c0ba4afe889efa5ab87270ce1aa35a9a70142811
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128i          ewitab;
112     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128d          dummy_mask,cutoff_mask;
115     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
116     __m128d          one     = _mm_set1_pd(1.0);
117     __m128d          two     = _mm_set1_pd(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm_set1_pd(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
143     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
144     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
145     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147     jq0              = _mm_set1_pd(charge[inr+0]);
148     jq1              = _mm_set1_pd(charge[inr+1]);
149     jq2              = _mm_set1_pd(charge[inr+2]);
150     vdwjidx0A        = 2*vdwtype[inr+0];
151     qq00             = _mm_mul_pd(iq0,jq0);
152     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
153     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
154     qq01             = _mm_mul_pd(iq0,jq1);
155     qq02             = _mm_mul_pd(iq0,jq2);
156     qq10             = _mm_mul_pd(iq1,jq0);
157     qq11             = _mm_mul_pd(iq1,jq1);
158     qq12             = _mm_mul_pd(iq1,jq2);
159     qq20             = _mm_mul_pd(iq2,jq0);
160     qq21             = _mm_mul_pd(iq2,jq1);
161     qq22             = _mm_mul_pd(iq2,jq2);
162
163     /* Avoid stupid compiler warnings */
164     jnrA = jnrB = 0;
165     j_coord_offsetA = 0;
166     j_coord_offsetB = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
188
189         fix0             = _mm_setzero_pd();
190         fiy0             = _mm_setzero_pd();
191         fiz0             = _mm_setzero_pd();
192         fix1             = _mm_setzero_pd();
193         fiy1             = _mm_setzero_pd();
194         fiz1             = _mm_setzero_pd();
195         fix2             = _mm_setzero_pd();
196         fiy2             = _mm_setzero_pd();
197         fiz2             = _mm_setzero_pd();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_pd();
201         vvdwsum          = _mm_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_pd(ix0,jx0);
219             dy00             = _mm_sub_pd(iy0,jy0);
220             dz00             = _mm_sub_pd(iz0,jz0);
221             dx01             = _mm_sub_pd(ix0,jx1);
222             dy01             = _mm_sub_pd(iy0,jy1);
223             dz01             = _mm_sub_pd(iz0,jz1);
224             dx02             = _mm_sub_pd(ix0,jx2);
225             dy02             = _mm_sub_pd(iy0,jy2);
226             dz02             = _mm_sub_pd(iz0,jz2);
227             dx10             = _mm_sub_pd(ix1,jx0);
228             dy10             = _mm_sub_pd(iy1,jy0);
229             dz10             = _mm_sub_pd(iz1,jz0);
230             dx11             = _mm_sub_pd(ix1,jx1);
231             dy11             = _mm_sub_pd(iy1,jy1);
232             dz11             = _mm_sub_pd(iz1,jz1);
233             dx12             = _mm_sub_pd(ix1,jx2);
234             dy12             = _mm_sub_pd(iy1,jy2);
235             dz12             = _mm_sub_pd(iz1,jz2);
236             dx20             = _mm_sub_pd(ix2,jx0);
237             dy20             = _mm_sub_pd(iy2,jy0);
238             dz20             = _mm_sub_pd(iz2,jz0);
239             dx21             = _mm_sub_pd(ix2,jx1);
240             dy21             = _mm_sub_pd(iy2,jy1);
241             dz21             = _mm_sub_pd(iz2,jz1);
242             dx22             = _mm_sub_pd(ix2,jx2);
243             dy22             = _mm_sub_pd(iy2,jy2);
244             dz22             = _mm_sub_pd(iz2,jz2);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
248             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
249             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
250             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
251             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
252             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
253             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
254             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
255             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
256
257             rinv00           = gmx_mm_invsqrt_pd(rsq00);
258             rinv01           = gmx_mm_invsqrt_pd(rsq01);
259             rinv02           = gmx_mm_invsqrt_pd(rsq02);
260             rinv10           = gmx_mm_invsqrt_pd(rsq10);
261             rinv11           = gmx_mm_invsqrt_pd(rsq11);
262             rinv12           = gmx_mm_invsqrt_pd(rsq12);
263             rinv20           = gmx_mm_invsqrt_pd(rsq20);
264             rinv21           = gmx_mm_invsqrt_pd(rsq21);
265             rinv22           = gmx_mm_invsqrt_pd(rsq22);
266
267             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
268             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
269             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
270             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
271             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
272             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
273             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
274             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
275             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
276
277             fjx0             = _mm_setzero_pd();
278             fjy0             = _mm_setzero_pd();
279             fjz0             = _mm_setzero_pd();
280             fjx1             = _mm_setzero_pd();
281             fjy1             = _mm_setzero_pd();
282             fjz1             = _mm_setzero_pd();
283             fjx2             = _mm_setzero_pd();
284             fjy2             = _mm_setzero_pd();
285             fjz2             = _mm_setzero_pd();
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             r00              = _mm_mul_pd(rsq00,rinv00);
292
293             /* EWALD ELECTROSTATICS */
294
295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296             ewrt             = _mm_mul_pd(r00,ewtabscale);
297             ewitab           = _mm_cvttpd_epi32(ewrt);
298             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
299             ewitab           = _mm_slli_epi32(ewitab,2);
300             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
301             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
302             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
303             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
304             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
305             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
306             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
307             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
308             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
309             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
310
311             /* LENNARD-JONES DISPERSION/REPULSION */
312
313             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
314             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
315             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
316             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
317             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm_add_pd(velecsum,velec);
321             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
322
323             fscal            = _mm_add_pd(felec,fvdw);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx00);
327             ty               = _mm_mul_pd(fscal,dy00);
328             tz               = _mm_mul_pd(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm_add_pd(fix0,tx);
332             fiy0             = _mm_add_pd(fiy0,ty);
333             fiz0             = _mm_add_pd(fiz0,tz);
334
335             fjx0             = _mm_add_pd(fjx0,tx);
336             fjy0             = _mm_add_pd(fjy0,ty);
337             fjz0             = _mm_add_pd(fjz0,tz);
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r01              = _mm_mul_pd(rsq01,rinv01);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = _mm_mul_pd(r01,ewtabscale);
349             ewitab           = _mm_cvttpd_epi32(ewrt);
350             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
354             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
355             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
356             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
357             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
358             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
359             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
360             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
361             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm_mul_pd(fscal,dx01);
370             ty               = _mm_mul_pd(fscal,dy01);
371             tz               = _mm_mul_pd(fscal,dz01);
372
373             /* Update vectorial force */
374             fix0             = _mm_add_pd(fix0,tx);
375             fiy0             = _mm_add_pd(fiy0,ty);
376             fiz0             = _mm_add_pd(fiz0,tz);
377
378             fjx1             = _mm_add_pd(fjx1,tx);
379             fjy1             = _mm_add_pd(fjy1,ty);
380             fjz1             = _mm_add_pd(fjz1,tz);
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             r02              = _mm_mul_pd(rsq02,rinv02);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_pd(r02,ewtabscale);
392             ewitab           = _mm_cvttpd_epi32(ewrt);
393             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
398             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
399             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
400             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
401             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
402             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
403             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
404             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velecsum         = _mm_add_pd(velecsum,velec);
408
409             fscal            = felec;
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm_mul_pd(fscal,dx02);
413             ty               = _mm_mul_pd(fscal,dy02);
414             tz               = _mm_mul_pd(fscal,dz02);
415
416             /* Update vectorial force */
417             fix0             = _mm_add_pd(fix0,tx);
418             fiy0             = _mm_add_pd(fiy0,ty);
419             fiz0             = _mm_add_pd(fiz0,tz);
420
421             fjx2             = _mm_add_pd(fjx2,tx);
422             fjy2             = _mm_add_pd(fjy2,ty);
423             fjz2             = _mm_add_pd(fjz2,tz);
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             r10              = _mm_mul_pd(rsq10,rinv10);
430
431             /* EWALD ELECTROSTATICS */
432
433             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
434             ewrt             = _mm_mul_pd(r10,ewtabscale);
435             ewitab           = _mm_cvttpd_epi32(ewrt);
436             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
437             ewitab           = _mm_slli_epi32(ewitab,2);
438             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
439             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
440             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
