Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     int              vdwjidx1A,vdwjidx1B;
88     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
89     int              vdwjidx2A,vdwjidx2B;
90     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
91     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
93     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
94     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
96     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
97     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
99     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
100     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
107     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
140     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     jq0              = _mm_set1_pd(charge[inr+0]);
145     jq1              = _mm_set1_pd(charge[inr+1]);
146     jq2              = _mm_set1_pd(charge[inr+2]);
147     vdwjidx0A        = 2*vdwtype[inr+0];
148     qq00             = _mm_mul_pd(iq0,jq0);
149     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
150     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
151     qq01             = _mm_mul_pd(iq0,jq1);
152     qq02             = _mm_mul_pd(iq0,jq2);
153     qq10             = _mm_mul_pd(iq1,jq0);
154     qq11             = _mm_mul_pd(iq1,jq1);
155     qq12             = _mm_mul_pd(iq1,jq2);
156     qq20             = _mm_mul_pd(iq2,jq0);
157     qq21             = _mm_mul_pd(iq2,jq1);
158     qq22             = _mm_mul_pd(iq2,jq2);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
185
186         fix0             = _mm_setzero_pd();
187         fiy0             = _mm_setzero_pd();
188         fiz0             = _mm_setzero_pd();
189         fix1             = _mm_setzero_pd();
190         fiy1             = _mm_setzero_pd();
191         fiz1             = _mm_setzero_pd();
192         fix2             = _mm_setzero_pd();
193         fiy2             = _mm_setzero_pd();
194         fiz2             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx01             = _mm_sub_pd(ix0,jx1);
219             dy01             = _mm_sub_pd(iy0,jy1);
220             dz01             = _mm_sub_pd(iz0,jz1);
221             dx02             = _mm_sub_pd(ix0,jx2);
222             dy02             = _mm_sub_pd(iy0,jy2);
223             dz02             = _mm_sub_pd(iz0,jz2);
224             dx10             = _mm_sub_pd(ix1,jx0);
225             dy10             = _mm_sub_pd(iy1,jy0);
226             dz10             = _mm_sub_pd(iz1,jz0);
227             dx11             = _mm_sub_pd(ix1,jx1);
228             dy11             = _mm_sub_pd(iy1,jy1);
229             dz11             = _mm_sub_pd(iz1,jz1);
230             dx12             = _mm_sub_pd(ix1,jx2);
231             dy12             = _mm_sub_pd(iy1,jy2);
232             dz12             = _mm_sub_pd(iz1,jz2);
233             dx20             = _mm_sub_pd(ix2,jx0);
234             dy20             = _mm_sub_pd(iy2,jy0);
235             dz20             = _mm_sub_pd(iz2,jz0);
236             dx21             = _mm_sub_pd(ix2,jx1);
237             dy21             = _mm_sub_pd(iy2,jy1);
238             dz21             = _mm_sub_pd(iz2,jz1);
239             dx22             = _mm_sub_pd(ix2,jx2);
240             dy22             = _mm_sub_pd(iy2,jy2);
241             dz22             = _mm_sub_pd(iz2,jz2);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
245             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
246             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
247             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
248             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
249             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
250             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
251             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
252             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
253
254             rinv00           = sse41_invsqrt_d(rsq00);
255             rinv01           = sse41_invsqrt_d(rsq01);
256             rinv02           = sse41_invsqrt_d(rsq02);
257             rinv10           = sse41_invsqrt_d(rsq10);
258             rinv11           = sse41_invsqrt_d(rsq11);
259             rinv12           = sse41_invsqrt_d(rsq12);
260             rinv20           = sse41_invsqrt_d(rsq20);
261             rinv21           = sse41_invsqrt_d(rsq21);
262             rinv22           = sse41_invsqrt_d(rsq22);
263
264             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
265             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
266             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
267             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
268             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
269             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
270             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
271             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
272             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
273
274             fjx0             = _mm_setzero_pd();
275             fjy0             = _mm_setzero_pd();
276             fjz0             = _mm_setzero_pd();
277             fjx1             = _mm_setzero_pd();
278             fjy1             = _mm_setzero_pd();
279             fjz1             = _mm_setzero_pd();
280             fjx2             = _mm_setzero_pd();
281             fjy2             = _mm_setzero_pd();
282             fjz2             = _mm_setzero_pd();
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             r00              = _mm_mul_pd(rsq00,rinv00);
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = _mm_mul_pd(r00,ewtabscale);
294             ewitab           = _mm_cvttpd_epi32(ewrt);
295             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
296             ewitab           = _mm_slli_epi32(ewitab,2);
297             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
298             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
