86075b0baa3c9c0cb20c147a62e105c7c78dce1f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159         fix3             = _mm_setzero_pd();
160         fiy3             = _mm_setzero_pd();
161         fiz3             = _mm_setzero_pd();
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185             dx10             = _mm_sub_pd(ix1,jx0);
186             dy10             = _mm_sub_pd(iy1,jy0);
187             dz10             = _mm_sub_pd(iz1,jz0);
188             dx20             = _mm_sub_pd(ix2,jx0);
189             dy20             = _mm_sub_pd(iy2,jy0);
190             dz20             = _mm_sub_pd(iz2,jz0);
191             dx30             = _mm_sub_pd(ix3,jx0);
192             dy30             = _mm_sub_pd(iy3,jy0);
193             dz30             = _mm_sub_pd(iz3,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
199             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
200
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203             rinv30           = gmx_mm_invsqrt_pd(rsq30);
204
205             rinvsq00         = gmx_mm_inv_pd(rsq00);
206             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
207             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
208             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214
215             fjx0             = _mm_setzero_pd();
216             fjy0             = _mm_setzero_pd();
217             fjz0             = _mm_setzero_pd();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             /* Compute parameters for interactions between i and j atoms */
224             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
231             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
233             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
237
238             fscal            = fvdw;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm_mul_pd(fscal,dx00);
242             ty               = _mm_mul_pd(fscal,dy00);
243             tz               = _mm_mul_pd(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm_add_pd(fix0,tx);
247             fiy0             = _mm_add_pd(fiy0,ty);
248             fiz0             = _mm_add_pd(fiz0,tz);
249
250             fjx0             = _mm_add_pd(fjx0,tx);
251             fjy0             = _mm_add_pd(fjy0,ty);
252             fjz0             = _mm_add_pd(fjz0,tz);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r10              = _mm_mul_pd(rsq10,rinv10);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq10             = _mm_mul_pd(iq1,jq0);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_pd(r10,ewtabscale);
267             ewitab           = _mm_cvttpd_epi32(ewrt);
268             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
269             ewitab           = _mm_slli_epi32(ewitab,2);
270             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
271             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
272             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
273             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
274             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
276             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
277             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
278             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
279             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx10);
288             ty               = _mm_mul_pd(fscal,dy10);
289             tz               = _mm_mul_pd(fscal,dz10);
290
291             /* Update vectorial force */
292             fix1             = _mm_add_pd(fix1,tx);
293             fiy1             = _mm_add_pd(fiy1,ty);
294             fiz1             = _mm_add_pd(fiz1,tz);
295
296             fjx0             = _mm_add_pd(fjx0,tx);
297             fjy0             = _mm_add_pd(fjy0,ty);
298             fjz0             = _mm_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r20              = _mm_mul_pd(rsq20,rinv20);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq20             = _mm_mul_pd(iq2,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r20,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_pd(fscal,dx20);
334             ty               = _mm_mul_pd(fscal,dy20);
335             tz               = _mm_mul_pd(fscal,dz20);
336
337             /* Update vectorial force */
338             fix2             = _mm_add_pd(fix2,tx);
339             fiy2             = _mm_add_pd(fiy2,ty);
340             fiz2             = _mm_add_pd(fiz2,tz);
341
342             fjx0             = _mm_add_pd(fjx0,tx);
343             fjy0             = _mm_add_pd(fjy0,ty);
344             fjz0             = _mm_add_pd(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r30              = _mm_mul_pd(rsq30,rinv30);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq30             = _mm_mul_pd(iq3,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_pd(r30,ewtabscale);
359             ewitab           = _mm_cvttpd_epi32(ewrt);
360             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
366             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
367             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
369             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
370             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
371             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_pd(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_pd(fscal,dx30);
380             ty               = _mm_mul_pd(fscal,dy30);
381             tz               = _mm_mul_pd(fscal,dz30);
382
383             /* Update vectorial force */
384             fix3             = _mm_add_pd(fix3,tx);
385             fiy3             = _mm_add_pd(fiy3,ty);
386             fiz3             = _mm_add_pd(fiz3,tz);
387
388             fjx0             = _mm_add_pd(fjx0,tx);
389             fjy0             = _mm_add_pd(fjy0,ty);
390             fjz0             = _mm_add_pd(fjz0,tz);
391