441             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
442             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
443             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
444             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
445             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
446             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
447             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
448
449             /* Update potential sum for this i atom from the interaction with this j atom. */
450             velecsum         = _mm_add_pd(velecsum,velec);
451
452             fscal            = felec;
453
454             /* Calculate temporary vectorial force */
455             tx               = _mm_mul_pd(fscal,dx10);
456             ty               = _mm_mul_pd(fscal,dy10);
457             tz               = _mm_mul_pd(fscal,dz10);
458
459             /* Update vectorial force */
460             fix1             = _mm_add_pd(fix1,tx);
461             fiy1             = _mm_add_pd(fiy1,ty);
462             fiz1             = _mm_add_pd(fiz1,tz);
463
464             fjx0             = _mm_add_pd(fjx0,tx);
465             fjy0             = _mm_add_pd(fjy0,ty);
466             fjz0             = _mm_add_pd(fjz0,tz);
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r11              = _mm_mul_pd(rsq11,rinv11);
473
474             /* EWALD ELECTROSTATICS */
475
476             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
477             ewrt             = _mm_mul_pd(r11,ewtabscale);
478             ewitab           = _mm_cvttpd_epi32(ewrt);
479             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
480             ewitab           = _mm_slli_epi32(ewitab,2);
481             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
482             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
483             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
484             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
485             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
486             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
487             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
488             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
489             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
490             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velecsum         = _mm_add_pd(velecsum,velec);
494
495             fscal            = felec;
496
497             /* Calculate temporary vectorial force */
498             tx               = _mm_mul_pd(fscal,dx11);
499             ty               = _mm_mul_pd(fscal,dy11);
500             tz               = _mm_mul_pd(fscal,dz11);
501
502             /* Update vectorial force */
503             fix1             = _mm_add_pd(fix1,tx);
504             fiy1             = _mm_add_pd(fiy1,ty);
505             fiz1             = _mm_add_pd(fiz1,tz);
506
507             fjx1             = _mm_add_pd(fjx1,tx);
508             fjy1             = _mm_add_pd(fjy1,ty);
509             fjz1             = _mm_add_pd(fjz1,tz);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             r12              = _mm_mul_pd(rsq12,rinv12);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
520             ewrt             = _mm_mul_pd(r12,ewtabscale);
521             ewitab           = _mm_cvttpd_epi32(ewrt);
522             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
523             ewitab           = _mm_slli_epi32(ewitab,2);
524             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
525             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
526             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
527             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
528             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
529             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
530             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
531             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
532             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
533             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velecsum         = _mm_add_pd(velecsum,velec);
537
538             fscal            = felec;
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm_mul_pd(fscal,dx12);
542             ty               = _mm_mul_pd(fscal,dy12);
543             tz               = _mm_mul_pd(fscal,dz12);
544
545             /* Update vectorial force */
546             fix1             = _mm_add_pd(fix1,tx);
547             fiy1             = _mm_add_pd(fiy1,ty);
548             fiz1             = _mm_add_pd(fiz1,tz);
549
550             fjx2             = _mm_add_pd(fjx2,tx);
551             fjy2             = _mm_add_pd(fjy2,ty);
552             fjz2             = _mm_add_pd(fjz2,tz);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r20              = _mm_mul_pd(rsq20,rinv20);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563             ewrt             = _mm_mul_pd(r20,ewtabscale);
564             ewitab           = _mm_cvttpd_epi32(ewrt);
565             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
566             ewitab           = _mm_slli_epi32(ewitab,2);
567             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
568             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
569             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
570             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
571             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
572             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
573             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
574             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
575             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
576             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velecsum         = _mm_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             /* Calculate temporary vectorial force */
584             tx               = _mm_mul_pd(fscal,dx20);
585             ty               = _mm_mul_pd(fscal,dy20);
586             tz               = _mm_mul_pd(fscal,dz20);
587
588             /* Update vectorial force */
589             fix2             = _mm_add_pd(fix2,tx);
590             fiy2             = _mm_add_pd(fiy2,ty);
591             fiz2             = _mm_add_pd(fiz2,tz);
592
593             fjx0             = _mm_add_pd(fjx0,tx);
594             fjy0             = _mm_add_pd(fjy0,ty);
595             fjz0             = _mm_add_pd(fjz0,tz);
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r21              = _mm_mul_pd(rsq21,rinv21);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r21,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
612             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
613             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
614             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
615             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
616             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
617             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
618             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
619             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velecsum         = _mm_add_pd(velecsum,velec);
623
624             fscal            = felec;
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_pd(fscal,dx21);
628             ty               = _mm_mul_pd(fscal,dy21);
629             tz               = _mm_mul_pd(fscal,dz21);
630
631             /* Update vectorial force */
632             fix2             = _mm_add_pd(fix2,tx);
633             fiy2             = _mm_add_pd(fiy2,ty);
634             fiz2             = _mm_add_pd(fiz2,tz);
635
636             fjx1             = _mm_add_pd(fjx1,tx);
637             fjy1             = _mm_add_pd(fjy1,ty);
638             fjz1             = _mm_add_pd(fjz1,tz);
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             r22              = _mm_mul_pd(rsq22,rinv22);
645
646             /* EWALD ELECTROSTATICS */
647
648             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
649             ewrt             = _mm_mul_pd(r22,ewtabscale);
650             ewitab           = _mm_cvttpd_epi32(ewrt);
651             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
652             ewitab           = _mm_slli_epi32(ewitab,2);
653             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
654             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
655             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
656             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
657             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
658             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
659             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
660             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
661             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
662             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velecsum         = _mm_add_pd(velecsum,velec);
666
667             fscal            = felec;
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm_mul_pd(fscal,dx22);
671             ty               = _mm_mul_pd(fscal,dy22);
672             tz               = _mm_mul_pd(fscal,dz22);
673
674             /* Update vectorial force */
675             fix2             = _mm_add_pd(fix2,tx);
676             fiy2             = _mm_add_pd(fiy2,ty);
677             fiz2             = _mm_add_pd(fiz2,tz);
678
679             fjx2             = _mm_add_pd(fjx2,tx);
680             fjy2             = _mm_add_pd(fjy2,ty);
681             fjz2             = _mm_add_pd(fjz2,tz);
682
683             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
684
685             /* Inner loop uses 381 flops */
686         }
687
688         if(jidx<j_index_end)
689         {
690
691             jnrA             = jjnr[jidx];
692             j_coord_offsetA  = DIM*jnrA;
693
694             /* load j atom coordinates */
695             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
696                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
697
698             /* Calculate displacement vector */
699             dx00             = _mm_sub_pd(ix0,jx0);
700             dy00             = _mm_sub_pd(iy0,jy0);
701             dz00             = _mm_sub_pd(iz0,jz0);
702             dx01             = _mm_sub_pd(ix0,jx1);
703             dy01             = _mm_sub_pd(iy0,jy1);
704             dz01             = _mm_sub_pd(iz0,jz1);
705             dx02             = _mm_sub_pd(ix0,jx2);
706             dy02             = _mm_sub_pd(iy0,jy2);
707             dz02             = _mm_sub_pd(iz0,jz2);
708             dx10             = _mm_sub_pd(ix1,jx0);
709             dy10             = _mm_sub_pd(iy1,jy0);
710             dz10             = _mm_sub_pd(iz1,jz0);
711             dx11             = _mm_sub_pd(ix1,jx1);
712             dy11             = _mm_sub_pd(iy1,jy1);
713             dz11             = _mm_sub_pd(iz1,jz1);
714             dx12             = _mm_sub_pd(ix1,jx2);
715             dy12             = _mm_sub_pd(iy1,jy2);
716             dz12             = _mm_sub_pd(iz1,jz2);
717             dx20             = _mm_sub_pd(ix2,jx0);
718             dy20             = _mm_sub_pd(iy2,jy0);
719             dz20             = _mm_sub_pd(iz2,jz0);
720             dx21             = _mm_sub_pd(ix2,jx1);