299             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
300             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
301             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
302             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
303             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
304             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
305             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
306             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
312             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
313             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
314             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm_add_pd(velecsum,velec);
318             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
319
320             fscal            = _mm_add_pd(felec,fvdw);
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_pd(fscal,dx00);
324             ty               = _mm_mul_pd(fscal,dy00);
325             tz               = _mm_mul_pd(fscal,dz00);
326
327             /* Update vectorial force */
328             fix0             = _mm_add_pd(fix0,tx);
329             fiy0             = _mm_add_pd(fiy0,ty);
330             fiz0             = _mm_add_pd(fiz0,tz);
331
332             fjx0             = _mm_add_pd(fjx0,tx);
333             fjy0             = _mm_add_pd(fjy0,ty);
334             fjz0             = _mm_add_pd(fjz0,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r01              = _mm_mul_pd(rsq01,rinv01);
341
342             /* EWALD ELECTROSTATICS */
343
344             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
345             ewrt             = _mm_mul_pd(r01,ewtabscale);
346             ewitab           = _mm_cvttpd_epi32(ewrt);
347             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
348             ewitab           = _mm_slli_epi32(ewitab,2);
349             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
350             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
351             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
352             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
353             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
354             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
355             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
356             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
357             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
358             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_pd(fscal,dx01);
367             ty               = _mm_mul_pd(fscal,dy01);
368             tz               = _mm_mul_pd(fscal,dz01);
369
370             /* Update vectorial force */
371             fix0             = _mm_add_pd(fix0,tx);
372             fiy0             = _mm_add_pd(fiy0,ty);
373             fiz0             = _mm_add_pd(fiz0,tz);
374
375             fjx1             = _mm_add_pd(fjx1,tx);
376             fjy1             = _mm_add_pd(fjy1,ty);
377             fjz1             = _mm_add_pd(fjz1,tz);
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r02              = _mm_mul_pd(rsq02,rinv02);
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = _mm_mul_pd(r02,ewtabscale);
389             ewitab           = _mm_cvttpd_epi32(ewrt);
390             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
391             ewitab           = _mm_slli_epi32(ewitab,2);
392             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
393             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
394             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
395             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
396             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
397             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
398             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
399             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
400             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
401             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velecsum         = _mm_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm_mul_pd(fscal,dx02);
410             ty               = _mm_mul_pd(fscal,dy02);
411             tz               = _mm_mul_pd(fscal,dz02);
412
413             /* Update vectorial force */
414             fix0             = _mm_add_pd(fix0,tx);
415             fiy0             = _mm_add_pd(fiy0,ty);
416             fiz0             = _mm_add_pd(fiz0,tz);
417
418             fjx2             = _mm_add_pd(fjx2,tx);
419             fjy2             = _mm_add_pd(fjy2,ty);
420             fjz2             = _mm_add_pd(fjz2,tz);
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r10              = _mm_mul_pd(rsq10,rinv10);
427
428             /* EWALD ELECTROSTATICS */
429
430             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
431             ewrt             = _mm_mul_pd(r10,ewtabscale);
432             ewitab           = _mm_cvttpd_epi32(ewrt);
433             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
434             ewitab           = _mm_slli_epi32(ewitab,2);
435             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
436             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
437             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
438             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
439             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
440             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
441             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
442             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
443             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
444             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
445
446             /* Update potential sum for this i atom from the interaction with this j atom. */