392             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 158 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             jnrA             = jjnr[jidx];
401             j_coord_offsetA  = DIM*jnrA;
402
403             /* load j atom coordinates */
404             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
405                                               &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm_sub_pd(ix0,jx0);
409             dy00             = _mm_sub_pd(iy0,jy0);
410             dz00             = _mm_sub_pd(iz0,jz0);
411             dx10             = _mm_sub_pd(ix1,jx0);
412             dy10             = _mm_sub_pd(iy1,jy0);
413             dz10             = _mm_sub_pd(iz1,jz0);
414             dx20             = _mm_sub_pd(ix2,jx0);
415             dy20             = _mm_sub_pd(iy2,jy0);
416             dz20             = _mm_sub_pd(iz2,jz0);
417             dx30             = _mm_sub_pd(ix3,jx0);
418             dy30             = _mm_sub_pd(iy3,jy0);
419             dz30             = _mm_sub_pd(iz3,jz0);
420
421             /* Calculate squared distance and things based on it */
422             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
423             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
424             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
425             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
426
427             rinv10           = gmx_mm_invsqrt_pd(rsq10);
428             rinv20           = gmx_mm_invsqrt_pd(rsq20);
429             rinv30           = gmx_mm_invsqrt_pd(rsq30);
430
431             rinvsq00         = gmx_mm_inv_pd(rsq00);
432             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
433             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
434             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
435
436             /* Load parameters for j particles */
437             jq0              = _mm_load_sd(charge+jnrA+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439
440             fjx0             = _mm_setzero_pd();
441             fjy0             = _mm_setzero_pd();
442             fjz0             = _mm_setzero_pd();
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             /* Compute parameters for interactions between i and j atoms */
449             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
450
451             /* LENNARD-JONES DISPERSION/REPULSION */
452
453             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
454             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
455             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
456             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
457             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
461             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
462
463             fscal            = fvdw;
464
465             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
466
467             /* Calculate temporary vectorial force */
468             tx               = _mm_mul_pd(fscal,dx00);
469             ty               = _mm_mul_pd(fscal,dy00);
470             tz               = _mm_mul_pd(fscal,dz00);
471
472             /* Update vectorial force */
473             fix0             = _mm_add_pd(fix0,tx);
474             fiy0             = _mm_add_pd(fiy0,ty);
475             fiz0             = _mm_add_pd(fiz0,tz);
476
477             fjx0             = _mm_add_pd(fjx0,tx);
478             fjy0             = _mm_add_pd(fjy0,ty);
479             fjz0             = _mm_add_pd(fjz0,tz);
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r10              = _mm_mul_pd(rsq10,rinv10);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq10             = _mm_mul_pd(iq1,jq0);
489
490             /* EWALD ELECTROSTATICS */
491
492             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493             ewrt             = _mm_mul_pd(r10,ewtabscale);
494             ewitab           = _mm_cvttpd_epi32(ewrt);
495             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
496             ewitab           = _mm_slli_epi32(ewitab,2);
497             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
498             ewtabD           = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
500             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
501             ewtabFn          = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
503             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
504             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
505             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
506             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
510             velecsum         = _mm_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_pd(fscal,dx10);
518             ty               = _mm_mul_pd(fscal,dy10);
519             tz               = _mm_mul_pd(fscal,dz10);
520
521             /* Update vectorial force */
522             fix1             = _mm_add_pd(fix1,tx);
523             fiy1             = _mm_add_pd(fiy1,ty);
524             fiz1             = _mm_add_pd(fiz1,tz);
525
526             fjx0             = _mm_add_pd(fjx0,tx);
527             fjy0             = _mm_add_pd(fjy0,ty);
528             fjz0             = _mm_add_pd(fjz0,tz);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r20              = _mm_mul_pd(rsq20,rinv20);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq20             = _mm_mul_pd(iq2,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_pd(r20,ewtabscale);
543             ewitab           = _mm_cvttpd_epi32(ewrt);
544             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
545             ewitab           = _mm_slli_epi32(ewitab,2);
546             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547             ewtabD           = _mm_setzero_pd();
548             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
549             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
