1225     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1226     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1227     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1228     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1229     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1230     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1231     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1232     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1233     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1234     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1235     real             *charge;
1236     __m128i          ewitab;
1237     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1238     real             *ewtab;
1239     __m128d          dummy_mask,cutoff_mask;
1240     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1241     __m128d          one     = _mm_set1_pd(1.0);
1242     __m128d          two     = _mm_set1_pd(2.0);
1243     x                = xx[0];
1244     f                = ff[0];
1245
1246     nri              = nlist->nri;
1247     iinr             = nlist->iinr;
1248     jindex           = nlist->jindex;
1249     jjnr             = nlist->jjnr;
1250     shiftidx         = nlist->shift;
1251     gid              = nlist->gid;
1252     shiftvec         = fr->shift_vec[0];
1253     fshift           = fr->fshift[0];
1254     facel            = _mm_set1_pd(fr->ic->epsfac);
1255     charge           = mdatoms->chargeA;
1256
1257     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1258     ewtab            = fr->ic->tabq_coul_F;
1259     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1260     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1261
1262     /* Setup water-specific parameters */
1263     inr              = nlist->iinr[0];
1264     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1265     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1266     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1267
1268     jq0              = _mm_set1_pd(charge[inr+0]);
1269     jq1              = _mm_set1_pd(charge[inr+1]);
1270     jq2              = _mm_set1_pd(charge[inr+2]);
1271     qq00             = _mm_mul_pd(iq0,jq0);
1272     qq01             = _mm_mul_pd(iq0,jq1);
1273     qq02             = _mm_mul_pd(iq0,jq2);
1274     qq10             = _mm_mul_pd(iq1,jq0);
1275     qq11             = _mm_mul_pd(iq1,jq1);
1276     qq12             = _mm_mul_pd(iq1,jq2);
1277     qq20             = _mm_mul_pd(iq2,jq0);
1278     qq21             = _mm_mul_pd(iq2,jq1);
1279     qq22             = _mm_mul_pd(iq2,jq2);
1280
1281     /* Avoid stupid compiler warnings */
1282     jnrA = jnrB = 0;
1283     j_coord_offsetA = 0;
1284     j_coord_offsetB = 0;
1285
1286     outeriter        = 0;
1287     inneriter        = 0;
1288
1289     /* Start outer loop over neighborlists */
1290     for(iidx=0; iidx<nri; iidx++)
1291     {
1292         /* Load shift vector for this list */
1293         i_shift_offset   = DIM*shiftidx[iidx];
1294
1295         /* Load limits for loop over neighbors */
1296         j_index_start    = jindex[iidx];
1297         j_index_end      = jindex[iidx+1];
1298
1299         /* Get outer coordinate index */
1300         inr              = iinr[iidx];
1301         i_coord_offset   = DIM*inr;
1302
1303         /* Load i particle coords and add shift vector */
1304         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1305                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1306
1307         fix0             = _mm_setzero_pd();
1308         fiy0             = _mm_setzero_pd();
1309         fiz0             = _mm_setzero_pd();
1310         fix1             = _mm_setzero_pd();
1311         fiy1             = _mm_setzero_pd();
1312         fiz1             = _mm_setzero_pd();
1313         fix2             = _mm_setzero_pd();
1314         fiy2             = _mm_setzero_pd();
1315         fiz2             = _mm_setzero_pd();
1316
1317         /* Start inner kernel loop */
1318         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1319         {
1320
1321             /* Get j neighbor index, and coordinate index */
1322             jnrA             = jjnr[jidx];
1323             jnrB             = jjnr[jidx+1];
1324             j_coord_offsetA  = DIM*jnrA;
1325             j_coord_offsetB  = DIM*jnrB;
1326
1327             /* load j atom coordinates */
1328             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1329                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1330
1331             /* Calculate displacement vector */
1332             dx00             = _mm_sub_pd(ix0,jx0);
1333             dy00             = _mm_sub_pd(iy0,jy0);
1334             dz00             = _mm_sub_pd(iz0,jz0);
1335             dx01             = _mm_sub_pd(ix0,jx1);
1336             dy01             = _mm_sub_pd(iy0,jy1);
1337             dz01             = _mm_sub_pd(iz0,jz1);
1338             dx02             = _mm_sub_pd(ix0,jx2);