447             velecsum         = _mm_add_pd(velecsum,velec);
448
449             fscal            = felec;
450
451             /* Calculate temporary vectorial force */
452             tx               = _mm_mul_pd(fscal,dx10);
453             ty               = _mm_mul_pd(fscal,dy10);
454             tz               = _mm_mul_pd(fscal,dz10);
455
456             /* Update vectorial force */
457             fix1             = _mm_add_pd(fix1,tx);
458             fiy1             = _mm_add_pd(fiy1,ty);
459             fiz1             = _mm_add_pd(fiz1,tz);
460
461             fjx0             = _mm_add_pd(fjx0,tx);
462             fjy0             = _mm_add_pd(fjy0,ty);
463             fjz0             = _mm_add_pd(fjz0,tz);
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             r11              = _mm_mul_pd(rsq11,rinv11);
470
471             /* EWALD ELECTROSTATICS */
472
473             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
474             ewrt             = _mm_mul_pd(r11,ewtabscale);
475             ewitab           = _mm_cvttpd_epi32(ewrt);
476             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
477             ewitab           = _mm_slli_epi32(ewitab,2);
478             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
479             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
480             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
481             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
482             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
483             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
484             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
485             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
486             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
487             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velecsum         = _mm_add_pd(velecsum,velec);
491
492             fscal            = felec;
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm_mul_pd(fscal,dx11);
496             ty               = _mm_mul_pd(fscal,dy11);
497             tz               = _mm_mul_pd(fscal,dz11);
498
499             /* Update vectorial force */
500             fix1             = _mm_add_pd(fix1,tx);
501             fiy1             = _mm_add_pd(fiy1,ty);
502             fiz1             = _mm_add_pd(fiz1,tz);
503
504             fjx1             = _mm_add_pd(fjx1,tx);
505             fjy1             = _mm_add_pd(fjy1,ty);
506             fjz1             = _mm_add_pd(fjz1,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r12              = _mm_mul_pd(rsq12,rinv12);
513
514             /* EWALD ELECTROSTATICS */
515
516             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517             ewrt             = _mm_mul_pd(r12,ewtabscale);
518             ewitab           = _mm_cvttpd_epi32(ewrt);
519             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
520             ewitab           = _mm_slli_epi32(ewitab,2);
521             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
522             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
523             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
524             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
525             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
526             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
527             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
528             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
529             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
530             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velecsum         = _mm_add_pd(velecsum,velec);
534
535             fscal            = felec;
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm_mul_pd(fscal,dx12);
539             ty               = _mm_mul_pd(fscal,dy12);
540             tz               = _mm_mul_pd(fscal,dz12);
541
542             /* Update vectorial force */
543             fix1             = _mm_add_pd(fix1,tx);
544             fiy1             = _mm_add_pd(fiy1,ty);
545             fiz1             = _mm_add_pd(fiz1,tz);
546
547             fjx2             = _mm_add_pd(fjx2,tx);
548             fjy2             = _mm_add_pd(fjy2,ty);
549             fjz2             = _mm_add_pd(fjz2,tz);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r20              = _mm_mul_pd(rsq20,rinv20);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r20,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
563             ewitab           = _mm_slli_epi32(ewitab,2);
564             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
565             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
566             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
567             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
568             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
569             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
570             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
571             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
572             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
573             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velecsum         = _mm_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_pd(fscal,dx20);
582             ty               = _mm_mul_pd(fscal,dy20);
583             tz               = _mm_mul_pd(fscal,dz20);
584
585             /* Update vectorial force */
586             fix2             = _mm_add_pd(fix2,tx);
587             fiy2             = _mm_add_pd(fiy2,ty);
588             fiz2             = _mm_add_pd(fiz2,tz);
589
590             fjx0             = _mm_add_pd(fjx0,tx);
591             fjy0             = _mm_add_pd(fjy0,ty);
592             fjz0             = _mm_add_pd(fjz0,tz);
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r21              = _mm_mul_pd(rsq21,rinv21);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_pd(r21,ewtabscale);
604             ewitab           = _mm_cvttpd_epi32(ewrt);