721             dy21             = _mm_sub_pd(iy2,jy1);
722             dz21             = _mm_sub_pd(iz2,jz1);
723             dx22             = _mm_sub_pd(ix2,jx2);
724             dy22             = _mm_sub_pd(iy2,jy2);
725             dz22             = _mm_sub_pd(iz2,jz2);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
729             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
730             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
731             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
732             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
733             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
734             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
735             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
736             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
737
738             rinv00           = gmx_mm_invsqrt_pd(rsq00);
739             rinv01           = gmx_mm_invsqrt_pd(rsq01);
740             rinv02           = gmx_mm_invsqrt_pd(rsq02);
741             rinv10           = gmx_mm_invsqrt_pd(rsq10);
742             rinv11           = gmx_mm_invsqrt_pd(rsq11);
743             rinv12           = gmx_mm_invsqrt_pd(rsq12);
744             rinv20           = gmx_mm_invsqrt_pd(rsq20);
745             rinv21           = gmx_mm_invsqrt_pd(rsq21);
746             rinv22           = gmx_mm_invsqrt_pd(rsq22);
747
748             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
749             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
750             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
751             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
752             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
753             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
754             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
755             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
756             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
757
758             fjx0             = _mm_setzero_pd();
759             fjy0             = _mm_setzero_pd();
760             fjz0             = _mm_setzero_pd();
761             fjx1             = _mm_setzero_pd();
762             fjy1             = _mm_setzero_pd();
763             fjz1             = _mm_setzero_pd();
764             fjx2             = _mm_setzero_pd();
765             fjy2             = _mm_setzero_pd();
766             fjz2             = _mm_setzero_pd();
767
768             /**************************
769              * CALCULATE INTERACTIONS *
770              **************************/
771
772             r00              = _mm_mul_pd(rsq00,rinv00);
773
774             /* EWALD ELECTROSTATICS */
775
776             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
777             ewrt             = _mm_mul_pd(r00,ewtabscale);
778             ewitab           = _mm_cvttpd_epi32(ewrt);
779             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
780             ewitab           = _mm_slli_epi32(ewitab,2);
781             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
782             ewtabD           = _mm_setzero_pd();
783             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
784             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
785             ewtabFn          = _mm_setzero_pd();
786             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
787             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
788             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
789             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
790             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
791
792             /* LENNARD-JONES DISPERSION/REPULSION */
793
794             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
795             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
796             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
797             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
798             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
799
800             /* Update potential sum for this i atom from the interaction with this j atom. */
801             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
802             velecsum         = _mm_add_pd(velecsum,velec);
803             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
804             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
805
806             fscal            = _mm_add_pd(felec,fvdw);
807
808             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm_mul_pd(fscal,dx00);
812             ty               = _mm_mul_pd(fscal,dy00);
813             tz               = _mm_mul_pd(fscal,dz00);
814
815             /* Update vectorial force */
816             fix0             = _mm_add_pd(fix0,tx);
817             fiy0             = _mm_add_pd(fiy0,ty);
818             fiz0             = _mm_add_pd(fiz0,tz);
819
820             fjx0             = _mm_add_pd(fjx0,tx);
821             fjy0             = _mm_add_pd(fjy0,ty);
822             fjz0             = _mm_add_pd(fjz0,tz);
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             r01              = _mm_mul_pd(rsq01,rinv01);
829
830             /* EWALD ELECTROSTATICS */
831
832             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
833             ewrt             = _mm_mul_pd(r01,ewtabscale);
834             ewitab           = _mm_cvttpd_epi32(ewrt);
835             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
836             ewitab           = _mm_slli_epi32(ewitab,2);
837             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
838             ewtabD           = _mm_setzero_pd();
839             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
840             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
841             ewtabFn          = _mm_setzero_pd();
842             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
843             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
844             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
845             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
846             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
847
848             /* Update potential sum for this i atom from the interaction with this j atom. */
849             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
850             velecsum         = _mm_add_pd(velecsum,velec);
851
852             fscal            = felec;
853
854             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm_mul_pd(fscal,dx01);
858             ty               = _mm_mul_pd(fscal,dy01);
859             tz               = _mm_mul_pd(fscal,dz01);
860
861             /* Update vectorial force */
862             fix0             = _mm_add_pd(fix0,tx);
863             fiy0             = _mm_add_pd(fiy0,ty);
864             fiz0             = _mm_add_pd(fiz0,tz);
865
866             fjx1             = _mm_add_pd(fjx1,tx);
867             fjy1             = _mm_add_pd(fjy1,ty);
868             fjz1             = _mm_add_pd(fjz1,tz);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             r02              = _mm_mul_pd(rsq02,rinv02);
875
876             /* EWALD ELECTROSTATICS */
877
878             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
879             ewrt             = _mm_mul_pd(r02,ewtabscale);
880             ewitab           = _mm_cvttpd_epi32(ewrt);
881             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
882             ewitab           = _mm_slli_epi32(ewitab,2);
883             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
884             ewtabD           = _mm_setzero_pd();
885             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
886             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
887             ewtabFn          = _mm_setzero_pd();
888             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
889             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
890             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
891             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
892             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
893
894             /* Update potential sum for this i atom from the interaction with this j atom. */
895             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
896             velecsum         = _mm_add_pd(velecsum,velec);
897
898             fscal            = felec;
899
900             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm_mul_pd(fscal,dx02);
904             ty               = _mm_mul_pd(fscal,dy02);
905             tz               = _mm_mul_pd(fscal,dz02);
906
907             /* Update vectorial force */
908             fix0             = _mm_add_pd(fix0,tx);
909             fiy0             = _mm_add_pd(fiy0,ty);
910             fiz0             = _mm_add_pd(fiz0,tz);
911
912             fjx2             = _mm_add_pd(fjx2,tx);
913             fjy2             = _mm_add_pd(fjy2,ty);
914             fjz2             = _mm_add_pd(fjz2,tz);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r10              = _mm_mul_pd(rsq10,rinv10);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_pd(r10,ewtabscale);
926             ewitab           = _mm_cvttpd_epi32(ewrt);
927             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
928             ewitab           = _mm_slli_epi32(ewitab,2);
929             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
930             ewtabD           = _mm_setzero_pd();
931             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
932             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
933             ewtabFn          = _mm_setzero_pd();
934             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
935             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
936             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
937             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
938             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
939
940             /* Update potential sum for this i atom from the interaction with this j atom. */
941             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
942             velecsum         = _mm_add_pd(velecsum,velec);
943
944             fscal            = felec;
945
946             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_pd(fscal,dx10);
950             ty               = _mm_mul_pd(fscal,dy10);
951             tz               = _mm_mul_pd(fscal,dz10);
952
953             /* Update vectorial force */
954             fix1             = _mm_add_pd(fix1,tx);
955             fiy1             = _mm_add_pd(fiy1,ty);
956             fiz1             = _mm_add_pd(fiz1,tz);
957
958             fjx0             = _mm_add_pd(fjx0,tx);
959             fjy0             = _mm_add_pd(fjy0,ty);
960             fjz0             = _mm_add_pd(fjz0,tz);
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             r11              = _mm_mul_pd(rsq11,rinv11);
967
968             /* EWALD ELECTROSTATICS */
969
970             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
971             ewrt             = _mm_mul_pd(r11,ewtabscale);
972             ewitab           = _mm_cvttpd_epi32(ewrt);
973             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
974             ewitab           = _mm_slli_epi32(ewitab,2);
975             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
976             ewtabD           = _mm_setzero_pd();
