Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          dummy_mask,cutoff_mask;
77     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
78     __m128d          one     = _mm_set1_pd(1.0);
79     __m128d          two     = _mm_set1_pd(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_pd(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
123
124         fix0             = _mm_setzero_pd();
125         fiy0             = _mm_setzero_pd();
126         fiz0             = _mm_setzero_pd();
127
128         /* Load parameters for i particles */
129         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
130
131         /* Reset potential sums */
132         velecsum         = _mm_setzero_pd();
133
134         /* Start inner kernel loop */
135         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
136         {
137
138             /* Get j neighbor index, and coordinate index */
139             jnrA             = jjnr[jidx];
140             jnrB             = jjnr[jidx+1];
141             j_coord_offsetA  = DIM*jnrA;
142             j_coord_offsetB  = DIM*jnrB;
143
144             /* load j atom coordinates */
145             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
146                                               &jx0,&jy0,&jz0);
147
148             /* Calculate displacement vector */
149             dx00             = _mm_sub_pd(ix0,jx0);
150             dy00             = _mm_sub_pd(iy0,jy0);
151             dz00             = _mm_sub_pd(iz0,jz0);
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
155
156             rinv00           = gmx_mm_invsqrt_pd(rsq00);
157
158             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
159
160             /* Load parameters for j particles */
161             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             r00              = _mm_mul_pd(rsq00,rinv00);
168
169             /* Compute parameters for interactions between i and j atoms */
170             qq00             = _mm_mul_pd(iq0,jq0);
171
172             /* EWALD ELECTROSTATICS */
173
174             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
175             ewrt             = _mm_mul_pd(r00,ewtabscale);
176             ewitab           = _mm_cvttpd_epi32(ewrt);
177             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
178             ewitab           = _mm_slli_epi32(ewitab,2);
179             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
180             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
181             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
182             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
183             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
184             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
185             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
186             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
187             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
188             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
189
190             /* Update potential sum for this i atom from the interaction with this j atom. */
191             velecsum         = _mm_add_pd(velecsum,velec);
192
193             fscal            = felec;
194
195             /* Calculate temporary vectorial force */
196             tx               = _mm_mul_pd(fscal,dx00);
197             ty               = _mm_mul_pd(fscal,dy00);
198             tz               = _mm_mul_pd(fscal,dz00);
199
200             /* Update vectorial force */
201             fix0             = _mm_add_pd(fix0,tx);
202             fiy0             = _mm_add_pd(fiy0,ty);
203             fiz0             = _mm_add_pd(fiz0,tz);
204
205             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
206
207             /* Inner loop uses 41 flops */
208         }
209
210         if(jidx<j_index_end)
211         {
212
213             jnrA             = jjnr[jidx];
214             j_coord_offsetA  = DIM*jnrA;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
218                                               &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm_sub_pd(ix0,jx0);
222             dy00             = _mm_sub_pd(iy0,jy0);
223             dz00             = _mm_sub_pd(iz0,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
227
228             rinv00           = gmx_mm_invsqrt_pd(rsq00);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231
232             /* Load parameters for j particles */
233             jq0              = _mm_load_sd(charge+jnrA+0);
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _mm_mul_pd(r00,ewtabscale);
248             ewitab           = _mm_cvttpd_epi32(ewrt);
249             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
250             ewitab           = _mm_slli_epi32(ewitab,2);
251             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
252             ewtabD           = _mm_setzero_pd();
253             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
254             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
255             ewtabFn          = _mm_setzero_pd();
256             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
257             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
258             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
259             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
260             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
264             velecsum         = _mm_add_pd(velecsum,velec);
265
266             fscal            = felec;
267
268             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_pd(fscal,dx00);
272             ty               = _mm_mul_pd(fscal,dy00);
273             tz               = _mm_mul_pd(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_pd(fix0,tx);
277             fiy0             = _mm_add_pd(fiy0,ty);
278             fiz0             = _mm_add_pd(fiz0,tz);
279
280             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
281
282             /* Inner loop uses 41 flops */
283         }
284
285         /* End of innermost loop */
286
287         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
288                                               f+i_coord_offset,fshift+i_shift_offset);
289
290         ggid                        = gid[iidx];
291         /* Update potential energies */
292         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
293
294         /* Increment number of inner iterations */
295         inneriter                  += j_index_end - j_index_start;
296
297         /* Outer loop uses 8 flops */
298     }
299
300     /* Increment number of outer iterations */
301     outeriter        += nri;
302
303     /* Update outer/inner flops */
304
305     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*41);
306 }
307 /*
308  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
309  * Electrostatics interaction: Ewald
310  * VdW interaction:            None
311  * Geometry:                   Particle-Particle
312  * Calculate force/pot:        Force
313  */
314 void
315 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
316                     (t_nblist * gmx_restrict                nlist,
317                      rvec * gmx_restrict                    xx,
318                      rvec * gmx_restrict                    ff,
319                      t_forcerec * gmx_restrict              fr,
320                      t_mdatoms * gmx_restrict               mdatoms,
321                      nb_kernel_data_t * gmx_restrict        kernel_data,
322                      t_nrnb * gmx_restrict                  nrnb)
323 {
324     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
325      * just 0 for non-waters.
326      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
327      * jnr indices corresponding to data put in the four positions in the SIMD register.