1339             dy02             = _mm_sub_pd(iy0,jy2);
1340             dz02             = _mm_sub_pd(iz0,jz2);
1341             dx10             = _mm_sub_pd(ix1,jx0);
1342             dy10             = _mm_sub_pd(iy1,jy0);
1343             dz10             = _mm_sub_pd(iz1,jz0);
1344             dx11             = _mm_sub_pd(ix1,jx1);
1345             dy11             = _mm_sub_pd(iy1,jy1);
1346             dz11             = _mm_sub_pd(iz1,jz1);
1347             dx12             = _mm_sub_pd(ix1,jx2);
1348             dy12             = _mm_sub_pd(iy1,jy2);
1349             dz12             = _mm_sub_pd(iz1,jz2);
1350             dx20             = _mm_sub_pd(ix2,jx0);
1351             dy20             = _mm_sub_pd(iy2,jy0);
1352             dz20             = _mm_sub_pd(iz2,jz0);
1353             dx21             = _mm_sub_pd(ix2,jx1);
1354             dy21             = _mm_sub_pd(iy2,jy1);
1355             dz21             = _mm_sub_pd(iz2,jz1);
1356             dx22             = _mm_sub_pd(ix2,jx2);
1357             dy22             = _mm_sub_pd(iy2,jy2);
1358             dz22             = _mm_sub_pd(iz2,jz2);
1359
1360             /* Calculate squared distance and things based on it */
1361             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1362             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1363             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1364             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1365             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1366             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1367             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1368             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1369             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1370
1371             rinv00           = sse41_invsqrt_d(rsq00);
1372             rinv01           = sse41_invsqrt_d(rsq01);
1373             rinv02           = sse41_invsqrt_d(rsq02);
1374             rinv10           = sse41_invsqrt_d(rsq10);
1375             rinv11           = sse41_invsqrt_d(rsq11);
1376             rinv12           = sse41_invsqrt_d(rsq12);
1377             rinv20           = sse41_invsqrt_d(rsq20);
1378             rinv21           = sse41_invsqrt_d(rsq21);
1379             rinv22           = sse41_invsqrt_d(rsq22);
1380
1381             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1382             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1383             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1384             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1385             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1386             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1387             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1388             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1389             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1390
1391             fjx0             = _mm_setzero_pd();
1392             fjy0             = _mm_setzero_pd();
1393             fjz0             = _mm_setzero_pd();
1394             fjx1             = _mm_setzero_pd();
1395             fjy1             = _mm_setzero_pd();
1396             fjz1             = _mm_setzero_pd();
1397             fjx2             = _mm_setzero_pd();
1398             fjy2             = _mm_setzero_pd();
1399             fjz2             = _mm_setzero_pd();
1400
1401             /**************************
1402              * CALCULATE INTERACTIONS *
1403              **************************/
1404
1405             r00              = _mm_mul_pd(rsq00,rinv00);
1406
1407             /* EWALD ELECTROSTATICS */
1408
1409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1410             ewrt             = _mm_mul_pd(r00,ewtabscale);
1411             ewitab           = _mm_cvttpd_epi32(ewrt);
1412             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1413             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1414                                          &ewtabF,&ewtabFn);
1415             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1416             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1417
1418             fscal            = felec;
1419
1420             /* Calculate temporary vectorial force */
1421             tx               = _mm_mul_pd(fscal,dx00);
1422             ty               = _mm_mul_pd(fscal,dy00);
1423             tz               = _mm_mul_pd(fscal,dz00);
1424
1425             /* Update vectorial force */
1426             fix0             = _mm_add_pd(fix0,tx);
1427             fiy0             = _mm_add_pd(fiy0,ty);
1428             fiz0             = _mm_add_pd(fiz0,tz);
1429
1430             fjx0             = _mm_add_pd(fjx0,tx);
1431             fjy0             = _mm_add_pd(fjy0,ty);
1432             fjz0             = _mm_add_pd(fjz0,tz);
1433
1434             /**************************
1435              * CALCULATE INTERACTIONS *