977             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
978             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
979             ewtabFn          = _mm_setzero_pd();
980             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
981             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
982             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
983             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
984             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
985
986             /* Update potential sum for this i atom from the interaction with this j atom. */
987             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
988             velecsum         = _mm_add_pd(velecsum,velec);
989
990             fscal            = felec;
991
992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx11);
996             ty               = _mm_mul_pd(fscal,dy11);
997             tz               = _mm_mul_pd(fscal,dz11);
998
999             /* Update vectorial force */
1000             fix1             = _mm_add_pd(fix1,tx);
1001             fiy1             = _mm_add_pd(fiy1,ty);
1002             fiz1             = _mm_add_pd(fiz1,tz);
1003
1004             fjx1             = _mm_add_pd(fjx1,tx);
1005             fjy1             = _mm_add_pd(fjy1,ty);
1006             fjz1             = _mm_add_pd(fjz1,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r12              = _mm_mul_pd(rsq12,rinv12);
1013
1014             /* EWALD ELECTROSTATICS */
1015
1016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1017             ewrt             = _mm_mul_pd(r12,ewtabscale);
1018             ewitab           = _mm_cvttpd_epi32(ewrt);
1019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1020             ewitab           = _mm_slli_epi32(ewitab,2);
1021             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1022             ewtabD           = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1024             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1025             ewtabFn          = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1027             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1028             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1029             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1030             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1031
1032             /* Update potential sum for this i atom from the interaction with this j atom. */
1033             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1034             velecsum         = _mm_add_pd(velecsum,velec);
1035
1036             fscal            = felec;
1037
1038             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_pd(fscal,dx12);
1042             ty               = _mm_mul_pd(fscal,dy12);
1043             tz               = _mm_mul_pd(fscal,dz12);
1044
1045             /* Update vectorial force */
1046             fix1             = _mm_add_pd(fix1,tx);
1047             fiy1             = _mm_add_pd(fiy1,ty);
1048             fiz1             = _mm_add_pd(fiz1,tz);
1049
1050             fjx2             = _mm_add_pd(fjx2,tx);
1051             fjy2             = _mm_add_pd(fjy2,ty);
1052             fjz2             = _mm_add_pd(fjz2,tz);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r20              = _mm_mul_pd(rsq20,rinv20);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063             ewrt             = _mm_mul_pd(r20,ewtabscale);
1064             ewitab           = _mm_cvttpd_epi32(ewrt);
1065             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1066             ewitab           = _mm_slli_epi32(ewitab,2);
1067             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1068             ewtabD           = _mm_setzero_pd();
1069             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1070             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1071             ewtabFn          = _mm_setzero_pd();
1072             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1073             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1074             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1075             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1076             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1077
1078             /* Update potential sum for this i atom from the interaction with this j atom. */
1079             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1080             velecsum         = _mm_add_pd(velecsum,velec);
1081
1082             fscal            = felec;
1083
1084             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = _mm_mul_pd(fscal,dx20);
1088             ty               = _mm_mul_pd(fscal,dy20);
1089             tz               = _mm_mul_pd(fscal,dz20);
1090
1091             /* Update vectorial force */
1092             fix2             = _mm_add_pd(fix2,tx);
1093             fiy2             = _mm_add_pd(fiy2,ty);
1094             fiz2             = _mm_add_pd(fiz2,tz);
1095
1096             fjx0             = _mm_add_pd(fjx0,tx);
1097             fjy0             = _mm_add_pd(fjy0,ty);
1098             fjz0             = _mm_add_pd(fjz0,tz);
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             r21              = _mm_mul_pd(rsq21,rinv21);
1105
1106             /* EWALD ELECTROSTATICS */
1107
1108             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1109             ewrt             = _mm_mul_pd(r21,ewtabscale);
1110             ewitab           = _mm_cvttpd_epi32(ewrt);
1111             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1112             ewitab           = _mm_slli_epi32(ewitab,2);
1113             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1114             ewtabD           = _mm_setzero_pd();
1115             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1116             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1117             ewtabFn          = _mm_setzero_pd();
1118             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1119             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1120             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1121             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1122             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1123
1124             /* Update potential sum for this i atom from the interaction with this j atom. */
1125             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1126             velecsum         = _mm_add_pd(velecsum,velec);
1127
1128             fscal            = felec;
1129
1130             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1131
1132             /* Calculate temporary vectorial force */
1133             tx               = _mm_mul_pd(fscal,dx21);
1134             ty               = _mm_mul_pd(fscal,dy21);
1135             tz               = _mm_mul_pd(fscal,dz21);
1136
1137             /* Update vectorial force */
1138             fix2             = _mm_add_pd(fix2,tx);
1139             fiy2             = _mm_add_pd(fiy2,ty);
1140             fiz2             = _mm_add_pd(fiz2,tz);
1141
1142             fjx1             = _mm_add_pd(fjx1,tx);
1143             fjy1             = _mm_add_pd(fjy1,ty);
1144             fjz1             = _mm_add_pd(fjz1,tz);
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             r22              = _mm_mul_pd(rsq22,rinv22);
1151
1152             /* EWALD ELECTROSTATICS */
1153
1154             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1155             ewrt             = _mm_mul_pd(r22,ewtabscale);
1156             ewitab           = _mm_cvttpd_epi32(ewrt);
1157             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1158             ewitab           = _mm_slli_epi32(ewitab,2);
1159             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1160             ewtabD           = _mm_setzero_pd();
1161             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1162             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1163             ewtabFn          = _mm_setzero_pd();
1164             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1165             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1166             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1167             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1168             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1169
1170             /* Update potential sum for this i atom from the interaction with this j atom. */
1171             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1172             velecsum         = _mm_add_pd(velecsum,velec);
1173
1174             fscal            = felec;
1175
1176             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1177
1178             /* Calculate temporary vectorial force */
1179             tx               = _mm_mul_pd(fscal,dx22);
1180             ty               = _mm_mul_pd(fscal,dy22);
1181             tz               = _mm_mul_pd(fscal,dz22);
1182
1183             /* Update vectorial force */
1184             fix2             = _mm_add_pd(fix2,tx);
1185             fiy2             = _mm_add_pd(fiy2,ty);
1186             fiz2             = _mm_add_pd(fiz2,tz);
1187
1188             fjx2             = _mm_add_pd(fjx2,tx);
1189             fjy2             = _mm_add_pd(fjy2,ty);
1190             fjz2             = _mm_add_pd(fjz2,tz);
1191
1192             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1193
1194             /* Inner loop uses 381 flops */
1195         }
1196
1197         /* End of innermost loop */
1198
1199         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1200                                               f+i_coord_offset,fshift+i_shift_offset);
1201
1202         ggid                        = gid[iidx];
1203         /* Update potential energies */
1204         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1205         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1206
1207         /* Increment number of inner iterations */
1208         inneriter                  += j_index_end - j_index_start;
1209
1210         /* Outer loop uses 20 flops */
1211     }
1212
1213     /* Increment number of outer iterations */
1214     outeriter        += nri;
1215
1216     /* Update outer/inner flops */
1217
1218     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*381);
1219 }
1220 /*
1221  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_double
1222  * Electrostatics interaction: Ewald
1223  * VdW interaction:            LennardJones
1224  * Geometry:                   Water3-Water3
1225  * Calculate force/pot:        Force
1226  */
1227 void
1228 nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_double
1229                     (t_nblist                    * gmx_restrict       nlist,
1230                      rvec                        * gmx_restrict          xx,
1231                      rvec                        * gmx_restrict          ff,
1232                      t_forcerec                  * gmx_restrict          fr,
1233                      t_mdatoms                   * gmx_restrict     mdatoms,
1234                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1235                      t_nrnb                      * gmx_restrict        nrnb)
1236 {
1237     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1238      * just 0 for non-waters.
1239      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1240      * jnr indices corresponding to data put in the four positions in the SIMD register.
