Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207             dx30             = _mm_sub_pd(ix3,jx0);
208             dy30             = _mm_sub_pd(iy3,jy0);
209             dz30             = _mm_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219             rinv30           = gmx_mm_invsqrt_pd(rsq30);
220
221             rinvsq00         = gmx_mm_inv_pd(rsq00);
222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
249             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
253
254             fscal            = fvdw;
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm_mul_pd(fscal,dx00);
258             ty               = _mm_mul_pd(fscal,dy00);
259             tz               = _mm_mul_pd(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm_add_pd(fix0,tx);
263             fiy0             = _mm_add_pd(fiy0,ty);
264             fiz0             = _mm_add_pd(fiz0,tz);
265
266             fjx0             = _mm_add_pd(fjx0,tx);
267             fjy0             = _mm_add_pd(fjy0,ty);
268             fjz0             = _mm_add_pd(fjz0,tz);
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r10              = _mm_mul_pd(rsq10,rinv10);
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq10             = _mm_mul_pd(iq1,jq0);
278
279             /* EWALD ELECTROSTATICS */
280
281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282             ewrt             = _mm_mul_pd(r10,ewtabscale);
283             ewitab           = _mm_cvttpd_epi32(ewrt);
284             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
285             ewitab           = _mm_slli_epi32(ewitab,2);
286             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
287             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
288             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
289             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
290             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
291             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
292             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
293             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
294             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
295             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_pd(fscal,dx10);
304             ty               = _mm_mul_pd(fscal,dy10);
305             tz               = _mm_mul_pd(fscal,dz10);
306
307             /* Update vectorial force */
308             fix1             = _mm_add_pd(fix1,tx);
309             fiy1             = _mm_add_pd(fiy1,ty);
310             fiz1             = _mm_add_pd(fiz1,tz);
311
312             fjx0             = _mm_add_pd(fjx0,tx);
313             fjy0             = _mm_add_pd(fjy0,ty);
314             fjz0             = _mm_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r20              = _mm_mul_pd(rsq20,rinv20);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq20             = _mm_mul_pd(iq2,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_pd(r20,ewtabscale);
329             ewitab           = _mm_cvttpd_epi32(ewrt);
330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx20);
350             ty               = _mm_mul_pd(fscal,dy20);
351             tz               = _mm_mul_pd(fscal,dz20);
352
353             /* Update vectorial force */
354             fix2             = _mm_add_pd(fix2,tx);
355             fiy2             = _mm_add_pd(fiy2,ty);
356             fiz2             = _mm_add_pd(fiz2,tz);
357
358             fjx0             = _mm_add_pd(fjx0,tx);
359             fjy0             = _mm_add_pd(fjy0,ty);
360             fjz0             = _mm_add_pd(fjz0,tz);
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r30              = _mm_mul_pd(rsq30,rinv30);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq30             = _mm_mul_pd(iq3,jq0);
370
371             /* EWALD ELECTROSTATICS */
372
373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374             ewrt             = _mm_mul_pd(r30,ewtabscale);
375             ewitab           = _mm_cvttpd_epi32(ewrt);
376             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
380             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
381             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
382             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
383             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
384             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
385             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
386             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
387             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx30);
396             ty               = _mm_mul_pd(fscal,dy30);
397             tz               = _mm_mul_pd(fscal,dz30);
398
399             /* Update vectorial force */
400             fix3             = _mm_add_pd(fix3,tx);
401             fiy3             = _mm_add_pd(fiy3,ty);
402             fiz3             = _mm_add_pd(fiz3,tz);
403
404             fjx0             = _mm_add_pd(fjx0,tx);
405             fjy0             = _mm_add_pd(fjy0,ty);
406             fjz0             = _mm_add_pd(fjz0,tz);
407
408             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
409
410             /* Inner loop uses 158 flops */
411         }
412
413         if(jidx<j_index_end)
414         {
415
416             jnrA             = jjnr[jidx];
417             j_coord_offsetA  = DIM*jnrA;
418
419             /* load j atom coordinates */
420             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
421                                               &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx00             = _mm_sub_pd(ix0,jx0);
425             dy00             = _mm_sub_pd(iy0,jy0);
426             dz00             = _mm_sub_pd(iz0,jz0);