1436              **************************/
1437
1438             r01              = _mm_mul_pd(rsq01,rinv01);
1439
1440             /* EWALD ELECTROSTATICS */
1441
1442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1443             ewrt             = _mm_mul_pd(r01,ewtabscale);
1444             ewitab           = _mm_cvttpd_epi32(ewrt);
1445             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1446             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1447                                          &ewtabF,&ewtabFn);
1448             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1449             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1450
1451             fscal            = felec;
1452
1453             /* Calculate temporary vectorial force */
1454             tx               = _mm_mul_pd(fscal,dx01);
1455             ty               = _mm_mul_pd(fscal,dy01);
1456             tz               = _mm_mul_pd(fscal,dz01);
1457
1458             /* Update vectorial force */
1459             fix0             = _mm_add_pd(fix0,tx);
1460             fiy0             = _mm_add_pd(fiy0,ty);
1461             fiz0             = _mm_add_pd(fiz0,tz);
1462
1463             fjx1             = _mm_add_pd(fjx1,tx);
1464             fjy1             = _mm_add_pd(fjy1,ty);
1465             fjz1             = _mm_add_pd(fjz1,tz);
1466
1467             /**************************
1468              * CALCULATE INTERACTIONS *
1469              **************************/
1470
1471             r02              = _mm_mul_pd(rsq02,rinv02);
1472
1473             /* EWALD ELECTROSTATICS */
1474
1475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1476             ewrt             = _mm_mul_pd(r02,ewtabscale);
1477             ewitab           = _mm_cvttpd_epi32(ewrt);
1478             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1479             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1480                                          &ewtabF,&ewtabFn);
1481             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1482             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1483
1484             fscal            = felec;
1485
1486             /* Calculate temporary vectorial force */
1487             tx               = _mm_mul_pd(fscal,dx02);
1488             ty               = _mm_mul_pd(fscal,dy02);
1489             tz               = _mm_mul_pd(fscal,dz02);
1490
1491             /* Update vectorial force */
1492             fix0             = _mm_add_pd(fix0,tx);
1493             fiy0             = _mm_add_pd(fiy0,ty);
1494             fiz0             = _mm_add_pd(fiz0,tz);
1495
1496             fjx2             = _mm_add_pd(fjx2,tx);
1497             fjy2             = _mm_add_pd(fjy2,ty);
1498             fjz2             = _mm_add_pd(fjz2,tz);
1499
1500             /**************************
1501              * CALCULATE INTERACTIONS *
1502              **************************/
1503
1504             r10              = _mm_mul_pd(rsq10,rinv10);
1505
1506             /* EWALD ELECTROSTATICS */
1507
1508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1509             ewrt             = _mm_mul_pd(r10,ewtabscale);
1510             ewitab           = _mm_cvttpd_epi32(ewrt);
1511             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1512             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1513                                          &ewtabF,&ewtabFn);
1514             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1515             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1516
1517             fscal            = felec;
1518
1519             /* Calculate temporary vectorial force */
1520             tx               = _mm_mul_pd(fscal,dx10);
1521             ty               = _mm_mul_pd(fscal,dy10);
1522             tz               = _mm_mul_pd(fscal,dz10);
1523
1524             /* Update vectorial force */
1525             fix1             = _mm_add_pd(fix1,tx);
1526             fiy1             = _mm_add_pd(fiy1,ty);
1527             fiz1             = _mm_add_pd(fiz1,tz);
1528
1529             fjx0             = _mm_add_pd(fjx0,tx);
1530             fjy0             = _mm_add_pd(fjy0,ty);
1531             fjz0             = _mm_add_pd(fjz0,tz);
1532
1533             /**************************
1534              * CALCULATE INTERACTIONS *
1535              **************************/
1536
1537             r11              = _mm_mul_pd(rsq11,rinv11);
1538
1539             /* EWALD ELECTROSTATICS */
1540
1541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1542             ewrt             = _mm_mul_pd(r11,ewtabscale);
1543             ewitab           = _mm_cvttpd_epi32(ewrt);
1544             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1545             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1546                                          &ewtabF,&ewtabFn);
