Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm_sub_pd(ix0,jx0);
166             dy00             = _mm_sub_pd(iy0,jy0);
167             dz00             = _mm_sub_pd(iz0,jz0);
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
171
172             rinv00           = gmx_mm_invsqrt_pd(rsq00);
173
174             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
175
176             /* Load parameters for j particles */
177             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             r00              = _mm_mul_pd(rsq00,rinv00);
184
185             /* Compute parameters for interactions between i and j atoms */
186             qq00             = _mm_mul_pd(iq0,jq0);
187
188             /* EWALD ELECTROSTATICS */
189
190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
191             ewrt             = _mm_mul_pd(r00,ewtabscale);
192             ewitab           = _mm_cvttpd_epi32(ewrt);
193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
194             ewitab           = _mm_slli_epi32(ewitab,2);
195             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
196             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
197             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
198             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
199             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
200             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
201             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
202             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
203             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
204             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             velecsum         = _mm_add_pd(velecsum,velec);
208
209             fscal            = felec;
210
211             /* Calculate temporary vectorial force */
212             tx               = _mm_mul_pd(fscal,dx00);
213             ty               = _mm_mul_pd(fscal,dy00);
214             tz               = _mm_mul_pd(fscal,dz00);
215
216             /* Update vectorial force */
217             fix0             = _mm_add_pd(fix0,tx);
218             fiy0             = _mm_add_pd(fiy0,ty);
219             fiz0             = _mm_add_pd(fiz0,tz);
220
221             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
222
223             /* Inner loop uses 41 flops */
224         }
225
226         if(jidx<j_index_end)
227         {
228
229             jnrA             = jjnr[jidx];
230             j_coord_offsetA  = DIM*jnrA;
231
232             /* load j atom coordinates */
233             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
234                                               &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm_sub_pd(ix0,jx0);
238             dy00             = _mm_sub_pd(iy0,jy0);
239             dz00             = _mm_sub_pd(iz0,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
243
244             rinv00           = gmx_mm_invsqrt_pd(rsq00);
245
246             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
247
248             /* Load parameters for j particles */
249             jq0              = _mm_load_sd(charge+jnrA+0);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm_mul_pd(iq0,jq0);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _mm_mul_pd(r00,ewtabscale);
264             ewitab           = _mm_cvttpd_epi32(ewrt);
265             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
266             ewitab           = _mm_slli_epi32(ewitab,2);
267             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
268             ewtabD           = _mm_setzero_pd();
269             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
270             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
271             ewtabFn          = _mm_setzero_pd();
272             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
273             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
274             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
275             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
276             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
280             velecsum         = _mm_add_pd(velecsum,velec);
281
282             fscal            = felec;
283
284             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx00);
288             ty               = _mm_mul_pd(fscal,dy00);
289             tz               = _mm_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_pd(fix0,tx);
293             fiy0             = _mm_add_pd(fiy0,ty);
294             fiz0             = _mm_add_pd(fiz0,tz);
295
296             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
297
298             /* Inner loop uses 41 flops */
299         }
300
301         /* End of innermost loop */
302
303         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
304                                               f+i_coord_offset,fshift+i_shift_offset);
305
306         ggid                        = gid[iidx];
307         /* Update potential energies */
308         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
309
310         /* Increment number of inner iterations */
311         inneriter                  += j_index_end - j_index_start;
312
313         /* Outer loop uses 8 flops */
314     }
315
316     /* Increment number of outer iterations */
317     outeriter        += nri;
318
319     /* Update outer/inner flops */
320
321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*41);
322 }
323 /*
324  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
325  * Electrostatics interaction: Ewald
326  * VdW interaction:            None
327  * Geometry:                   Particle-Particle
328  * Calculate force/pot:        Force
329  */
330 void
331 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
332                     (t_nblist                    * gmx_restrict       nlist,
333                      rvec                        * gmx_restrict          xx,
334                      rvec                        * gmx_restrict          ff,
335                      t_forcerec                  * gmx_restrict          fr,
336                      t_mdatoms                   * gmx_restrict     mdatoms,
337                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
338                      t_nrnb                      * gmx_restrict        nrnb)
339 {
340     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
341      * just 0 for non-waters.
342      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
343      * jnr indices corresponding to data put in the four positions in the SIMD register.