427             dx10             = _mm_sub_pd(ix1,jx0);
428             dy10             = _mm_sub_pd(iy1,jy0);
429             dz10             = _mm_sub_pd(iz1,jz0);
430             dx20             = _mm_sub_pd(ix2,jx0);
431             dy20             = _mm_sub_pd(iy2,jy0);
432             dz20             = _mm_sub_pd(iz2,jz0);
433             dx30             = _mm_sub_pd(ix3,jx0);
434             dy30             = _mm_sub_pd(iy3,jy0);
435             dz30             = _mm_sub_pd(iz3,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
441             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
442
443             rinv10           = gmx_mm_invsqrt_pd(rsq10);
444             rinv20           = gmx_mm_invsqrt_pd(rsq20);
445             rinv30           = gmx_mm_invsqrt_pd(rsq30);
446
447             rinvsq00         = gmx_mm_inv_pd(rsq00);
448             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
449             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
450             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
451
452             /* Load parameters for j particles */
453             jq0              = _mm_load_sd(charge+jnrA+0);
454             vdwjidx0A        = 2*vdwtype[jnrA+0];
455
456             fjx0             = _mm_setzero_pd();
457             fjy0             = _mm_setzero_pd();
458             fjz0             = _mm_setzero_pd();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             /* Compute parameters for interactions between i and j atoms */
465             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
466
467             /* LENNARD-JONES DISPERSION/REPULSION */
468
469             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
470             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
471             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
472             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
473             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
477             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
478
479             fscal            = fvdw;
480
481             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm_mul_pd(fscal,dx00);
485             ty               = _mm_mul_pd(fscal,dy00);
486             tz               = _mm_mul_pd(fscal,dz00);
487
488             /* Update vectorial force */
489             fix0             = _mm_add_pd(fix0,tx);
490             fiy0             = _mm_add_pd(fiy0,ty);
491             fiz0             = _mm_add_pd(fiz0,tz);
492
493             fjx0             = _mm_add_pd(fjx0,tx);
494             fjy0             = _mm_add_pd(fjy0,ty);
495             fjz0             = _mm_add_pd(fjz0,tz);
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             r10              = _mm_mul_pd(rsq10,rinv10);
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq10             = _mm_mul_pd(iq1,jq0);
505
506             /* EWALD ELECTROSTATICS */
507
508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509             ewrt             = _mm_mul_pd(r10,ewtabscale);
510             ewitab           = _mm_cvttpd_epi32(ewrt);
511             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
512             ewitab           = _mm_slli_epi32(ewitab,2);
513             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
514             ewtabD           = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
516             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
517             ewtabFn          = _mm_setzero_pd();
518             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
519             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
520             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
521             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
522             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
526             velecsum         = _mm_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx10);
534             ty               = _mm_mul_pd(fscal,dy10);
535             tz               = _mm_mul_pd(fscal,dz10);
536
537             /* Update vectorial force */
538             fix1             = _mm_add_pd(fix1,tx);
539             fiy1             = _mm_add_pd(fiy1,ty);
540             fiz1             = _mm_add_pd(fiz1,tz);
541
542             fjx0             = _mm_add_pd(fjx0,tx);
543             fjy0             = _mm_add_pd(fjy0,ty);
544             fjz0             = _mm_add_pd(fjz0,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r20              = _mm_mul_pd(rsq20,rinv20);
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq20             = _mm_mul_pd(iq2,jq0);
554
555             /* EWALD ELECTROSTATICS */
556
557             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
558             ewrt             = _mm_mul_pd(r20,ewtabscale);
559             ewitab           = _mm_cvttpd_epi32(ewrt);
560             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
561             ewitab           = _mm_slli_epi32(ewitab,2);
562             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
563             ewtabD           = _mm_setzero_pd();
564             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
565             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
566             ewtabFn          = _mm_setzero_pd();
567             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
568             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
569             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
570             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
571             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
575             velecsum         = _mm_add_pd(velecsum,velec);
576
577             fscal            = felec;
578