1547             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1548             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1549
1550             fscal            = felec;
1551
1552             /* Calculate temporary vectorial force */
1553             tx               = _mm_mul_pd(fscal,dx11);
1554             ty               = _mm_mul_pd(fscal,dy11);
1555             tz               = _mm_mul_pd(fscal,dz11);
1556
1557             /* Update vectorial force */
1558             fix1             = _mm_add_pd(fix1,tx);
1559             fiy1             = _mm_add_pd(fiy1,ty);
1560             fiz1             = _mm_add_pd(fiz1,tz);
1561
1562             fjx1             = _mm_add_pd(fjx1,tx);
1563             fjy1             = _mm_add_pd(fjy1,ty);
1564             fjz1             = _mm_add_pd(fjz1,tz);
1565
1566             /**************************
1567              * CALCULATE INTERACTIONS *
1568              **************************/
1569
1570             r12              = _mm_mul_pd(rsq12,rinv12);
1571
1572             /* EWALD ELECTROSTATICS */
1573
1574             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1575             ewrt             = _mm_mul_pd(r12,ewtabscale);
1576             ewitab           = _mm_cvttpd_epi32(ewrt);
1577             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1578             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1579                                          &ewtabF,&ewtabFn);
1580             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1581             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1582
1583             fscal            = felec;
1584
1585             /* Calculate temporary vectorial force */
1586             tx               = _mm_mul_pd(fscal,dx12);
1587             ty               = _mm_mul_pd(fscal,dy12);
1588             tz               = _mm_mul_pd(fscal,dz12);
1589
1590             /* Update vectorial force */
1591             fix1             = _mm_add_pd(fix1,tx);
1592             fiy1             = _mm_add_pd(fiy1,ty);
1593             fiz1             = _mm_add_pd(fiz1,tz);
1594
1595             fjx2             = _mm_add_pd(fjx2,tx);
1596             fjy2             = _mm_add_pd(fjy2,ty);
1597             fjz2             = _mm_add_pd(fjz2,tz);
1598
1599             /**************************
1600              * CALCULATE INTERACTIONS *
1601              **************************/
1602
1603             r20              = _mm_mul_pd(rsq20,rinv20);
1604
1605             /* EWALD ELECTROSTATICS */
1606
1607             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1608             ewrt             = _mm_mul_pd(r20,ewtabscale);
1609             ewitab           = _mm_cvttpd_epi32(ewrt);
1610             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1611             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1612                                          &ewtabF,&ewtabFn);
1613             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1614             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1615
1616             fscal            = felec;
1617
1618             /* Calculate temporary vectorial force */
1619             tx               = _mm_mul_pd(fscal,dx20);
1620             ty               = _mm_mul_pd(fscal,dy20);
1621             tz               = _mm_mul_pd(fscal,dz20);
1622
1623             /* Update vectorial force */
1624             fix2             = _mm_add_pd(fix2,tx);
1625             fiy2             = _mm_add_pd(fiy2,ty);
1626             fiz2             = _mm_add_pd(fiz2,tz);
1627
1628             fjx0             = _mm_add_pd(fjx0,tx);
1629             fjy0             = _mm_add_pd(fjy0,ty);
1630             fjz0             = _mm_add_pd(fjz0,tz);
1631
1632             /**************************
1633              * CALCULATE INTERACTIONS *
1634              **************************/
1635
1636             r21              = _mm_mul_pd(rsq21,rinv21);
1637
1638             /* EWALD ELECTROSTATICS */
1639
1640             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1641             ewrt             = _mm_mul_pd(r21,ewtabscale);
1642             ewitab           = _mm_cvttpd_epi32(ewrt);
1643             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1644             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1645                                          &ewtabF,&ewtabFn);
1646             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1647             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1648
1649             fscal            = felec;
1650
1651             /* Calculate temporary vectorial force */
1652             tx               = _mm_mul_pd(fscal,dx21);
1653             ty               = _mm_mul_pd(fscal,dy21);
1654             tz               = _mm_mul_pd(fscal,dz21);
1655
1656             /* Update vectorial force */
1657             fix2             = _mm_add_pd(fix2,tx);
1658             fiy2             = _mm_add_pd(fiy2,ty);
1659             fiz2             = _mm_add_pd(fiz2,tz);
1660