550             ewtabFn          = _mm_setzero_pd();
551             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
552             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
553             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
554             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
555             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559             velecsum         = _mm_add_pd(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_pd(fscal,dx20);
567             ty               = _mm_mul_pd(fscal,dy20);
568             tz               = _mm_mul_pd(fscal,dz20);
569
570             /* Update vectorial force */
571             fix2             = _mm_add_pd(fix2,tx);
572             fiy2             = _mm_add_pd(fiy2,ty);
573             fiz2             = _mm_add_pd(fiz2,tz);
574
575             fjx0             = _mm_add_pd(fjx0,tx);
576             fjy0             = _mm_add_pd(fjy0,ty);
577             fjz0             = _mm_add_pd(fjz0,tz);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r30              = _mm_mul_pd(rsq30,rinv30);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq30             = _mm_mul_pd(iq3,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _mm_mul_pd(r30,ewtabscale);
592             ewitab           = _mm_cvttpd_epi32(ewrt);
593             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
594             ewitab           = _mm_slli_epi32(ewitab,2);
595             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
596             ewtabD           = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
598             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
599             ewtabFn          = _mm_setzero_pd();
600             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
601             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
602             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
603             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
604             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
608             velecsum         = _mm_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm_mul_pd(fscal,dx30);
616             ty               = _mm_mul_pd(fscal,dy30);
617             tz               = _mm_mul_pd(fscal,dz30);
618
619             /* Update vectorial force */
620             fix3             = _mm_add_pd(fix3,tx);
621             fiy3             = _mm_add_pd(fiy3,ty);
622             fiz3             = _mm_add_pd(fiz3,tz);
623
624             fjx0             = _mm_add_pd(fjx0,tx);
625             fjy0             = _mm_add_pd(fjy0,ty);
626             fjz0             = _mm_add_pd(fjz0,tz);
627
628             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
629
630             /* Inner loop uses 158 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         ggid                        = gid[iidx];
639         /* Update potential energies */
640         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
641         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
642
643         /* Increment number of inner iterations */
644         inneriter                  += j_index_end - j_index_start;
645
646         /* Outer loop uses 26 flops */
647     }
648
649     /* Increment number of outer iterations */
650     outeriter        += nri;
651
652     /* Update outer/inner flops */
653
654     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
655 }
656 /*
657  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_double
658  * Electrostatics interaction: Ewald
659  * VdW interaction:            LennardJones
660  * Geometry:                   Water4-Particle
661  * Calculate force/pot:        Force
662  */
663 void
664 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_double
665                     (t_nblist * gmx_restrict                nlist,
666                      rvec * gmx_restrict                    xx,
667                      rvec * gmx_restrict                    ff,
668                      t_forcerec * gmx_restrict              fr,
669                      t_mdatoms * gmx_restrict               mdatoms,
670                      nb_kernel_data_t * gmx_restrict        kernel_data,
671                      t_nrnb * gmx_restrict                  nrnb)
672 {
673     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
674      * just 0 for non-waters.
675      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
676      * jnr indices corresponding to data put in the four positions in the SIMD register.
677      */
678     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
679     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
680     int              jnrA,jnrB;
681     int              j_coord_offsetA,j_coord_offsetB;
682     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
683     real             rcutoff_scalar;
684     real             *shiftvec,*fshift,*x,*f;
685     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
686     int              vdwioffset0;
687     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
688     int              vdwioffset1;
689     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
690     int              vdwioffset2;
691     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
692     int              vdwioffset3;
693     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
694     int              vdwjidx0A,vdwjidx0B;
695     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
696     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
697     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
698     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
699     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
700     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
701     real             *charge;
702     int              nvdwtype;
703     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
704     int              *vdwtype;
705     real             *vdwparam;