605             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
609             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
610             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
611             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
612             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
613             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
614             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
615             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
616             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velecsum         = _mm_add_pd(velecsum,velec);
620
621             fscal            = felec;
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_pd(fscal,dx21);
625             ty               = _mm_mul_pd(fscal,dy21);
626             tz               = _mm_mul_pd(fscal,dz21);
627
628             /* Update vectorial force */
629             fix2             = _mm_add_pd(fix2,tx);
630             fiy2             = _mm_add_pd(fiy2,ty);
631             fiz2             = _mm_add_pd(fiz2,tz);
632
633             fjx1             = _mm_add_pd(fjx1,tx);
634             fjy1             = _mm_add_pd(fjy1,ty);
635             fjz1             = _mm_add_pd(fjz1,tz);
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             r22              = _mm_mul_pd(rsq22,rinv22);
642
643             /* EWALD ELECTROSTATICS */
644
645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646             ewrt             = _mm_mul_pd(r22,ewtabscale);
647             ewitab           = _mm_cvttpd_epi32(ewrt);
648             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
649             ewitab           = _mm_slli_epi32(ewitab,2);
650             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
651             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
652             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
653             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
654             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
655             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
656             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
657             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
658             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
659             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velecsum         = _mm_add_pd(velecsum,velec);
663
664             fscal            = felec;
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_pd(fscal,dx22);
668             ty               = _mm_mul_pd(fscal,dy22);
669             tz               = _mm_mul_pd(fscal,dz22);
670
671             /* Update vectorial force */
672             fix2             = _mm_add_pd(fix2,tx);
673             fiy2             = _mm_add_pd(fiy2,ty);
674             fiz2             = _mm_add_pd(fiz2,tz);
675
676             fjx2             = _mm_add_pd(fjx2,tx);
677             fjy2             = _mm_add_pd(fjy2,ty);
678             fjz2             = _mm_add_pd(fjz2,tz);
679
680             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
681
682             /* Inner loop uses 381 flops */
683         }
684
685         if(jidx<j_index_end)
686         {
687
688             jnrA             = jjnr[jidx];
689             j_coord_offsetA  = DIM*jnrA;
690
691             /* load j atom coordinates */
692             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
693                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
694
695             /* Calculate displacement vector */
696             dx00             = _mm_sub_pd(ix0,jx0);
697             dy00             = _mm_sub_pd(iy0,jy0);
698             dz00             = _mm_sub_pd(iz0,jz0);
699             dx01             = _mm_sub_pd(ix0,jx1);
700             dy01             = _mm_sub_pd(iy0,jy1);
701             dz01             = _mm_sub_pd(iz0,jz1);
702             dx02             = _mm_sub_pd(ix0,jx2);
703             dy02             = _mm_sub_pd(iy0,jy2);
704             dz02             = _mm_sub_pd(iz0,jz2);
705             dx10             = _mm_sub_pd(ix1,jx0);
706             dy10             = _mm_sub_pd(iy1,jy0);
707             dz10             = _mm_sub_pd(iz1,jz0);
708             dx11             = _mm_sub_pd(ix1,jx1);
709             dy11             = _mm_sub_pd(iy1,jy1);
710             dz11             = _mm_sub_pd(iz1,jz1);
711             dx12             = _mm_sub_pd(ix1,jx2);
712             dy12             = _mm_sub_pd(iy1,jy2);
713             dz12             = _mm_sub_pd(iz1,jz2);
714             dx20             = _mm_sub_pd(ix2,jx0);
715             dy20             = _mm_sub_pd(iy2,jy0);
716             dz20             = _mm_sub_pd(iz2,jz0);
717             dx21             = _mm_sub_pd(ix2,jx1);
718             dy21             = _mm_sub_pd(iy2,jy1);
719             dz21             = _mm_sub_pd(iz2,jz1);
720             dx22             = _mm_sub_pd(ix2,jx2);
721             dy22             = _mm_sub_pd(iy2,jy2);
722             dz22             = _mm_sub_pd(iz2,jz2);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
726             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
727             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
728             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
729             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
730             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
731             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
732             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
733             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
734
735             rinv00           = sse41_invsqrt_d(rsq00);
736             rinv01           = sse41_invsqrt_d(rsq01);
737             rinv02           = sse41_invsqrt_d(rsq02);
738             rinv10           = sse41_invsqrt_d(rsq10);
739             rinv11           = sse41_invsqrt_d(rsq11);
740             rinv12           = sse41_invsqrt_d(rsq12);