579             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_pd(fscal,dx20);
583             ty               = _mm_mul_pd(fscal,dy20);
584             tz               = _mm_mul_pd(fscal,dz20);
585
586             /* Update vectorial force */
587             fix2             = _mm_add_pd(fix2,tx);
588             fiy2             = _mm_add_pd(fiy2,ty);
589             fiz2             = _mm_add_pd(fiz2,tz);
590
591             fjx0             = _mm_add_pd(fjx0,tx);
592             fjy0             = _mm_add_pd(fjy0,ty);
593             fjz0             = _mm_add_pd(fjz0,tz);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r30              = _mm_mul_pd(rsq30,rinv30);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq30             = _mm_mul_pd(iq3,jq0);
603
604             /* EWALD ELECTROSTATICS */
605
606             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607             ewrt             = _mm_mul_pd(r30,ewtabscale);
608             ewitab           = _mm_cvttpd_epi32(ewrt);
609             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
614             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
615             ewtabFn          = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
617             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
618             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
619             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
624             velecsum         = _mm_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_pd(fscal,dx30);
632             ty               = _mm_mul_pd(fscal,dy30);
633             tz               = _mm_mul_pd(fscal,dz30);
634
635             /* Update vectorial force */
636             fix3             = _mm_add_pd(fix3,tx);
637             fiy3             = _mm_add_pd(fiy3,ty);
638             fiz3             = _mm_add_pd(fiz3,tz);
639
640             fjx0             = _mm_add_pd(fjx0,tx);
641             fjy0             = _mm_add_pd(fjy0,ty);
642             fjz0             = _mm_add_pd(fjz0,tz);
643
644             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
645
646             /* Inner loop uses 158 flops */
647         }
648
649         /* End of innermost loop */
650
651         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
652                                               f+i_coord_offset,fshift+i_shift_offset);
653
654         ggid                        = gid[iidx];
655         /* Update potential energies */
656         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
657         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
658
659         /* Increment number of inner iterations */
660         inneriter                  += j_index_end - j_index_start;
661
662         /* Outer loop uses 26 flops */
663     }
664
665     /* Increment number of outer iterations */
666     outeriter        += nri;
667
668     /* Update outer/inner flops */
669
670     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
671 }
672 /*
673  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_double
674  * Electrostatics interaction: Ewald
675  * VdW interaction:            LennardJones
676  * Geometry:                   Water4-Particle
677  * Calculate force/pot:        Force
678  */
679 void
680 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_double
681                     (t_nblist                    * gmx_restrict       nlist,
682                      rvec                        * gmx_restrict          xx,
683                      rvec                        * gmx_restrict          ff,
684                      t_forcerec                  * gmx_restrict          fr,
685                      t_mdatoms                   * gmx_restrict     mdatoms,
686                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
687                      t_nrnb                      * gmx_restrict        nrnb)
688 {
689     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
690      * just 0 for non-waters.
691      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
692      * jnr indices corresponding to data put in the four positions in the SIMD register.
693      */
694     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
695     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
696     int              jnrA,jnrB;
697     int              j_coord_offsetA,j_coord_offsetB;
698     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
699     real             rcutoff_scalar;
700     real             *shiftvec,*fshift,*x,*f;
701     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
702     int              vdwioffset0;
703     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
704     int              vdwioffset1;
705     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
706     int              vdwioffset2;
707     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
708     int              vdwioffset3;
709     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
710     int              vdwjidx0A,vdwjidx0B;
711     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
712     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
713     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
714     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
715     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
716     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
717     real             *charge;
718     int              nvdwtype;
719     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
720     int              *vdwtype;
721     real             *vdwparam;
722     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
723     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
724     __m128i          ewitab;
725     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
726     real             *ewtab;
727     __m128d          dummy_mask,cutoff_mask;