1661             fjx1             = _mm_add_pd(fjx1,tx);
1662             fjy1             = _mm_add_pd(fjy1,ty);
1663             fjz1             = _mm_add_pd(fjz1,tz);
1664
1665             /**************************
1666              * CALCULATE INTERACTIONS *
1667              **************************/
1668
1669             r22              = _mm_mul_pd(rsq22,rinv22);
1670
1671             /* EWALD ELECTROSTATICS */
1672
1673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1674             ewrt             = _mm_mul_pd(r22,ewtabscale);
1675             ewitab           = _mm_cvttpd_epi32(ewrt);
1676             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1677             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1678                                          &ewtabF,&ewtabFn);
1679             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1680             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1681
1682             fscal            = felec;
1683
1684             /* Calculate temporary vectorial force */
1685             tx               = _mm_mul_pd(fscal,dx22);
1686             ty               = _mm_mul_pd(fscal,dy22);
1687             tz               = _mm_mul_pd(fscal,dz22);
1688
1689             /* Update vectorial force */
1690             fix2             = _mm_add_pd(fix2,tx);
1691             fiy2             = _mm_add_pd(fiy2,ty);
1692             fiz2             = _mm_add_pd(fiz2,tz);
1693
1694             fjx2             = _mm_add_pd(fjx2,tx);
1695             fjy2             = _mm_add_pd(fjy2,ty);
1696             fjz2             = _mm_add_pd(fjz2,tz);
1697
1698             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1699
1700             /* Inner loop uses 324 flops */
1701         }
1702
1703         if(jidx<j_index_end)
1704         {
1705
1706             jnrA             = jjnr[jidx];
1707             j_coord_offsetA  = DIM*jnrA;
1708
1709             /* load j atom coordinates */
1710             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1711                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1712
1713             /* Calculate displacement vector */
1714             dx00             = _mm_sub_pd(ix0,jx0);
1715             dy00             = _mm_sub_pd(iy0,jy0);
1716             dz00             = _mm_sub_pd(iz0,jz0);
1717             dx01             = _mm_sub_pd(ix0,jx1);
1718             dy01             = _mm_sub_pd(iy0,jy1);
1719             dz01             = _mm_sub_pd(iz0,jz1);
1720             dx02             = _mm_sub_pd(ix0,jx2);
1721             dy02             = _mm_sub_pd(iy0,jy2);
1722             dz02             = _mm_sub_pd(iz0,jz2);
1723             dx10             = _mm_sub_pd(ix1,jx0);
1724             dy10             = _mm_sub_pd(iy1,jy0);
1725             dz10             = _mm_sub_pd(iz1,jz0);
1726             dx11             = _mm_sub_pd(ix1,jx1);
1727             dy11             = _mm_sub_pd(iy1,jy1);
1728             dz11             = _mm_sub_pd(iz1,jz1);
1729             dx12             = _mm_sub_pd(ix1,jx2);
1730             dy12             = _mm_sub_pd(iy1,jy2);
1731             dz12             = _mm_sub_pd(iz1,jz2);
1732             dx20             = _mm_sub_pd(ix2,jx0);
1733             dy20             = _mm_sub_pd(iy2,jy0);
1734             dz20             = _mm_sub_pd(iz2,jz0);
1735             dx21             = _mm_sub_pd(ix2,jx1);
1736             dy21             = _mm_sub_pd(iy2,jy1);
1737             dz21             = _mm_sub_pd(iz2,jz1);
1738             dx22             = _mm_sub_pd(ix2,jx2);
1739             dy22             = _mm_sub_pd(iy2,jy2);
1740             dz22             = _mm_sub_pd(iz2,jz2);
1741
1742             /* Calculate squared distance and things based on it */
1743             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1744             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1745             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1746             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1747             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1748             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1749             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1750             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1751             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1752
1753             rinv00           = sse41_invsqrt_d(rsq00);
1754             rinv01           = sse41_invsqrt_d(rsq01);
1755             rinv02           = sse41_invsqrt_d(rsq02);
1756             rinv10           = sse41_invsqrt_d(rsq10);
1757             rinv11           = sse41_invsqrt_d(rsq11);
1758             rinv12           = sse41_invsqrt_d(rsq12);
1759             rinv20           = sse41_invsqrt_d(rsq20);
1760             rinv21           = sse41_invsqrt_d(rsq21);
1761             rinv22           = sse41_invsqrt_d(rsq22);
1762