741             rinv20           = sse41_invsqrt_d(rsq20);
742             rinv21           = sse41_invsqrt_d(rsq21);
743             rinv22           = sse41_invsqrt_d(rsq22);
744
745             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
746             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
747             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
748             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
749             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
750             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
751             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
752             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
753             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
754
755             fjx0             = _mm_setzero_pd();
756             fjy0             = _mm_setzero_pd();
757             fjz0             = _mm_setzero_pd();
758             fjx1             = _mm_setzero_pd();
759             fjy1             = _mm_setzero_pd();
760             fjz1             = _mm_setzero_pd();
761             fjx2             = _mm_setzero_pd();
762             fjy2             = _mm_setzero_pd();
763             fjz2             = _mm_setzero_pd();
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             r00              = _mm_mul_pd(rsq00,rinv00);
770
771             /* EWALD ELECTROSTATICS */
772
773             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
774             ewrt             = _mm_mul_pd(r00,ewtabscale);
775             ewitab           = _mm_cvttpd_epi32(ewrt);
776             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
777             ewitab           = _mm_slli_epi32(ewitab,2);
778             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
779             ewtabD           = _mm_setzero_pd();
780             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
781             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
782             ewtabFn          = _mm_setzero_pd();
783             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
784             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
785             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
786             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
787             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
788
789             /* LENNARD-JONES DISPERSION/REPULSION */
790
791             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
792             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
793             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
794             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
795             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
796
797             /* Update potential sum for this i atom from the interaction with this j atom. */
798             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
799             velecsum         = _mm_add_pd(velecsum,velec);
800             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
801             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
802
803             fscal            = _mm_add_pd(felec,fvdw);
804
805             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
806
807             /* Calculate temporary vectorial force */
808             tx               = _mm_mul_pd(fscal,dx00);
809             ty               = _mm_mul_pd(fscal,dy00);
810             tz               = _mm_mul_pd(fscal,dz00);
811
812             /* Update vectorial force */
813             fix0             = _mm_add_pd(fix0,tx);
814             fiy0             = _mm_add_pd(fiy0,ty);
815             fiz0             = _mm_add_pd(fiz0,tz);
816
817             fjx0             = _mm_add_pd(fjx0,tx);
818             fjy0             = _mm_add_pd(fjy0,ty);
819             fjz0             = _mm_add_pd(fjz0,tz);
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             r01              = _mm_mul_pd(rsq01,rinv01);
826
827             /* EWALD ELECTROSTATICS */
828
829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
830             ewrt             = _mm_mul_pd(r01,ewtabscale);
831             ewitab           = _mm_cvttpd_epi32(ewrt);
832             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
833             ewitab           = _mm_slli_epi32(ewitab,2);
834             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
835             ewtabD           = _mm_setzero_pd();
836             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
837             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
838             ewtabFn          = _mm_setzero_pd();
839             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
840             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
841             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
842             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
843             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
844
845             /* Update potential sum for this i atom from the interaction with this j atom. */
846             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
847             velecsum         = _mm_add_pd(velecsum,velec);
848
849             fscal            = felec;
850
851             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
852
853             /* Calculate temporary vectorial force */
854             tx               = _mm_mul_pd(fscal,dx01);
855             ty               = _mm_mul_pd(fscal,dy01);
856             tz               = _mm_mul_pd(fscal,dz01);
857
858             /* Update vectorial force */
859             fix0             = _mm_add_pd(fix0,tx);
860             fiy0             = _mm_add_pd(fiy0,ty);
861             fiz0             = _mm_add_pd(fiz0,tz);
862
863             fjx1             = _mm_add_pd(fjx1,tx);
864             fjy1             = _mm_add_pd(fjy1,ty);
865             fjz1             = _mm_add_pd(fjz1,tz);