728     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
729     __m128d          one     = _mm_set1_pd(1.0);
730     __m128d          two     = _mm_set1_pd(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm_set1_pd(fr->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
749     ewtab            = fr->ic->tabq_coul_F;
750     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
751     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
752
753     /* Setup water-specific parameters */
754     inr              = nlist->iinr[0];
755     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
756     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
757     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
758     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
759
760     /* Avoid stupid compiler warnings */
761     jnrA = jnrB = 0;
762     j_coord_offsetA = 0;
763     j_coord_offsetB = 0;
764
765     outeriter        = 0;
766     inneriter        = 0;
767
768     /* Start outer loop over neighborlists */
769     for(iidx=0; iidx<nri; iidx++)
770     {
771         /* Load shift vector for this list */
772         i_shift_offset   = DIM*shiftidx[iidx];
773
774         /* Load limits for loop over neighbors */
775         j_index_start    = jindex[iidx];
776         j_index_end      = jindex[iidx+1];
777
778         /* Get outer coordinate index */
779         inr              = iinr[iidx];
780         i_coord_offset   = DIM*inr;
781
782         /* Load i particle coords and add shift vector */
783         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
784                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
785
786         fix0             = _mm_setzero_pd();
787         fiy0             = _mm_setzero_pd();
788         fiz0             = _mm_setzero_pd();
789         fix1             = _mm_setzero_pd();
790         fiy1             = _mm_setzero_pd();
791         fiz1             = _mm_setzero_pd();
792         fix2             = _mm_setzero_pd();
793         fiy2             = _mm_setzero_pd();
794         fiz2             = _mm_setzero_pd();
795         fix3             = _mm_setzero_pd();
796         fiy3             = _mm_setzero_pd();
797         fiz3             = _mm_setzero_pd();
798
799         /* Start inner kernel loop */
800         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
801         {
802
803             /* Get j neighbor index, and coordinate index */
804             jnrA             = jjnr[jidx];
805             jnrB             = jjnr[jidx+1];
806             j_coord_offsetA  = DIM*jnrA;
807             j_coord_offsetB  = DIM*jnrB;
808
809             /* load j atom coordinates */
810             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
811                                               &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm_sub_pd(ix0,jx0);
815             dy00             = _mm_sub_pd(iy0,jy0);
816             dz00             = _mm_sub_pd(iz0,jz0);
817             dx10             = _mm_sub_pd(ix1,jx0);
818             dy10             = _mm_sub_pd(iy1,jy0);
819             dz10             = _mm_sub_pd(iz1,jz0);
820             dx20             = _mm_sub_pd(ix2,jx0);
821             dy20             = _mm_sub_pd(iy2,jy0);
822             dz20             = _mm_sub_pd(iz2,jz0);
823             dx30             = _mm_sub_pd(ix3,jx0);
824             dy30             = _mm_sub_pd(iy3,jy0);
825             dz30             = _mm_sub_pd(iz3,jz0);
826
827             /* Calculate squared distance and things based on it */
828             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
829             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
830             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
831             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
832
833             rinv10           = gmx_mm_invsqrt_pd(rsq10);
834             rinv20           = gmx_mm_invsqrt_pd(rsq20);
835             rinv30           = gmx_mm_invsqrt_pd(rsq30);
836
837             rinvsq00         = gmx_mm_inv_pd(rsq00);
838             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
839             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
840             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
841
842             /* Load parameters for j particles */
843             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845             vdwjidx0B        = 2*vdwtype[jnrB+0];
846
847             fjx0             = _mm_setzero_pd();
848             fjy0             = _mm_setzero_pd();
849             fjz0             = _mm_setzero_pd();
850
851             /**************************
852              * CALCULATE INTERACTIONS *
853              **************************/
854
855             /* Compute parameters for interactions between i and j atoms */
856             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
857                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
858
859             /* LENNARD-JONES DISPERSION/REPULSION */
860
861             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
862             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
863
864             fscal            = fvdw;
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm_mul_pd(fscal,dx00);
868             ty               = _mm_mul_pd(fscal,dy00);
869             tz               = _mm_mul_pd(fscal,dz00);
870
871             /* Update vectorial force */
872             fix0             = _mm_add_pd(fix0,tx);
873             fiy0             = _mm_add_pd(fiy0,ty);
874             fiz0             = _mm_add_pd(fiz0,tz);
875
876             fjx0             = _mm_add_pd(fjx0,tx);
877             fjy0             = _mm_add_pd(fjy0,ty);
878             fjz0             = _mm_add_pd(fjz0,tz);
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             r10              = _mm_mul_pd(rsq10,rinv10);