1763             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1764             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1765             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1766             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1767             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1768             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1769             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1770             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1771             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1772
1773             fjx0             = _mm_setzero_pd();
1774             fjy0             = _mm_setzero_pd();
1775             fjz0             = _mm_setzero_pd();
1776             fjx1             = _mm_setzero_pd();
1777             fjy1             = _mm_setzero_pd();
1778             fjz1             = _mm_setzero_pd();
1779             fjx2             = _mm_setzero_pd();
1780             fjy2             = _mm_setzero_pd();
1781             fjz2             = _mm_setzero_pd();
1782
1783             /**************************
1784              * CALCULATE INTERACTIONS *
1785              **************************/
1786
1787             r00              = _mm_mul_pd(rsq00,rinv00);
1788
1789             /* EWALD ELECTROSTATICS */
1790
1791             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1792             ewrt             = _mm_mul_pd(r00,ewtabscale);
1793             ewitab           = _mm_cvttpd_epi32(ewrt);
1794             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1795             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1796             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1797             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1798
1799             fscal            = felec;
1800
1801             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1802
1803             /* Calculate temporary vectorial force */
1804             tx               = _mm_mul_pd(fscal,dx00);
1805             ty               = _mm_mul_pd(fscal,dy00);
1806             tz               = _mm_mul_pd(fscal,dz00);
1807
1808             /* Update vectorial force */
1809             fix0             = _mm_add_pd(fix0,tx);
1810             fiy0             = _mm_add_pd(fiy0,ty);
1811             fiz0             = _mm_add_pd(fiz0,tz);
1812
1813             fjx0             = _mm_add_pd(fjx0,tx);
1814             fjy0             = _mm_add_pd(fjy0,ty);
1815             fjz0             = _mm_add_pd(fjz0,tz);
1816
1817             /**************************
1818              * CALCULATE INTERACTIONS *
1819              **************************/
1820
1821             r01              = _mm_mul_pd(rsq01,rinv01);
1822
1823             /* EWALD ELECTROSTATICS */
1824
1825             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1826             ewrt             = _mm_mul_pd(r01,ewtabscale);
1827             ewitab           = _mm_cvttpd_epi32(ewrt);
1828             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1829             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1830             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1831             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1832
1833             fscal            = felec;
1834
1835             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1836
1837             /* Calculate temporary vectorial force */
1838             tx               = _mm_mul_pd(fscal,dx01);
1839             ty               = _mm_mul_pd(fscal,dy01);
1840             tz               = _mm_mul_pd(fscal,dz01);
1841
1842             /* Update vectorial force */
1843             fix0             = _mm_add_pd(fix0,tx);
1844             fiy0             = _mm_add_pd(fiy0,ty);
1845             fiz0             = _mm_add_pd(fiz0,tz);
1846
1847             fjx1             = _mm_add_pd(fjx1,tx);
1848             fjy1             = _mm_add_pd(fjy1,ty);
1849             fjz1             = _mm_add_pd(fjz1,tz);
1850
1851             /**************************
1852              * CALCULATE INTERACTIONS *
1853              **************************/
1854
1855             r02              = _mm_mul_pd(rsq02,rinv02);
1856
1857             /* EWALD ELECTROSTATICS */
1858
1859             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1860             ewrt             = _mm_mul_pd(r02,ewtabscale);
1861             ewitab           = _mm_cvttpd_epi32(ewrt);
1862             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1863             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1864             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1865             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1866
1867             fscal            = felec;
1868
1869             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1870
1871             /* Calculate temporary vectorial force */
1872             tx               = _mm_mul_pd(fscal,dx02);
1873             ty               = _mm_mul_pd(fscal,dy02);