328      */
329     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
330     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
331     int              jnrA,jnrB;
332     int              j_coord_offsetA,j_coord_offsetB;
333     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
334     real             rcutoff_scalar;
335     real             *shiftvec,*fshift,*x,*f;
336     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
337     int              vdwioffset0;
338     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
339     int              vdwjidx0A,vdwjidx0B;
340     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
341     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
342     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
343     real             *charge;
344     __m128i          ewitab;
345     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
346     real             *ewtab;
347     __m128d          dummy_mask,cutoff_mask;
348     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
349     __m128d          one     = _mm_set1_pd(1.0);
350     __m128d          two     = _mm_set1_pd(2.0);
351     x                = xx[0];
352     f                = ff[0];
353
354     nri              = nlist->nri;
355     iinr             = nlist->iinr;
356     jindex           = nlist->jindex;
357     jjnr             = nlist->jjnr;
358     shiftidx         = nlist->shift;
359     gid              = nlist->gid;
360     shiftvec         = fr->shift_vec[0];
361     fshift           = fr->fshift[0];
362     facel            = _mm_set1_pd(fr->epsfac);
363     charge           = mdatoms->chargeA;
364
365     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
366     ewtab            = fr->ic->tabq_coul_F;
367     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
368     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
369
370     /* Avoid stupid compiler warnings */
371     jnrA = jnrB = 0;
372     j_coord_offsetA = 0;
373     j_coord_offsetB = 0;
374
375     outeriter        = 0;
376     inneriter        = 0;
377
378     /* Start outer loop over neighborlists */
379     for(iidx=0; iidx<nri; iidx++)
380     {
381         /* Load shift vector for this list */
382         i_shift_offset   = DIM*shiftidx[iidx];
383
384         /* Load limits for loop over neighbors */
385         j_index_start    = jindex[iidx];
386         j_index_end      = jindex[iidx+1];
387
388         /* Get outer coordinate index */
389         inr              = iinr[iidx];
390         i_coord_offset   = DIM*inr;
391
392         /* Load i particle coords and add shift vector */
393         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
394
395         fix0             = _mm_setzero_pd();
396         fiy0             = _mm_setzero_pd();
397         fiz0             = _mm_setzero_pd();
398
399         /* Load parameters for i particles */
400         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
401
402         /* Start inner kernel loop */
403         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrA             = jjnr[jidx];
408             jnrB             = jjnr[jidx+1];
409             j_coord_offsetA  = DIM*jnrA;
410             j_coord_offsetB  = DIM*jnrB;
411
412             /* load j atom coordinates */
413             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_pd(ix0,jx0);
418             dy00             = _mm_sub_pd(iy0,jy0);
419             dz00             = _mm_sub_pd(iz0,jz0);
420
421             /* Calculate squared distance and things based on it */
422             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
423
424             rinv00           = gmx_mm_invsqrt_pd(rsq00);
425
426             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
427
428             /* Load parameters for j particles */
429             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
430
431             /**************************
432              * CALCULATE INTERACTIONS *
433              **************************/
434
435             r00              = _mm_mul_pd(rsq00,rinv00);
436
437             /* Compute parameters for interactions between i and j atoms */
438             qq00             = _mm_mul_pd(iq0,jq0);
439
440             /* EWALD ELECTROSTATICS */
441
442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443             ewrt             = _mm_mul_pd(r00,ewtabscale);
444             ewitab           = _mm_cvttpd_epi32(ewrt);
445             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
446             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
447                                          &ewtabF,&ewtabFn);
448             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
449             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
450
451             fscal            = felec;
452
453             /* Calculate temporary vectorial force */
454             tx               = _mm_mul_pd(fscal,dx00);
455             ty               = _mm_mul_pd(fscal,dy00);
456             tz               = _mm_mul_pd(fscal,dz00);
457
458             /* Update vectorial force */
459             fix0             = _mm_add_pd(fix0,tx);
460             fiy0             = _mm_add_pd(fiy0,ty);
461             fiz0             = _mm_add_pd(fiz0,tz);
462
463             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
464
465             /* Inner loop uses 36 flops */
466         }
467
468         if(jidx<j_index_end)
469         {
470
471             jnrA             = jjnr[jidx];
472             j_coord_offsetA  = DIM*jnrA;
473
474             /* load j atom coordinates */
475             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_pd(ix0,jx0);
480             dy00             = _mm_sub_pd(iy0,jy0);
481             dz00             = _mm_sub_pd(iz0,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
485
486             rinv00           = gmx_mm_invsqrt_pd(rsq00);
487
488             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
489
490             /* Load parameters for j particles */
491             jq0              = _mm_load_sd(charge+jnrA+0);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r00              = _mm_mul_pd(rsq00,rinv00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq00             = _mm_mul_pd(iq0,jq0);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
505             ewrt             = _mm_mul_pd(r00,ewtabscale);
506             ewitab           = _mm_cvttpd_epi32(ewrt);
507             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
508             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
509             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
511
512             fscal            = felec;
513
514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_pd(fscal,dx00);
518             ty               = _mm_mul_pd(fscal,dy00);
519             tz               = _mm_mul_pd(fscal,dz00);
520
521             /* Update vectorial force */
522             fix0             = _mm_add_pd(fix0,tx);
523             fiy0             = _mm_add_pd(fiy0,ty);
524             fiz0             = _mm_add_pd(fiz0,tz);
525
526             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
527
528             /* Inner loop uses 36 flops */
529         }
530
531         /* End of innermost loop */
532
533         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
534                                               f+i_coord_offset,fshift+i_shift_offset);
535
536         /* Increment number of inner iterations */
537         inneriter                  += j_index_end - j_index_start;
538
539         /* Outer loop uses 7 flops */
540     }
541
542     /* Increment number of outer iterations */
543     outeriter        += nri;
544
545     /* Update outer/inner flops */
546
547     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*36);
548 }