706     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
707     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
708     __m128i          ewitab;
709     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
710     real             *ewtab;
711     __m128d          dummy_mask,cutoff_mask;
712     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
713     __m128d          one     = _mm_set1_pd(1.0);
714     __m128d          two     = _mm_set1_pd(2.0);
715     x                = xx[0];
716     f                = ff[0];
717
718     nri              = nlist->nri;
719     iinr             = nlist->iinr;
720     jindex           = nlist->jindex;
721     jjnr             = nlist->jjnr;
722     shiftidx         = nlist->shift;
723     gid              = nlist->gid;
724     shiftvec         = fr->shift_vec[0];
725     fshift           = fr->fshift[0];
726     facel            = _mm_set1_pd(fr->epsfac);
727     charge           = mdatoms->chargeA;
728     nvdwtype         = fr->ntype;
729     vdwparam         = fr->nbfp;
730     vdwtype          = mdatoms->typeA;
731
732     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
733     ewtab            = fr->ic->tabq_coul_F;
734     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
735     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
736
737     /* Setup water-specific parameters */
738     inr              = nlist->iinr[0];
739     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
740     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
741     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
742     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
743
744     /* Avoid stupid compiler warnings */
745     jnrA = jnrB = 0;
746     j_coord_offsetA = 0;
747     j_coord_offsetB = 0;
748
749     outeriter        = 0;
750     inneriter        = 0;
751
752     /* Start outer loop over neighborlists */
753     for(iidx=0; iidx<nri; iidx++)
754     {
755         /* Load shift vector for this list */
756         i_shift_offset   = DIM*shiftidx[iidx];
757
758         /* Load limits for loop over neighbors */
759         j_index_start    = jindex[iidx];
760         j_index_end      = jindex[iidx+1];
761
762         /* Get outer coordinate index */
763         inr              = iinr[iidx];
764         i_coord_offset   = DIM*inr;
765
766         /* Load i particle coords and add shift vector */
767         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
768                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
769
770         fix0             = _mm_setzero_pd();
771         fiy0             = _mm_setzero_pd();
772         fiz0             = _mm_setzero_pd();
773         fix1             = _mm_setzero_pd();
774         fiy1             = _mm_setzero_pd();
775         fiz1             = _mm_setzero_pd();
776         fix2             = _mm_setzero_pd();
777         fiy2             = _mm_setzero_pd();
778         fiz2             = _mm_setzero_pd();
779         fix3             = _mm_setzero_pd();
780         fiy3             = _mm_setzero_pd();
781         fiz3             = _mm_setzero_pd();
782
783         /* Start inner kernel loop */
784         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
785         {
786
787             /* Get j neighbor index, and coordinate index */
788             jnrA             = jjnr[jidx];
789             jnrB             = jjnr[jidx+1];
790             j_coord_offsetA  = DIM*jnrA;
791             j_coord_offsetB  = DIM*jnrB;
792
793             /* load j atom coordinates */
794             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
795                                               &jx0,&jy0,&jz0);
796
797             /* Calculate displacement vector */
798             dx00             = _mm_sub_pd(ix0,jx0);
799             dy00             = _mm_sub_pd(iy0,jy0);
800             dz00             = _mm_sub_pd(iz0,jz0);
801             dx10             = _mm_sub_pd(ix1,jx0);
802             dy10             = _mm_sub_pd(iy1,jy0);
803             dz10             = _mm_sub_pd(iz1,jz0);
804             dx20             = _mm_sub_pd(ix2,jx0);
805             dy20             = _mm_sub_pd(iy2,jy0);
806             dz20             = _mm_sub_pd(iz2,jz0);
807             dx30             = _mm_sub_pd(ix3,jx0);
808             dy30             = _mm_sub_pd(iy3,jy0);
809             dz30             = _mm_sub_pd(iz3,jz0);
810
811             /* Calculate squared distance and things based on it */
812             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
813             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
814             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
815             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
816
817             rinv10           = gmx_mm_invsqrt_pd(rsq10);
818             rinv20           = gmx_mm_invsqrt_pd(rsq20);
819             rinv30           = gmx_mm_invsqrt_pd(rsq30);
820
821             rinvsq00         = gmx_mm_inv_pd(rsq00);
822             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
823             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
824             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
825
826             /* Load parameters for j particles */
827             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830
831             fjx0             = _mm_setzero_pd();
832             fjy0             = _mm_setzero_pd();
833             fjz0             = _mm_setzero_pd();
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             /* Compute parameters for interactions between i and j atoms */
840             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
841                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
842
843             /* LENNARD-JONES DISPERSION/REPULSION */
844
845             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
846             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
847
848             fscal            = fvdw;
849