1874             tz               = _mm_mul_pd(fscal,dz02);
1875
1876             /* Update vectorial force */
1877             fix0             = _mm_add_pd(fix0,tx);
1878             fiy0             = _mm_add_pd(fiy0,ty);
1879             fiz0             = _mm_add_pd(fiz0,tz);
1880
1881             fjx2             = _mm_add_pd(fjx2,tx);
1882             fjy2             = _mm_add_pd(fjy2,ty);
1883             fjz2             = _mm_add_pd(fjz2,tz);
1884
1885             /**************************
1886              * CALCULATE INTERACTIONS *
1887              **************************/
1888
1889             r10              = _mm_mul_pd(rsq10,rinv10);
1890
1891             /* EWALD ELECTROSTATICS */
1892
1893             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1894             ewrt             = _mm_mul_pd(r10,ewtabscale);
1895             ewitab           = _mm_cvttpd_epi32(ewrt);
1896             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1897             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1898             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1899             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1900
1901             fscal            = felec;
1902
1903             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1904
1905             /* Calculate temporary vectorial force */
1906             tx               = _mm_mul_pd(fscal,dx10);
1907             ty               = _mm_mul_pd(fscal,dy10);
1908             tz               = _mm_mul_pd(fscal,dz10);
1909
1910             /* Update vectorial force */
1911             fix1             = _mm_add_pd(fix1,tx);
1912             fiy1             = _mm_add_pd(fiy1,ty);
1913             fiz1             = _mm_add_pd(fiz1,tz);
1914
1915             fjx0             = _mm_add_pd(fjx0,tx);
1916             fjy0             = _mm_add_pd(fjy0,ty);
1917             fjz0             = _mm_add_pd(fjz0,tz);
1918
1919             /**************************
1920              * CALCULATE INTERACTIONS *
1921              **************************/
1922
1923             r11              = _mm_mul_pd(rsq11,rinv11);
1924
1925             /* EWALD ELECTROSTATICS */
1926
1927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1928             ewrt             = _mm_mul_pd(r11,ewtabscale);
1929             ewitab           = _mm_cvttpd_epi32(ewrt);
1930             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1931             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1932             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1933             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1934
1935             fscal            = felec;
1936
1937             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1938
1939             /* Calculate temporary vectorial force */
1940             tx               = _mm_mul_pd(fscal,dx11);
1941             ty               = _mm_mul_pd(fscal,dy11);
1942             tz               = _mm_mul_pd(fscal,dz11);
1943
1944             /* Update vectorial force */
1945             fix1             = _mm_add_pd(fix1,tx);
1946             fiy1             = _mm_add_pd(fiy1,ty);
1947             fiz1             = _mm_add_pd(fiz1,tz);
1948
1949             fjx1             = _mm_add_pd(fjx1,tx);
1950             fjy1             = _mm_add_pd(fjy1,ty);
1951             fjz1             = _mm_add_pd(fjz1,tz);
1952
1953             /**************************
1954              * CALCULATE INTERACTIONS *
1955              **************************/
1956
1957             r12              = _mm_mul_pd(rsq12,rinv12);
1958
1959             /* EWALD ELECTROSTATICS */
1960
1961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1962             ewrt             = _mm_mul_pd(r12,ewtabscale);
1963             ewitab           = _mm_cvttpd_epi32(ewrt);
1964             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1965             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1966             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1967             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1968
1969             fscal            = felec;
1970
1971             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1972
1973             /* Calculate temporary vectorial force */
1974             tx               = _mm_mul_pd(fscal,dx12);
1975             ty               = _mm_mul_pd(fscal,dy12);
1976             tz               = _mm_mul_pd(fscal,dz12);
1977
1978             /* Update vectorial force */
1979             fix1             = _mm_add_pd(fix1,tx);
1980             fiy1             = _mm_add_pd(fiy1,ty);
1981             fiz1             = _mm_add_pd(fiz1,tz);
1982
1983             fjx2             = _mm_add_pd(fjx2,tx);
1984             fjy2             = _mm_add_pd(fjy2,ty);
1985             fjz2             = _mm_add_pd(fjz2,tz);
1986
1987             /**************************
1988              * CALCULATE INTERACTIONS *