1241      */
1242     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1243     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1244     int              jnrA,jnrB;
1245     int              j_coord_offsetA,j_coord_offsetB;
1246     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1247     real             rcutoff_scalar;
1248     real             *shiftvec,*fshift,*x,*f;
1249     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1250     int              vdwioffset0;
1251     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1252     int              vdwioffset1;
1253     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1254     int              vdwioffset2;
1255     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1256     int              vdwjidx0A,vdwjidx0B;
1257     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1258     int              vdwjidx1A,vdwjidx1B;
1259     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1260     int              vdwjidx2A,vdwjidx2B;
1261     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1262     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1263     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1264     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1265     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1266     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1267     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1268     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1269     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1270     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1271     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1272     real             *charge;
1273     int              nvdwtype;
1274     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1275     int              *vdwtype;
1276     real             *vdwparam;
1277     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1278     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1279     __m128i          ewitab;
1280     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1281     real             *ewtab;
1282     __m128d          dummy_mask,cutoff_mask;
1283     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1284     __m128d          one     = _mm_set1_pd(1.0);
1285     __m128d          two     = _mm_set1_pd(2.0);
1286     x                = xx[0];
1287     f                = ff[0];
1288
1289     nri              = nlist->nri;
1290     iinr             = nlist->iinr;
1291     jindex           = nlist->jindex;
1292     jjnr             = nlist->jjnr;
1293     shiftidx         = nlist->shift;
1294     gid              = nlist->gid;
1295     shiftvec         = fr->shift_vec[0];
1296     fshift           = fr->fshift[0];
1297     facel            = _mm_set1_pd(fr->epsfac);
1298     charge           = mdatoms->chargeA;
1299     nvdwtype         = fr->ntype;
1300     vdwparam         = fr->nbfp;
1301     vdwtype          = mdatoms->typeA;
1302
1303     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1304     ewtab            = fr->ic->tabq_coul_F;
1305     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1306     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1307
1308     /* Setup water-specific parameters */
1309     inr              = nlist->iinr[0];
1310     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1311     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1312     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1313     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1314
1315     jq0              = _mm_set1_pd(charge[inr+0]);
1316     jq1              = _mm_set1_pd(charge[inr+1]);
1317     jq2              = _mm_set1_pd(charge[inr+2]);
1318     vdwjidx0A        = 2*vdwtype[inr+0];
1319     qq00             = _mm_mul_pd(iq0,jq0);
1320     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1321     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1322     qq01             = _mm_mul_pd(iq0,jq1);
1323     qq02             = _mm_mul_pd(iq0,jq2);
1324     qq10             = _mm_mul_pd(iq1,jq0);
1325     qq11             = _mm_mul_pd(iq1,jq1);
1326     qq12             = _mm_mul_pd(iq1,jq2);
1327     qq20             = _mm_mul_pd(iq2,jq0);
1328     qq21             = _mm_mul_pd(iq2,jq1);
1329     qq22             = _mm_mul_pd(iq2,jq2);
1330
1331     /* Avoid stupid compiler warnings */
1332     jnrA = jnrB = 0;
1333     j_coord_offsetA = 0;
1334     j_coord_offsetB = 0;
1335
1336     outeriter        = 0;
1337     inneriter        = 0;
1338
1339     /* Start outer loop over neighborlists */
1340     for(iidx=0; iidx<nri; iidx++)
1341     {
1342         /* Load shift vector for this list */
1343         i_shift_offset   = DIM*shiftidx[iidx];
1344
1345         /* Load limits for loop over neighbors */
1346         j_index_start    = jindex[iidx];
1347         j_index_end      = jindex[iidx+1];
1348
1349         /* Get outer coordinate index */
1350         inr              = iinr[iidx];
1351         i_coord_offset   = DIM*inr;
1352
1353         /* Load i particle coords and add shift vector */
1354         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1355                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1356
1357         fix0             = _mm_setzero_pd();
1358         fiy0             = _mm_setzero_pd();
1359         fiz0             = _mm_setzero_pd();
1360         fix1             = _mm_setzero_pd();
1361         fiy1             = _mm_setzero_pd();
1362         fiz1             = _mm_setzero_pd();
1363         fix2             = _mm_setzero_pd();
1364         fiy2             = _mm_setzero_pd();
1365         fiz2             = _mm_setzero_pd();
1366
1367         /* Start inner kernel loop */
1368         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1369         {
1370
1371             /* Get j neighbor index, and coordinate index */
1372             jnrA             = jjnr[jidx];
1373             jnrB             = jjnr[jidx+1];
1374             j_coord_offsetA  = DIM*jnrA;
1375             j_coord_offsetB  = DIM*jnrB;
1376
1377             /* load j atom coordinates */
1378             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1379                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1380
1381             /* Calculate displacement vector */
1382             dx00             = _mm_sub_pd(ix0,jx0);
1383             dy00             = _mm_sub_pd(iy0,jy0);
1384             dz00             = _mm_sub_pd(iz0,jz0);
1385             dx01             = _mm_sub_pd(ix0,jx1);
1386             dy01             = _mm_sub_pd(iy0,jy1);
1387             dz01             = _mm_sub_pd(iz0,jz1);
1388             dx02             = _mm_sub_pd(ix0,jx2);
1389             dy02             = _mm_sub_pd(iy0,jy2);
1390             dz02             = _mm_sub_pd(iz0,jz2);
1391             dx10             = _mm_sub_pd(ix1,jx0);
1392             dy10             = _mm_sub_pd(iy1,jy0);
1393             dz10             = _mm_sub_pd(iz1,jz0);
1394             dx11             = _mm_sub_pd(ix1,jx1);
1395             dy11             = _mm_sub_pd(iy1,jy1);
1396             dz11             = _mm_sub_pd(iz1,jz1);
1397             dx12             = _mm_sub_pd(ix1,jx2);
1398             dy12             = _mm_sub_pd(iy1,jy2);
1399             dz12             = _mm_sub_pd(iz1,jz2);
1400             dx20             = _mm_sub_pd(ix2,jx0);
1401             dy20             = _mm_sub_pd(iy2,jy0);
1402             dz20             = _mm_sub_pd(iz2,jz0);
1403             dx21             = _mm_sub_pd(ix2,jx1);
1404             dy21             = _mm_sub_pd(iy2,jy1);
1405             dz21             = _mm_sub_pd(iz2,jz1);
1406             dx22             = _mm_sub_pd(ix2,jx2);
1407             dy22             = _mm_sub_pd(iy2,jy2);
1408             dz22             = _mm_sub_pd(iz2,jz2);
1409
1410             /* Calculate squared distance and things based on it */
1411             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1412             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1413             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1414             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1415             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1416             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1417             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1418             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1419             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1420
1421             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1422             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1423             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1424             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1425             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1426             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1427             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1428             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1429             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1430
1431             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1432             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1433             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1434             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1435             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1436             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1437             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1438             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1439             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1440
1441             fjx0             = _mm_setzero_pd();
1442             fjy0             = _mm_setzero_pd();
1443             fjz0             = _mm_setzero_pd();
1444             fjx1             = _mm_setzero_pd();
1445             fjy1             = _mm_setzero_pd();
1446             fjz1             = _mm_setzero_pd();
1447             fjx2             = _mm_setzero_pd();
1448             fjy2             = _mm_setzero_pd();
1449             fjz2             = _mm_setzero_pd();
1450
1451             /**************************
1452              * CALCULATE INTERACTIONS *
1453              **************************/
1454
1455             r00              = _mm_mul_pd(rsq00,rinv00);
1456
1457             /* EWALD ELECTROSTATICS */
1458
1459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1460             ewrt             = _mm_mul_pd(r00,ewtabscale);