850             /* Calculate temporary vectorial force */
851             tx               = _mm_mul_pd(fscal,dx00);
852             ty               = _mm_mul_pd(fscal,dy00);
853             tz               = _mm_mul_pd(fscal,dz00);
854
855             /* Update vectorial force */
856             fix0             = _mm_add_pd(fix0,tx);
857             fiy0             = _mm_add_pd(fiy0,ty);
858             fiz0             = _mm_add_pd(fiz0,tz);
859
860             fjx0             = _mm_add_pd(fjx0,tx);
861             fjy0             = _mm_add_pd(fjy0,ty);
862             fjz0             = _mm_add_pd(fjz0,tz);
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r10              = _mm_mul_pd(rsq10,rinv10);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq10             = _mm_mul_pd(iq1,jq0);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_pd(r10,ewtabscale);
877             ewitab           = _mm_cvttpd_epi32(ewrt);
878             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
879             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
880                                          &ewtabF,&ewtabFn);
881             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
882             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
883
884             fscal            = felec;
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx10);
888             ty               = _mm_mul_pd(fscal,dy10);
889             tz               = _mm_mul_pd(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_pd(fix1,tx);
893             fiy1             = _mm_add_pd(fiy1,ty);
894             fiz1             = _mm_add_pd(fiz1,tz);
895
896             fjx0             = _mm_add_pd(fjx0,tx);
897             fjy0             = _mm_add_pd(fjy0,ty);
898             fjz0             = _mm_add_pd(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r20              = _mm_mul_pd(rsq20,rinv20);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_pd(iq2,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912             ewrt             = _mm_mul_pd(r20,ewtabscale);
913             ewitab           = _mm_cvttpd_epi32(ewrt);
914             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
915             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
916                                          &ewtabF,&ewtabFn);
917             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
918             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm_mul_pd(fscal,dx20);
924             ty               = _mm_mul_pd(fscal,dy20);
925             tz               = _mm_mul_pd(fscal,dz20);
926
927             /* Update vectorial force */
928             fix2             = _mm_add_pd(fix2,tx);
929             fiy2             = _mm_add_pd(fiy2,ty);
930             fiz2             = _mm_add_pd(fiz2,tz);
931
932             fjx0             = _mm_add_pd(fjx0,tx);
933             fjy0             = _mm_add_pd(fjy0,ty);
934             fjz0             = _mm_add_pd(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r30              = _mm_mul_pd(rsq30,rinv30);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq30             = _mm_mul_pd(iq3,jq0);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _mm_mul_pd(r30,ewtabscale);
949             ewitab           = _mm_cvttpd_epi32(ewrt);
950             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
951             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
952                                          &ewtabF,&ewtabFn);
953             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
954             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
955
956             fscal            = felec;
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_pd(fscal,dx30);
960             ty               = _mm_mul_pd(fscal,dy30);
961             tz               = _mm_mul_pd(fscal,dz30);
962
963             /* Update vectorial force */
964             fix3             = _mm_add_pd(fix3,tx);
965             fiy3             = _mm_add_pd(fiy3,ty);
966             fiz3             = _mm_add_pd(fiz3,tz);
967
968             fjx0             = _mm_add_pd(fjx0,tx);
969             fjy0             = _mm_add_pd(fjy0,ty);
970             fjz0             = _mm_add_pd(fjz0,tz);
971
972             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
973
974             /* Inner loop uses 138 flops */
975         }
976
977         if(jidx<j_index_end)
978         {
979
980             jnrA             = jjnr[jidx];
981             j_coord_offsetA  = DIM*jnrA;
982
983             /* load j atom coordinates */
984             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
985                                               &jx0,&jy0,&jz0);
986
987             /* Calculate displacement vector */
988             dx00             = _mm_sub_pd(ix0,jx0);
989             dy00             = _mm_sub_pd(iy0,jy0);
990             dz00             = _mm_sub_pd(iz0,jz0);
991             dx10             = _mm_sub_pd(ix1,jx0);
992             dy10             = _mm_sub_pd(iy1,jy0);
993             dz10             = _mm_sub_pd(iz1,jz0);
994             dx20             = _mm_sub_pd(ix2,jx0);
995             dy20             = _mm_sub_pd(iy2,jy0);
996             dz20             = _mm_sub_pd(iz2,jz0);
997             dx30             = _mm_sub_pd(ix3,jx0);
998             dy30             = _mm_sub_pd(iy3,jy0);
999             dz30             = _mm_sub_pd(iz3,jz0);
1000
1001             /* Calculate squared distance and things based on it */
1002             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1003             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1004             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1005             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1006
1007             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1008             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1009             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1010