1989              **************************/
1990
1991             r20              = _mm_mul_pd(rsq20,rinv20);
1992
1993             /* EWALD ELECTROSTATICS */
1994
1995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1996             ewrt             = _mm_mul_pd(r20,ewtabscale);
1997             ewitab           = _mm_cvttpd_epi32(ewrt);
1998             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1999             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2000             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2001             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2002
2003             fscal            = felec;
2004
2005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2006
2007             /* Calculate temporary vectorial force */
2008             tx               = _mm_mul_pd(fscal,dx20);
2009             ty               = _mm_mul_pd(fscal,dy20);
2010             tz               = _mm_mul_pd(fscal,dz20);
2011
2012             /* Update vectorial force */
2013             fix2             = _mm_add_pd(fix2,tx);
2014             fiy2             = _mm_add_pd(fiy2,ty);
2015             fiz2             = _mm_add_pd(fiz2,tz);
2016
2017             fjx0             = _mm_add_pd(fjx0,tx);
2018             fjy0             = _mm_add_pd(fjy0,ty);
2019             fjz0             = _mm_add_pd(fjz0,tz);
2020
2021             /**************************
2022              * CALCULATE INTERACTIONS *
2023              **************************/
2024
2025             r21              = _mm_mul_pd(rsq21,rinv21);
2026
2027             /* EWALD ELECTROSTATICS */
2028
2029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2030             ewrt             = _mm_mul_pd(r21,ewtabscale);
2031             ewitab           = _mm_cvttpd_epi32(ewrt);
2032             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2033             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2034             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2035             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2036
2037             fscal            = felec;
2038
2039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2040
2041             /* Calculate temporary vectorial force */
2042             tx               = _mm_mul_pd(fscal,dx21);
2043             ty               = _mm_mul_pd(fscal,dy21);
2044             tz               = _mm_mul_pd(fscal,dz21);
2045
2046             /* Update vectorial force */
2047             fix2             = _mm_add_pd(fix2,tx);
2048             fiy2             = _mm_add_pd(fiy2,ty);
2049             fiz2             = _mm_add_pd(fiz2,tz);
2050
2051             fjx1             = _mm_add_pd(fjx1,tx);
2052             fjy1             = _mm_add_pd(fjy1,ty);
2053             fjz1             = _mm_add_pd(fjz1,tz);
2054
2055             /**************************
2056              * CALCULATE INTERACTIONS *
2057              **************************/
2058
2059             r22              = _mm_mul_pd(rsq22,rinv22);
2060
2061             /* EWALD ELECTROSTATICS */
2062
2063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2064             ewrt             = _mm_mul_pd(r22,ewtabscale);
2065             ewitab           = _mm_cvttpd_epi32(ewrt);
2066             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2067             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2068             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2069             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2070
2071             fscal            = felec;
2072
2073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2074
2075             /* Calculate temporary vectorial force */
2076             tx               = _mm_mul_pd(fscal,dx22);
2077             ty               = _mm_mul_pd(fscal,dy22);
2078             tz               = _mm_mul_pd(fscal,dz22);
2079
2080             /* Update vectorial force */
2081             fix2             = _mm_add_pd(fix2,tx);
2082             fiy2             = _mm_add_pd(fiy2,ty);
2083             fiz2             = _mm_add_pd(fiz2,tz);
2084
2085             fjx2             = _mm_add_pd(fjx2,tx);
2086             fjy2             = _mm_add_pd(fjy2,ty);
2087             fjz2             = _mm_add_pd(fjz2,tz);
2088
2089             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2090
2091             /* Inner loop uses 324 flops */
2092         }
2093
2094         /* End of innermost loop */
2095
2096         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2097                                               f+i_coord_offset,fshift+i_shift_offset);
2098
2099         /* Increment number of inner iterations */
2100         inneriter                  += j_index_end - j_index_start;
2101
2102         /* Outer loop uses 18 flops */
2103     }
2104
2105     /* Increment number of outer iterations */
2106     outeriter        += nri;
2107
2108     /* Update outer/inner flops */
2109
2110     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*324);
2111 }