1461             ewitab           = _mm_cvttpd_epi32(ewrt);
1462             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1463             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1464                                          &ewtabF,&ewtabFn);
1465             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1466             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1467
1468             /* LENNARD-JONES DISPERSION/REPULSION */
1469
1470             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1471             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1472
1473             fscal            = _mm_add_pd(felec,fvdw);
1474
1475             /* Calculate temporary vectorial force */
1476             tx               = _mm_mul_pd(fscal,dx00);
1477             ty               = _mm_mul_pd(fscal,dy00);
1478             tz               = _mm_mul_pd(fscal,dz00);
1479
1480             /* Update vectorial force */
1481             fix0             = _mm_add_pd(fix0,tx);
1482             fiy0             = _mm_add_pd(fiy0,ty);
1483             fiz0             = _mm_add_pd(fiz0,tz);
1484
1485             fjx0             = _mm_add_pd(fjx0,tx);
1486             fjy0             = _mm_add_pd(fjy0,ty);
1487             fjz0             = _mm_add_pd(fjz0,tz);
1488
1489             /**************************
1490              * CALCULATE INTERACTIONS *
1491              **************************/
1492
1493             r01              = _mm_mul_pd(rsq01,rinv01);
1494
1495             /* EWALD ELECTROSTATICS */
1496
1497             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1498             ewrt             = _mm_mul_pd(r01,ewtabscale);
1499             ewitab           = _mm_cvttpd_epi32(ewrt);
1500             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1501             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1502                                          &ewtabF,&ewtabFn);
1503             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1504             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1505
1506             fscal            = felec;
1507
1508             /* Calculate temporary vectorial force */
1509             tx               = _mm_mul_pd(fscal,dx01);
1510             ty               = _mm_mul_pd(fscal,dy01);
1511             tz               = _mm_mul_pd(fscal,dz01);
1512
1513             /* Update vectorial force */
1514             fix0             = _mm_add_pd(fix0,tx);
1515             fiy0             = _mm_add_pd(fiy0,ty);
1516             fiz0             = _mm_add_pd(fiz0,tz);
1517
1518             fjx1             = _mm_add_pd(fjx1,tx);
1519             fjy1             = _mm_add_pd(fjy1,ty);
1520             fjz1             = _mm_add_pd(fjz1,tz);
1521
1522             /**************************
1523              * CALCULATE INTERACTIONS *
1524              **************************/
1525
1526             r02              = _mm_mul_pd(rsq02,rinv02);
1527
1528             /* EWALD ELECTROSTATICS */
1529
1530             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1531             ewrt             = _mm_mul_pd(r02,ewtabscale);
1532             ewitab           = _mm_cvttpd_epi32(ewrt);
1533             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1534             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1535                                          &ewtabF,&ewtabFn);
1536             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1537             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1538
1539             fscal            = felec;
1540
1541             /* Calculate temporary vectorial force */
1542             tx               = _mm_mul_pd(fscal,dx02);
1543             ty               = _mm_mul_pd(fscal,dy02);
1544             tz               = _mm_mul_pd(fscal,dz02);
1545
1546             /* Update vectorial force */
1547             fix0             = _mm_add_pd(fix0,tx);
1548             fiy0             = _mm_add_pd(fiy0,ty);
1549             fiz0             = _mm_add_pd(fiz0,tz);
1550
1551             fjx2             = _mm_add_pd(fjx2,tx);
1552             fjy2             = _mm_add_pd(fjy2,ty);
1553             fjz2             = _mm_add_pd(fjz2,tz);
1554
1555             /**************************
1556              * CALCULATE INTERACTIONS *
1557              **************************/
1558
1559             r10              = _mm_mul_pd(rsq10,rinv10);
1560
1561             /* EWALD ELECTROSTATICS */
1562
1563             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1564             ewrt             = _mm_mul_pd(r10,ewtabscale);
1565             ewitab           = _mm_cvttpd_epi32(ewrt);
1566             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1567             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1568                                          &ewtabF,&ewtabFn);
1569             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1570             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1571
1572             fscal            = felec;
1573
1574             /* Calculate temporary vectorial force */
1575             tx               = _mm_mul_pd(fscal,dx10);
1576             ty               = _mm_mul_pd(fscal,dy10);
1577             tz               = _mm_mul_pd(fscal,dz10);
1578
1579             /* Update vectorial force */
1580             fix1             = _mm_add_pd(fix1,tx);
1581             fiy1             = _mm_add_pd(fiy1,ty);
1582             fiz1             = _mm_add_pd(fiz1,tz);
1583
1584             fjx0             = _mm_add_pd(fjx0,tx);
1585             fjy0             = _mm_add_pd(fjy0,ty);
1586             fjz0             = _mm_add_pd(fjz0,tz);
1587
1588             /**************************
1589              * CALCULATE INTERACTIONS *
1590              **************************/
1591
1592             r11              = _mm_mul_pd(rsq11,rinv11);
1593
1594             /* EWALD ELECTROSTATICS */
1595
1596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1597             ewrt             = _mm_mul_pd(r11,ewtabscale);
1598             ewitab           = _mm_cvttpd_epi32(ewrt);
1599             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1600             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1601                                          &ewtabF,&ewtabFn);
1602             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1603             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1604
1605             fscal            = felec;
1606
1607             /* Calculate temporary vectorial force */
1608             tx               = _mm_mul_pd(fscal,dx11);
1609             ty               = _mm_mul_pd(fscal,dy11);
1610             tz               = _mm_mul_pd(fscal,dz11);
1611
1612             /* Update vectorial force */
1613             fix1             = _mm_add_pd(fix1,tx);
1614             fiy1             = _mm_add_pd(fiy1,ty);
1615             fiz1             = _mm_add_pd(fiz1,tz);
1616
1617             fjx1             = _mm_add_pd(fjx1,tx);
1618             fjy1             = _mm_add_pd(fjy1,ty);
1619             fjz1             = _mm_add_pd(fjz1,tz);
1620
1621             /**************************
1622              * CALCULATE INTERACTIONS *
1623              **************************/
1624
1625             r12              = _mm_mul_pd(rsq12,rinv12);
1626
1627             /* EWALD ELECTROSTATICS */
1628
1629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1630             ewrt             = _mm_mul_pd(r12,ewtabscale);
1631             ewitab           = _mm_cvttpd_epi32(ewrt);
1632             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1633             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1634                                          &ewtabF,&ewtabFn);
1635             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1636             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1637
1638             fscal            = felec;
1639
1640             /* Calculate temporary vectorial force */
1641             tx               = _mm_mul_pd(fscal,dx12);
1642             ty               = _mm_mul_pd(fscal,dy12);
1643             tz               = _mm_mul_pd(fscal,dz12);
1644
1645             /* Update vectorial force */
1646             fix1             = _mm_add_pd(fix1,tx);
1647             fiy1             = _mm_add_pd(fiy1,ty);
1648             fiz1             = _mm_add_pd(fiz1,tz);
1649
1650             fjx2             = _mm_add_pd(fjx2,tx);
1651             fjy2             = _mm_add_pd(fjy2,ty);
1652             fjz2             = _mm_add_pd(fjz2,tz);
1653
1654             /**************************
1655              * CALCULATE INTERACTIONS *
1656              **************************/
1657
1658             r20              = _mm_mul_pd(rsq20,rinv20);
1659
1660             /* EWALD ELECTROSTATICS */
1661
1662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1663             ewrt             = _mm_mul_pd(r20,ewtabscale);
1664             ewitab           = _mm_cvttpd_epi32(ewrt);
1665             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1666             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1667                                          &ewtabF,&ewtabFn);
1668             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1669             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1670
1671             fscal            = felec;
1672
1673             /* Calculate temporary vectorial force */
1674             tx               = _mm_mul_pd(fscal,dx20);
1675             ty               = _mm_mul_pd(fscal,dy20);
1676             tz               = _mm_mul_pd(fscal,dz20);
1677
1678             /* Update vectorial force */
1679             fix2             = _mm_add_pd(fix2,tx);
1680             fiy2             = _mm_add_pd(fiy2,ty);
1681             fiz2             = _mm_add_pd(fiz2,tz);
1682
1683             fjx0             = _mm_add_pd(fjx0,tx);
1684             fjy0             = _mm_add_pd(fjy0,ty);
1685             fjz0             = _mm_add_pd(fjz0,tz);
1686
1687             /**************************
1688              * CALCULATE INTERACTIONS *
1689              **************************/
1690
1691             r21              = _mm_mul_pd(rsq21,rinv21);
1692
1693             /* EWALD ELECTROSTATICS */
1694
1695             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1696             ewrt             = _mm_mul_pd(r21,ewtabscale);
1697             ewitab           = _mm_cvttpd_epi32(ewrt);