885
886             /* Compute parameters for interactions between i and j atoms */
887             qq10             = _mm_mul_pd(iq1,jq0);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _mm_mul_pd(r10,ewtabscale);
893             ewitab           = _mm_cvttpd_epi32(ewrt);
894             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
895             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
896                                          &ewtabF,&ewtabFn);
897             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
898             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
899
900             fscal            = felec;
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm_mul_pd(fscal,dx10);
904             ty               = _mm_mul_pd(fscal,dy10);
905             tz               = _mm_mul_pd(fscal,dz10);
906
907             /* Update vectorial force */
908             fix1             = _mm_add_pd(fix1,tx);
909             fiy1             = _mm_add_pd(fiy1,ty);
910             fiz1             = _mm_add_pd(fiz1,tz);
911
912             fjx0             = _mm_add_pd(fjx0,tx);
913             fjy0             = _mm_add_pd(fjy0,ty);
914             fjz0             = _mm_add_pd(fjz0,tz);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r20              = _mm_mul_pd(rsq20,rinv20);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq20             = _mm_mul_pd(iq2,jq0);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
928             ewrt             = _mm_mul_pd(r20,ewtabscale);
929             ewitab           = _mm_cvttpd_epi32(ewrt);
930             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
931             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
932                                          &ewtabF,&ewtabFn);
933             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
934             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
935
936             fscal            = felec;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_pd(fscal,dx20);
940             ty               = _mm_mul_pd(fscal,dy20);
941             tz               = _mm_mul_pd(fscal,dz20);
942
943             /* Update vectorial force */
944             fix2             = _mm_add_pd(fix2,tx);
945             fiy2             = _mm_add_pd(fiy2,ty);
946             fiz2             = _mm_add_pd(fiz2,tz);
947
948             fjx0             = _mm_add_pd(fjx0,tx);
949             fjy0             = _mm_add_pd(fjy0,ty);
950             fjz0             = _mm_add_pd(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             r30              = _mm_mul_pd(rsq30,rinv30);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq30             = _mm_mul_pd(iq3,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r30,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
967             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
968                                          &ewtabF,&ewtabFn);
969             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
970             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
971
972             fscal            = felec;
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_pd(fscal,dx30);
976             ty               = _mm_mul_pd(fscal,dy30);
977             tz               = _mm_mul_pd(fscal,dz30);
978
979             /* Update vectorial force */
980             fix3             = _mm_add_pd(fix3,tx);
981             fiy3             = _mm_add_pd(fiy3,ty);
982             fiz3             = _mm_add_pd(fiz3,tz);
983
984             fjx0             = _mm_add_pd(fjx0,tx);
985             fjy0             = _mm_add_pd(fjy0,ty);
986             fjz0             = _mm_add_pd(fjz0,tz);
987
988             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 138 flops */
991         }
992
993         if(jidx<j_index_end)
994         {
995
996             jnrA             = jjnr[jidx];
997             j_coord_offsetA  = DIM*jnrA;
998
999             /* load j atom coordinates */
1000             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1001                                               &jx0,&jy0,&jz0);
1002
1003             /* Calculate displacement vector */
1004             dx00             = _mm_sub_pd(ix0,jx0);
1005             dy00             = _mm_sub_pd(iy0,jy0);
1006             dz00             = _mm_sub_pd(iz0,jz0);
1007             dx10             = _mm_sub_pd(ix1,jx0);
1008             dy10             = _mm_sub_pd(iy1,jy0);
1009             dz10             = _mm_sub_pd(iz1,jz0);
1010             dx20             = _mm_sub_pd(ix2,jx0);
1011             dy20             = _mm_sub_pd(iy2,jy0);
1012             dz20             = _mm_sub_pd(iz2,jz0);
1013             dx30             = _mm_sub_pd(ix3,jx0);
1014             dy30             = _mm_sub_pd(iy3,jy0);
1015             dz30             = _mm_sub_pd(iz3,jz0);
1016
1017             /* Calculate squared distance and things based on it */
1018             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1019             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1020             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1021             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1022
1023             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1024             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1025             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1026
1027             rinvsq00         = gmx_mm_inv_pd(rsq00);
1028             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1029             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1030             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1031
1032             /* Load parameters for j particles */
1033             jq0              = _mm_load_sd(charge+jnrA+0);