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             r02              = _mm_mul_pd(rsq02,rinv02);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_pd(r02,ewtabscale);
877             ewitab           = _mm_cvttpd_epi32(ewrt);
878             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
879             ewitab           = _mm_slli_epi32(ewitab,2);
880             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
881             ewtabD           = _mm_setzero_pd();
882             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
883             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
884             ewtabFn          = _mm_setzero_pd();
885             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
886             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
887             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
888             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
889             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
890
891             /* Update potential sum for this i atom from the interaction with this j atom. */
892             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
893             velecsum         = _mm_add_pd(velecsum,velec);
894
895             fscal            = felec;
896
897             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm_mul_pd(fscal,dx02);
901             ty               = _mm_mul_pd(fscal,dy02);
902             tz               = _mm_mul_pd(fscal,dz02);
903
904             /* Update vectorial force */
905             fix0             = _mm_add_pd(fix0,tx);
906             fiy0             = _mm_add_pd(fiy0,ty);
907             fiz0             = _mm_add_pd(fiz0,tz);
908
909             fjx2             = _mm_add_pd(fjx2,tx);
910             fjy2             = _mm_add_pd(fjy2,ty);
911             fjz2             = _mm_add_pd(fjz2,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r10              = _mm_mul_pd(rsq10,rinv10);
918
919             /* EWALD ELECTROSTATICS */
920
921             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
922             ewrt             = _mm_mul_pd(r10,ewtabscale);
923             ewitab           = _mm_cvttpd_epi32(ewrt);
924             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
925             ewitab           = _mm_slli_epi32(ewitab,2);
926             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
927             ewtabD           = _mm_setzero_pd();
928             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
929             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
930             ewtabFn          = _mm_setzero_pd();
931             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
932             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
933             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
934             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
935             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
936
937             /* Update potential sum for this i atom from the interaction with this j atom. */
938             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
939             velecsum         = _mm_add_pd(velecsum,velec);
940
941             fscal            = felec;
942
943             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm_mul_pd(fscal,dx10);
947             ty               = _mm_mul_pd(fscal,dy10);
948             tz               = _mm_mul_pd(fscal,dz10);
949
950             /* Update vectorial force */
951             fix1             = _mm_add_pd(fix1,tx);
952             fiy1             = _mm_add_pd(fiy1,ty);
953             fiz1             = _mm_add_pd(fiz1,tz);
954
955             fjx0             = _mm_add_pd(fjx0,tx);
956             fjy0             = _mm_add_pd(fjy0,ty);
957             fjz0             = _mm_add_pd(fjz0,tz);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r11              = _mm_mul_pd(rsq11,rinv11);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _mm_mul_pd(r11,ewtabscale);
969             ewitab           = _mm_cvttpd_epi32(ewrt);
970             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
971             ewitab           = _mm_slli_epi32(ewitab,2);
972             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
973             ewtabD           = _mm_setzero_pd();
974             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
975             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
976             ewtabFn          = _mm_setzero_pd();
977             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
978             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
979             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
980             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
981             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
982
983             /* Update potential sum for this i atom from the interaction with this j atom. */
984             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
985             velecsum         = _mm_add_pd(velecsum,velec);
986
987             fscal            = felec;
988
989             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_pd(fscal,dx11);
993             ty               = _mm_mul_pd(fscal,dy11);
994             tz               = _mm_mul_pd(fscal,dz11);
995
996             /* Update vectorial force */
997             fix1             = _mm_add_pd(fix1,tx);
998             fiy1             = _mm_add_pd(fiy1,ty);
999             fiz1             = _mm_add_pd(fiz1,tz);
1000
1001             fjx1             = _mm_add_pd(fjx1,tx);
1002             fjy1             = _mm_add_pd(fjy1,ty);
1003             fjz1             = _mm_add_pd(fjz1,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r12              = _mm_mul_pd(rsq12,rinv12);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_pd(r12,ewtabscale);
1015             ewitab           = _mm_cvttpd_epi32(ewrt);
1016             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1017             ewitab           = _mm_slli_epi32(ewitab,2);