1698             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1699             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1700                                          &ewtabF,&ewtabFn);
1701             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1702             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1703
1704             fscal            = felec;
1705
1706             /* Calculate temporary vectorial force */
1707             tx               = _mm_mul_pd(fscal,dx21);
1708             ty               = _mm_mul_pd(fscal,dy21);
1709             tz               = _mm_mul_pd(fscal,dz21);
1710
1711             /* Update vectorial force */
1712             fix2             = _mm_add_pd(fix2,tx);
1713             fiy2             = _mm_add_pd(fiy2,ty);
1714             fiz2             = _mm_add_pd(fiz2,tz);
1715
1716             fjx1             = _mm_add_pd(fjx1,tx);
1717             fjy1             = _mm_add_pd(fjy1,ty);
1718             fjz1             = _mm_add_pd(fjz1,tz);
1719
1720             /**************************
1721              * CALCULATE INTERACTIONS *
1722              **************************/
1723
1724             r22              = _mm_mul_pd(rsq22,rinv22);
1725
1726             /* EWALD ELECTROSTATICS */
1727
1728             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1729             ewrt             = _mm_mul_pd(r22,ewtabscale);
1730             ewitab           = _mm_cvttpd_epi32(ewrt);
1731             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1732             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1733                                          &ewtabF,&ewtabFn);
1734             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1735             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1736
1737             fscal            = felec;
1738
1739             /* Calculate temporary vectorial force */
1740             tx               = _mm_mul_pd(fscal,dx22);
1741             ty               = _mm_mul_pd(fscal,dy22);
1742             tz               = _mm_mul_pd(fscal,dz22);
1743
1744             /* Update vectorial force */
1745             fix2             = _mm_add_pd(fix2,tx);
1746             fiy2             = _mm_add_pd(fiy2,ty);
1747             fiz2             = _mm_add_pd(fiz2,tz);
1748
1749             fjx2             = _mm_add_pd(fjx2,tx);
1750             fjy2             = _mm_add_pd(fjy2,ty);
1751             fjz2             = _mm_add_pd(fjz2,tz);
1752
1753             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1754
1755             /* Inner loop uses 331 flops */
1756         }
1757
1758         if(jidx<j_index_end)
1759         {
1760
1761             jnrA             = jjnr[jidx];
1762             j_coord_offsetA  = DIM*jnrA;
1763
1764             /* load j atom coordinates */
1765             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1766                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1767
1768             /* Calculate displacement vector */
1769             dx00             = _mm_sub_pd(ix0,jx0);
1770             dy00             = _mm_sub_pd(iy0,jy0);
1771             dz00             = _mm_sub_pd(iz0,jz0);
1772             dx01             = _mm_sub_pd(ix0,jx1);
1773             dy01             = _mm_sub_pd(iy0,jy1);
1774             dz01             = _mm_sub_pd(iz0,jz1);
1775             dx02             = _mm_sub_pd(ix0,jx2);
1776             dy02             = _mm_sub_pd(iy0,jy2);
1777             dz02             = _mm_sub_pd(iz0,jz2);
1778             dx10             = _mm_sub_pd(ix1,jx0);
1779             dy10             = _mm_sub_pd(iy1,jy0);
1780             dz10             = _mm_sub_pd(iz1,jz0);
1781             dx11             = _mm_sub_pd(ix1,jx1);
1782             dy11             = _mm_sub_pd(iy1,jy1);
1783             dz11             = _mm_sub_pd(iz1,jz1);
1784             dx12             = _mm_sub_pd(ix1,jx2);
1785             dy12             = _mm_sub_pd(iy1,jy2);
1786             dz12             = _mm_sub_pd(iz1,jz2);
1787             dx20             = _mm_sub_pd(ix2,jx0);
1788             dy20             = _mm_sub_pd(iy2,jy0);
1789             dz20             = _mm_sub_pd(iz2,jz0);
1790             dx21             = _mm_sub_pd(ix2,jx1);
1791             dy21             = _mm_sub_pd(iy2,jy1);
1792             dz21             = _mm_sub_pd(iz2,jz1);
1793             dx22             = _mm_sub_pd(ix2,jx2);
1794             dy22             = _mm_sub_pd(iy2,jy2);
1795             dz22             = _mm_sub_pd(iz2,jz2);
1796
1797             /* Calculate squared distance and things based on it */
1798             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1799             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1800             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1801             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1802             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1803             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1804             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1805             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1806             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1807
1808             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1809             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1810             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1811             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1812             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1813             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1814             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1815             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1816             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1817
1818             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1819             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1820             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1821             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1822             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1823             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1824             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1825             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1826             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1827
1828             fjx0             = _mm_setzero_pd();
1829             fjy0             = _mm_setzero_pd();
1830             fjz0             = _mm_setzero_pd();
1831             fjx1             = _mm_setzero_pd();
1832             fjy1             = _mm_setzero_pd();
1833             fjz1             = _mm_setzero_pd();
1834             fjx2             = _mm_setzero_pd();
1835             fjy2             = _mm_setzero_pd();
1836             fjz2             = _mm_setzero_pd();
1837
1838             /**************************
1839              * CALCULATE INTERACTIONS *
1840              **************************/
1841
1842             r00              = _mm_mul_pd(rsq00,rinv00);
1843
1844             /* EWALD ELECTROSTATICS */
1845
1846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1847             ewrt             = _mm_mul_pd(r00,ewtabscale);
1848             ewitab           = _mm_cvttpd_epi32(ewrt);
1849             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1850             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1851             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1852             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1853
1854             /* LENNARD-JONES DISPERSION/REPULSION */
1855
1856             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1857             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1858
1859             fscal            = _mm_add_pd(felec,fvdw);
1860
1861             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1862
1863             /* Calculate temporary vectorial force */
1864             tx               = _mm_mul_pd(fscal,dx00);
1865             ty               = _mm_mul_pd(fscal,dy00);
1866             tz               = _mm_mul_pd(fscal,dz00);
1867
1868             /* Update vectorial force */
1869             fix0             = _mm_add_pd(fix0,tx);
1870             fiy0             = _mm_add_pd(fiy0,ty);
1871             fiz0             = _mm_add_pd(fiz0,tz);
1872
1873             fjx0             = _mm_add_pd(fjx0,tx);
1874             fjy0             = _mm_add_pd(fjy0,ty);
1875             fjz0             = _mm_add_pd(fjz0,tz);
1876
1877             /**************************
1878              * CALCULATE INTERACTIONS *
1879              **************************/
1880
1881             r01              = _mm_mul_pd(rsq01,rinv01);
1882
1883             /* EWALD ELECTROSTATICS */
1884
1885             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1886             ewrt             = _mm_mul_pd(r01,ewtabscale);
1887             ewitab           = _mm_cvttpd_epi32(ewrt);
1888             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1889             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1890             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1891             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1892
1893             fscal            = felec;
1894
1895             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1896
1897             /* Calculate temporary vectorial force */
1898             tx               = _mm_mul_pd(fscal,dx01);
1899             ty               = _mm_mul_pd(fscal,dy01);
1900             tz               = _mm_mul_pd(fscal,dz01);
1901
1902             /* Update vectorial force */
1903             fix0             = _mm_add_pd(fix0,tx);
1904             fiy0             = _mm_add_pd(fiy0,ty);
1905             fiz0             = _mm_add_pd(fiz0,tz);
1906
1907             fjx1             = _mm_add_pd(fjx1,tx);
1908             fjy1             = _mm_add_pd(fjy1,ty);
1909             fjz1             = _mm_add_pd(fjz1,tz);
1910
1911             /**************************
1912              * CALCULATE INTERACTIONS *
1913              **************************/
1914
1915             r02              = _mm_mul_pd(rsq02,rinv02);
1916
1917             /* EWALD ELECTROSTATICS */
1918
1919             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1920             ewrt             = _mm_mul_pd(r02,ewtabscale);
1921             ewitab           = _mm_cvttpd_epi32(ewrt);