1011             rinvsq00         = gmx_mm_inv_pd(rsq00);
1012             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1013             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1014             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1015
1016             /* Load parameters for j particles */
1017             jq0              = _mm_load_sd(charge+jnrA+0);
1018             vdwjidx0A        = 2*vdwtype[jnrA+0];
1019
1020             fjx0             = _mm_setzero_pd();
1021             fjy0             = _mm_setzero_pd();
1022             fjz0             = _mm_setzero_pd();
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1030
1031             /* LENNARD-JONES DISPERSION/REPULSION */
1032
1033             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1034             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1035
1036             fscal            = fvdw;
1037
1038             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_pd(fscal,dx00);
1042             ty               = _mm_mul_pd(fscal,dy00);
1043             tz               = _mm_mul_pd(fscal,dz00);
1044
1045             /* Update vectorial force */
1046             fix0             = _mm_add_pd(fix0,tx);
1047             fiy0             = _mm_add_pd(fiy0,ty);
1048             fiz0             = _mm_add_pd(fiz0,tz);
1049
1050             fjx0             = _mm_add_pd(fjx0,tx);
1051             fjy0             = _mm_add_pd(fjy0,ty);
1052             fjz0             = _mm_add_pd(fjz0,tz);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r10              = _mm_mul_pd(rsq10,rinv10);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq10             = _mm_mul_pd(iq1,jq0);
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = _mm_mul_pd(r10,ewtabscale);
1067             ewitab           = _mm_cvttpd_epi32(ewrt);
1068             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1069             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1070             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1071             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1072
1073             fscal            = felec;
1074
1075             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm_mul_pd(fscal,dx10);
1079             ty               = _mm_mul_pd(fscal,dy10);
1080             tz               = _mm_mul_pd(fscal,dz10);
1081
1082             /* Update vectorial force */
1083             fix1             = _mm_add_pd(fix1,tx);
1084             fiy1             = _mm_add_pd(fiy1,ty);
1085             fiz1             = _mm_add_pd(fiz1,tz);
1086
1087             fjx0             = _mm_add_pd(fjx0,tx);
1088             fjy0             = _mm_add_pd(fjy0,ty);
1089             fjz0             = _mm_add_pd(fjz0,tz);
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             r20              = _mm_mul_pd(rsq20,rinv20);
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             qq20             = _mm_mul_pd(iq2,jq0);
1099
1100             /* EWALD ELECTROSTATICS */
1101
1102             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1103             ewrt             = _mm_mul_pd(r20,ewtabscale);
1104             ewitab           = _mm_cvttpd_epi32(ewrt);
1105             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1106             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1107             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1108             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1113
1114             /* Calculate temporary vectorial force */
1115             tx               = _mm_mul_pd(fscal,dx20);
1116             ty               = _mm_mul_pd(fscal,dy20);
1117             tz               = _mm_mul_pd(fscal,dz20);
1118
1119             /* Update vectorial force */
1120             fix2             = _mm_add_pd(fix2,tx);
1121             fiy2             = _mm_add_pd(fiy2,ty);
1122             fiz2             = _mm_add_pd(fiz2,tz);
1123
1124             fjx0             = _mm_add_pd(fjx0,tx);
1125             fjy0             = _mm_add_pd(fjy0,ty);
1126             fjz0             = _mm_add_pd(fjz0,tz);
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             r30              = _mm_mul_pd(rsq30,rinv30);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq30             = _mm_mul_pd(iq3,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_pd(r30,ewtabscale);
1141             ewitab           = _mm_cvttpd_epi32(ewrt);
1142             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1143             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1144             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1145             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm_mul_pd(fscal,dx30);
1153             ty               = _mm_mul_pd(fscal,dy30);
1154             tz               = _mm_mul_pd(fscal,dz30);
1155
1156             /* Update vectorial force */
1157             fix3             = _mm_add_pd(fix3,tx);
1158             fiy3             = _mm_add_pd(fiy3,ty);
1159             fiz3             = _mm_add_pd(fiz3,tz);
1160
1161             fjx0             = _mm_add_pd(fjx0,tx);
1162             fjy0             = _mm_add_pd(fjy0,ty);
1163             fjz0             = _mm_add_pd(fjz0,tz);
1164
1165             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1166
1167             /* Inner loop uses 138 flops */
1168         }
1169
1170         /* End of innermost loop */
1171
1172         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1173                                               f+i_coord_offset,fshift+i_shift_offset);
1174
1175         /* Increment number of inner iterations */
1176         inneriter                  += j_index_end - j_index_start;
1177
1178         /* Outer loop uses 24 flops */
1179     }
1180
1181     /* Increment number of outer iterations */
1182     outeriter        += nri;
1183
1184     /* Update outer/inner flops */
1185
1186     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1187 }