1018             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1019             ewtabD           = _mm_setzero_pd();
1020             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1021             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1022             ewtabFn          = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1024             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1025             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1026             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1027             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1028
1029             /* Update potential sum for this i atom from the interaction with this j atom. */
1030             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1031             velecsum         = _mm_add_pd(velecsum,velec);
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_pd(fscal,dx12);
1039             ty               = _mm_mul_pd(fscal,dy12);
1040             tz               = _mm_mul_pd(fscal,dz12);
1041
1042             /* Update vectorial force */
1043             fix1             = _mm_add_pd(fix1,tx);
1044             fiy1             = _mm_add_pd(fiy1,ty);
1045             fiz1             = _mm_add_pd(fiz1,tz);
1046
1047             fjx2             = _mm_add_pd(fjx2,tx);
1048             fjy2             = _mm_add_pd(fjy2,ty);
1049             fjz2             = _mm_add_pd(fjz2,tz);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r20              = _mm_mul_pd(rsq20,rinv20);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r20,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1063             ewitab           = _mm_slli_epi32(ewitab,2);
1064             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1065             ewtabD           = _mm_setzero_pd();
1066             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1067             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1068             ewtabFn          = _mm_setzero_pd();
1069             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1070             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1071             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1072             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1073             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1074
1075             /* Update potential sum for this i atom from the interaction with this j atom. */
1076             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1077             velecsum         = _mm_add_pd(velecsum,velec);
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm_mul_pd(fscal,dx20);
1085             ty               = _mm_mul_pd(fscal,dy20);
1086             tz               = _mm_mul_pd(fscal,dz20);
1087
1088             /* Update vectorial force */
1089             fix2             = _mm_add_pd(fix2,tx);
1090             fiy2             = _mm_add_pd(fiy2,ty);
1091             fiz2             = _mm_add_pd(fiz2,tz);
1092
1093             fjx0             = _mm_add_pd(fjx0,tx);
1094             fjy0             = _mm_add_pd(fjy0,ty);
1095             fjz0             = _mm_add_pd(fjz0,tz);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r21              = _mm_mul_pd(rsq21,rinv21);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm_mul_pd(r21,ewtabscale);
1107             ewitab           = _mm_cvttpd_epi32(ewrt);
1108             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1109             ewitab           = _mm_slli_epi32(ewitab,2);
1110             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1111             ewtabD           = _mm_setzero_pd();
1112             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1113             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1114             ewtabFn          = _mm_setzero_pd();
1115             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1116             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1117             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1118             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1119             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1120
1121             /* Update potential sum for this i atom from the interaction with this j atom. */
1122             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1123             velecsum         = _mm_add_pd(velecsum,velec);
1124
1125             fscal            = felec;
1126
1127             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1128
1129             /* Calculate temporary vectorial force */
1130             tx               = _mm_mul_pd(fscal,dx21);
1131             ty               = _mm_mul_pd(fscal,dy21);
1132             tz               = _mm_mul_pd(fscal,dz21);
1133
1134             /* Update vectorial force */
1135             fix2             = _mm_add_pd(fix2,tx);
1136             fiy2             = _mm_add_pd(fiy2,ty);
1137             fiz2             = _mm_add_pd(fiz2,tz);
1138
1139             fjx1             = _mm_add_pd(fjx1,tx);
1140             fjy1             = _mm_add_pd(fjy1,ty);
1141             fjz1             = _mm_add_pd(fjz1,tz);
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             r22              = _mm_mul_pd(rsq22,rinv22);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1152             ewrt             = _mm_mul_pd(r22,ewtabscale);
1153             ewitab           = _mm_cvttpd_epi32(ewrt);
1154             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1155             ewitab           = _mm_slli_epi32(ewitab,2);
1156             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1157             ewtabD           = _mm_setzero_pd();
1158             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1159             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1160             ewtabFn          = _mm_setzero_pd();
1161             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1162             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1163             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1164             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1165             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1166