1922             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1923             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1924             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1925             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1926
1927             fscal            = felec;
1928
1929             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1930
1931             /* Calculate temporary vectorial force */
1932             tx               = _mm_mul_pd(fscal,dx02);
1933             ty               = _mm_mul_pd(fscal,dy02);
1934             tz               = _mm_mul_pd(fscal,dz02);
1935
1936             /* Update vectorial force */
1937             fix0             = _mm_add_pd(fix0,tx);
1938             fiy0             = _mm_add_pd(fiy0,ty);
1939             fiz0             = _mm_add_pd(fiz0,tz);
1940
1941             fjx2             = _mm_add_pd(fjx2,tx);
1942             fjy2             = _mm_add_pd(fjy2,ty);
1943             fjz2             = _mm_add_pd(fjz2,tz);
1944
1945             /**************************
1946              * CALCULATE INTERACTIONS *
1947              **************************/
1948
1949             r10              = _mm_mul_pd(rsq10,rinv10);
1950
1951             /* EWALD ELECTROSTATICS */
1952
1953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1954             ewrt             = _mm_mul_pd(r10,ewtabscale);
1955             ewitab           = _mm_cvttpd_epi32(ewrt);
1956             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1957             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1958             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1959             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1960
1961             fscal            = felec;
1962
1963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1964
1965             /* Calculate temporary vectorial force */
1966             tx               = _mm_mul_pd(fscal,dx10);
1967             ty               = _mm_mul_pd(fscal,dy10);
1968             tz               = _mm_mul_pd(fscal,dz10);
1969
1970             /* Update vectorial force */
1971             fix1             = _mm_add_pd(fix1,tx);
1972             fiy1             = _mm_add_pd(fiy1,ty);
1973             fiz1             = _mm_add_pd(fiz1,tz);
1974
1975             fjx0             = _mm_add_pd(fjx0,tx);
1976             fjy0             = _mm_add_pd(fjy0,ty);
1977             fjz0             = _mm_add_pd(fjz0,tz);
1978
1979             /**************************
1980              * CALCULATE INTERACTIONS *
1981              **************************/
1982
1983             r11              = _mm_mul_pd(rsq11,rinv11);
1984
1985             /* EWALD ELECTROSTATICS */
1986
1987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1988             ewrt             = _mm_mul_pd(r11,ewtabscale);
1989             ewitab           = _mm_cvttpd_epi32(ewrt);
1990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1991             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1992             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1993             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1994
1995             fscal            = felec;
1996
1997             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1998
1999             /* Calculate temporary vectorial force */
2000             tx               = _mm_mul_pd(fscal,dx11);
2001             ty               = _mm_mul_pd(fscal,dy11);
2002             tz               = _mm_mul_pd(fscal,dz11);
2003
2004             /* Update vectorial force */
2005             fix1             = _mm_add_pd(fix1,tx);
2006             fiy1             = _mm_add_pd(fiy1,ty);
2007             fiz1             = _mm_add_pd(fiz1,tz);
2008
2009             fjx1             = _mm_add_pd(fjx1,tx);
2010             fjy1             = _mm_add_pd(fjy1,ty);
2011             fjz1             = _mm_add_pd(fjz1,tz);
2012
2013             /**************************
2014              * CALCULATE INTERACTIONS *
2015              **************************/
2016
2017             r12              = _mm_mul_pd(rsq12,rinv12);
2018
2019             /* EWALD ELECTROSTATICS */
2020
2021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2022             ewrt             = _mm_mul_pd(r12,ewtabscale);
2023             ewitab           = _mm_cvttpd_epi32(ewrt);
2024             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2025             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2026             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2027             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2028
2029             fscal            = felec;
2030
2031             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2032
2033             /* Calculate temporary vectorial force */
2034             tx               = _mm_mul_pd(fscal,dx12);
2035             ty               = _mm_mul_pd(fscal,dy12);
2036             tz               = _mm_mul_pd(fscal,dz12);
2037
2038             /* Update vectorial force */
2039             fix1             = _mm_add_pd(fix1,tx);
2040             fiy1             = _mm_add_pd(fiy1,ty);
2041             fiz1             = _mm_add_pd(fiz1,tz);
2042
2043             fjx2             = _mm_add_pd(fjx2,tx);
2044             fjy2             = _mm_add_pd(fjy2,ty);
2045             fjz2             = _mm_add_pd(fjz2,tz);
2046
2047             /**************************
2048              * CALCULATE INTERACTIONS *
2049              **************************/
2050
2051             r20              = _mm_mul_pd(rsq20,rinv20);
2052
2053             /* EWALD ELECTROSTATICS */
2054
2055             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2056             ewrt             = _mm_mul_pd(r20,ewtabscale);
2057             ewitab           = _mm_cvttpd_epi32(ewrt);
2058             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2059             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2060             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2061             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2062
2063             fscal            = felec;
2064
2065             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2066
2067             /* Calculate temporary vectorial force */
2068             tx               = _mm_mul_pd(fscal,dx20);
2069             ty               = _mm_mul_pd(fscal,dy20);
2070             tz               = _mm_mul_pd(fscal,dz20);
2071
2072             /* Update vectorial force */
2073             fix2             = _mm_add_pd(fix2,tx);
2074             fiy2             = _mm_add_pd(fiy2,ty);
2075             fiz2             = _mm_add_pd(fiz2,tz);
2076
2077             fjx0             = _mm_add_pd(fjx0,tx);
2078             fjy0             = _mm_add_pd(fjy0,ty);
2079             fjz0             = _mm_add_pd(fjz0,tz);
2080
2081             /**************************
2082              * CALCULATE INTERACTIONS *
2083              **************************/
2084
2085             r21              = _mm_mul_pd(rsq21,rinv21);
2086
2087             /* EWALD ELECTROSTATICS */
2088
2089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2090             ewrt             = _mm_mul_pd(r21,ewtabscale);
2091             ewitab           = _mm_cvttpd_epi32(ewrt);
2092             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2093             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2094             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2095             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2096
2097             fscal            = felec;
2098
2099             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2100
2101             /* Calculate temporary vectorial force */
2102             tx               = _mm_mul_pd(fscal,dx21);
2103             ty               = _mm_mul_pd(fscal,dy21);
2104             tz               = _mm_mul_pd(fscal,dz21);
2105
2106             /* Update vectorial force */
2107             fix2             = _mm_add_pd(fix2,tx);
2108             fiy2             = _mm_add_pd(fiy2,ty);
2109             fiz2             = _mm_add_pd(fiz2,tz);
2110
2111             fjx1             = _mm_add_pd(fjx1,tx);
2112             fjy1             = _mm_add_pd(fjy1,ty);
2113             fjz1             = _mm_add_pd(fjz1,tz);
2114
2115             /**************************
2116              * CALCULATE INTERACTIONS *
2117              **************************/
2118
2119             r22              = _mm_mul_pd(rsq22,rinv22);
2120
2121             /* EWALD ELECTROSTATICS */
2122
2123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2124             ewrt             = _mm_mul_pd(r22,ewtabscale);
2125             ewitab           = _mm_cvttpd_epi32(ewrt);
2126             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2127             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2128             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2129             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2130
2131             fscal            = felec;
2132
2133             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2134
2135             /* Calculate temporary vectorial force */
2136             tx               = _mm_mul_pd(fscal,dx22);
2137             ty               = _mm_mul_pd(fscal,dy22);
2138             tz               = _mm_mul_pd(fscal,dz22);
2139
2140             /* Update vectorial force */
2141             fix2             = _mm_add_pd(fix2,tx);
2142             fiy2             = _mm_add_pd(fiy2,ty);
2143             fiz2             = _mm_add_pd(fiz2,tz);
2144
2145             fjx2             = _mm_add_pd(fjx2,tx);
2146             fjy2             = _mm_add_pd(fjy2,ty);
2147             fjz2             = _mm_add_pd(fjz2,tz);
2148
2149             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2150
2151             /* Inner loop uses 331 flops */
2152         }
2153
2154         /* End of innermost loop */
2155
2156         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2157                                               f+i_coord_offset,fshift+i_shift_offset);
2158
2159         /* Increment number of inner iterations */
2160         inneriter                  += j_index_end - j_index_start;
2161
2162         /* Outer loop uses 18 flops */
2163     }
2164
2165     /* Increment number of outer iterations */
2166     outeriter        += nri;
2167
2168     /* Update outer/inner flops */
2169
2170     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*331);
2171 }