344      */
345     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
346     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
347     int              jnrA,jnrB;
348     int              j_coord_offsetA,j_coord_offsetB;
349     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
350     real             rcutoff_scalar;
351     real             *shiftvec,*fshift,*x,*f;
352     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
353     int              vdwioffset0;
354     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
355     int              vdwjidx0A,vdwjidx0B;
356     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
357     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
358     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
359     real             *charge;
360     __m128i          ewitab;
361     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
362     real             *ewtab;
363     __m128d          dummy_mask,cutoff_mask;
364     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
365     __m128d          one     = _mm_set1_pd(1.0);
366     __m128d          two     = _mm_set1_pd(2.0);
367     x                = xx[0];
368     f                = ff[0];
369
370     nri              = nlist->nri;
371     iinr             = nlist->iinr;
372     jindex           = nlist->jindex;
373     jjnr             = nlist->jjnr;
374     shiftidx         = nlist->shift;
375     gid              = nlist->gid;
376     shiftvec         = fr->shift_vec[0];
377     fshift           = fr->fshift[0];
378     facel            = _mm_set1_pd(fr->epsfac);
379     charge           = mdatoms->chargeA;
380
381     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
382     ewtab            = fr->ic->tabq_coul_F;
383     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
384     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
385
386     /* Avoid stupid compiler warnings */
387     jnrA = jnrB = 0;
388     j_coord_offsetA = 0;
389     j_coord_offsetB = 0;
390
391     outeriter        = 0;
392     inneriter        = 0;
393
394     /* Start outer loop over neighborlists */
395     for(iidx=0; iidx<nri; iidx++)
396     {
397         /* Load shift vector for this list */
398         i_shift_offset   = DIM*shiftidx[iidx];
399
400         /* Load limits for loop over neighbors */
401         j_index_start    = jindex[iidx];
402         j_index_end      = jindex[iidx+1];
403
404         /* Get outer coordinate index */
405         inr              = iinr[iidx];
406         i_coord_offset   = DIM*inr;
407
408         /* Load i particle coords and add shift vector */
409         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
410
411         fix0             = _mm_setzero_pd();
412         fiy0             = _mm_setzero_pd();
413         fiz0             = _mm_setzero_pd();
414
415         /* Load parameters for i particles */
416         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
417
418         /* Start inner kernel loop */
419         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrA             = jjnr[jidx];
424             jnrB             = jjnr[jidx+1];
425             j_coord_offsetA  = DIM*jnrA;
426             j_coord_offsetB  = DIM*jnrB;
427
428             /* load j atom coordinates */
429             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm_sub_pd(ix0,jx0);
434             dy00             = _mm_sub_pd(iy0,jy0);
435             dz00             = _mm_sub_pd(iz0,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439
440             rinv00           = gmx_mm_invsqrt_pd(rsq00);
441
442             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
443
444             /* Load parameters for j particles */
445             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r00              = _mm_mul_pd(rsq00,rinv00);
452
453             /* Compute parameters for interactions between i and j atoms */
454             qq00             = _mm_mul_pd(iq0,jq0);
455
456             /* EWALD ELECTROSTATICS */
457
458             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
459             ewrt             = _mm_mul_pd(r00,ewtabscale);
460             ewitab           = _mm_cvttpd_epi32(ewrt);
461             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
462             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
463                                          &ewtabF,&ewtabFn);
464             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
465             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
466
467             fscal            = felec;
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm_mul_pd(fscal,dx00);
471             ty               = _mm_mul_pd(fscal,dy00);
472             tz               = _mm_mul_pd(fscal,dz00);
473
474             /* Update vectorial force */
475             fix0             = _mm_add_pd(fix0,tx);
476             fiy0             = _mm_add_pd(fiy0,ty);
477             fiz0             = _mm_add_pd(fiz0,tz);
478
479             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
480
481             /* Inner loop uses 36 flops */
482         }
483
484         if(jidx<j_index_end)
485         {
486
487             jnrA             = jjnr[jidx];
488             j_coord_offsetA  = DIM*jnrA;
489
490             /* load j atom coordinates */
491             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
492                                               &jx0,&jy0,&jz0);
493
494             /* Calculate displacement vector */
495             dx00             = _mm_sub_pd(ix0,jx0);
496             dy00             = _mm_sub_pd(iy0,jy0);
497             dz00             = _mm_sub_pd(iz0,jz0);
498
499             /* Calculate squared distance and things based on it */
500             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
501
502             rinv00           = gmx_mm_invsqrt_pd(rsq00);
503
504             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
505
506             /* Load parameters for j particles */
507             jq0              = _mm_load_sd(charge+jnrA+0);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r00              = _mm_mul_pd(rsq00,rinv00);
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq00             = _mm_mul_pd(iq0,jq0);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _mm_mul_pd(r00,ewtabscale);
522             ewitab           = _mm_cvttpd_epi32(ewrt);
523             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
524             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
525             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
526             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
527
528             fscal            = felec;
529
530             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx00);
534             ty               = _mm_mul_pd(fscal,dy00);
535             tz               = _mm_mul_pd(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm_add_pd(fix0,tx);
539             fiy0             = _mm_add_pd(fiy0,ty);
540             fiz0             = _mm_add_pd(fiz0,tz);
541
542             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
543
544             /* Inner loop uses 36 flops */
545         }
546
547         /* End of innermost loop */
548
549         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
550                                               f+i_coord_offset,fshift+i_shift_offset);
551
552         /* Increment number of inner iterations */
553         inneriter                  += j_index_end - j_index_start;
554
555         /* Outer loop uses 7 flops */
556     }
557
558     /* Increment number of outer iterations */
559     outeriter        += nri;
560
561     /* Update outer/inner flops */
562
563     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*36);
564 }