1034             vdwjidx0A        = 2*vdwtype[jnrA+0];
1035
1036             fjx0             = _mm_setzero_pd();
1037             fjy0             = _mm_setzero_pd();
1038             fjz0             = _mm_setzero_pd();
1039
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1046
1047             /* LENNARD-JONES DISPERSION/REPULSION */
1048
1049             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1050             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1051
1052             fscal            = fvdw;
1053
1054             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1055
1056             /* Calculate temporary vectorial force */
1057             tx               = _mm_mul_pd(fscal,dx00);
1058             ty               = _mm_mul_pd(fscal,dy00);
1059             tz               = _mm_mul_pd(fscal,dz00);
1060
1061             /* Update vectorial force */
1062             fix0             = _mm_add_pd(fix0,tx);
1063             fiy0             = _mm_add_pd(fiy0,ty);
1064             fiz0             = _mm_add_pd(fiz0,tz);
1065
1066             fjx0             = _mm_add_pd(fjx0,tx);
1067             fjy0             = _mm_add_pd(fjy0,ty);
1068             fjz0             = _mm_add_pd(fjz0,tz);
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             r10              = _mm_mul_pd(rsq10,rinv10);
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq10             = _mm_mul_pd(iq1,jq0);
1078
1079             /* EWALD ELECTROSTATICS */
1080
1081             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1082             ewrt             = _mm_mul_pd(r10,ewtabscale);
1083             ewitab           = _mm_cvttpd_epi32(ewrt);
1084             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1085             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1086             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1087             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1092
1093             /* Calculate temporary vectorial force */
1094             tx               = _mm_mul_pd(fscal,dx10);
1095             ty               = _mm_mul_pd(fscal,dy10);
1096             tz               = _mm_mul_pd(fscal,dz10);
1097
1098             /* Update vectorial force */
1099             fix1             = _mm_add_pd(fix1,tx);
1100             fiy1             = _mm_add_pd(fiy1,ty);
1101             fiz1             = _mm_add_pd(fiz1,tz);
1102
1103             fjx0             = _mm_add_pd(fjx0,tx);
1104             fjy0             = _mm_add_pd(fjy0,ty);
1105             fjz0             = _mm_add_pd(fjz0,tz);
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             r20              = _mm_mul_pd(rsq20,rinv20);
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq20             = _mm_mul_pd(iq2,jq0);
1115
1116             /* EWALD ELECTROSTATICS */
1117
1118             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1119             ewrt             = _mm_mul_pd(r20,ewtabscale);
1120             ewitab           = _mm_cvttpd_epi32(ewrt);
1121             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1122             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1123             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1124             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1129
1130             /* Calculate temporary vectorial force */
1131             tx               = _mm_mul_pd(fscal,dx20);
1132             ty               = _mm_mul_pd(fscal,dy20);
1133             tz               = _mm_mul_pd(fscal,dz20);
1134
1135             /* Update vectorial force */
1136             fix2             = _mm_add_pd(fix2,tx);
1137             fiy2             = _mm_add_pd(fiy2,ty);
1138             fiz2             = _mm_add_pd(fiz2,tz);
1139
1140             fjx0             = _mm_add_pd(fjx0,tx);
1141             fjy0             = _mm_add_pd(fjy0,ty);
1142             fjz0             = _mm_add_pd(fjz0,tz);
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             r30              = _mm_mul_pd(rsq30,rinv30);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq30             = _mm_mul_pd(iq3,jq0);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_pd(r30,ewtabscale);
1157             ewitab           = _mm_cvttpd_epi32(ewrt);
1158             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1159             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1160             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1161             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm_mul_pd(fscal,dx30);
1169             ty               = _mm_mul_pd(fscal,dy30);
1170             tz               = _mm_mul_pd(fscal,dz30);
1171
1172             /* Update vectorial force */
1173             fix3             = _mm_add_pd(fix3,tx);
1174             fiy3             = _mm_add_pd(fiy3,ty);
1175             fiz3             = _mm_add_pd(fiz3,tz);
1176
1177             fjx0             = _mm_add_pd(fjx0,tx);
1178             fjy0             = _mm_add_pd(fjy0,ty);
1179             fjz0             = _mm_add_pd(fjz0,tz);
1180
1181             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1182
1183             /* Inner loop uses 138 flops */
1184         }
1185
1186         /* End of innermost loop */
1187
1188         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1189                                               f+i_coord_offset,fshift+i_shift_offset);
1190
1191         /* Increment number of inner iterations */
1192         inneriter                  += j_index_end - j_index_start;
1193
1194         /* Outer loop uses 24 flops */
1195     }
1196
1197     /* Increment number of outer iterations */
1198     outeriter        += nri;
1199
1200     /* Update outer/inner flops */
1201
1202     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1203 }