1167             /* Update potential sum for this i atom from the interaction with this j atom. */
1168             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1169             velecsum         = _mm_add_pd(velecsum,velec);
1170
1171             fscal            = felec;
1172
1173             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1174
1175             /* Calculate temporary vectorial force */
1176             tx               = _mm_mul_pd(fscal,dx22);
1177             ty               = _mm_mul_pd(fscal,dy22);
1178             tz               = _mm_mul_pd(fscal,dz22);
1179
1180             /* Update vectorial force */
1181             fix2             = _mm_add_pd(fix2,tx);
1182             fiy2             = _mm_add_pd(fiy2,ty);
1183             fiz2             = _mm_add_pd(fiz2,tz);
1184
1185             fjx2             = _mm_add_pd(fjx2,tx);
1186             fjy2             = _mm_add_pd(fjy2,ty);
1187             fjz2             = _mm_add_pd(fjz2,tz);
1188
1189             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1190
1191             /* Inner loop uses 381 flops */
1192         }
1193
1194         /* End of innermost loop */
1195
1196         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1197                                               f+i_coord_offset,fshift+i_shift_offset);
1198
1199         ggid                        = gid[iidx];
1200         /* Update potential energies */
1201         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1202         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1203
1204         /* Increment number of inner iterations */
1205         inneriter                  += j_index_end - j_index_start;
1206
1207         /* Outer loop uses 20 flops */
1208     }
1209
1210     /* Increment number of outer iterations */
1211     outeriter        += nri;
1212
1213     /* Update outer/inner flops */
1214
1215     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*381);
1216 }
1217 /*
1218  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_double
1219  * Electrostatics interaction: Ewald
1220  * VdW interaction:            LennardJones
1221  * Geometry:                   Water3-Water3
1222  * Calculate force/pot:        Force
1223  */
1224 void
1225 nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_sse4_1_double
1226                     (t_nblist                    * gmx_restrict       nlist,
1227                      rvec                        * gmx_restrict          xx,
1228                      rvec                        * gmx_restrict          ff,
1229                      struct t_forcerec           * gmx_restrict          fr,
1230                      t_mdatoms                   * gmx_restrict     mdatoms,
1231                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1232                      t_nrnb                      * gmx_restrict        nrnb)
1233 {
1234     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1235      * just 0 for non-waters.
1236      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1237      * jnr indices corresponding to data put in the four positions in the SIMD register.
1238      */
1239     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1240     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1241     int              jnrA,jnrB;
1242     int              j_coord_offsetA,j_coord_offsetB;
1243     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1244     real             rcutoff_scalar;
1245     real             *shiftvec,*fshift,*x,*f;
1246     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1247     int              vdwioffset0;
1248     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1249     int              vdwioffset1;
1250     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1251     int              vdwioffset2;
1252     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1253     int              vdwjidx0A,vdwjidx0B;
1254     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1255     int              vdwjidx1A,vdwjidx1B;
1256     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1257     int              vdwjidx2A,vdwjidx2B;
1258     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1259     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1260     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1261     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1262     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1263     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1264     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1265     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1266     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1267     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1268     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1269     real             *charge;
1270     int              nvdwtype;
1271     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1272     int              *vdwtype;
1273     real             *vdwparam;
1274     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1275     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1276     __m128i          ewitab;
1277     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1278     real             *ewtab;
1279     __m128d          dummy_mask,cutoff_mask;
1280     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1281     __m128d          one     = _mm_set1_pd(1.0);
1282     __m128d          two     = _mm_set1_pd(2.0);
1283     x                = xx[0];
1284     f                = ff[0];
1285
1286     nri              = nlist->nri;
1287     iinr             = nlist->iinr;
1288     jindex           = nlist->jindex;
1289     jjnr             = nlist->jjnr;
1290     shiftidx         = nlist->shift;
1291     gid              = nlist->gid;
1292     shiftvec         = fr->shift_vec[0];
1293     fshift           = fr->fshift[0];
1294     facel            = _mm_set1_pd(fr->ic->epsfac);
1295     charge           = mdatoms->chargeA;
1296     nvdwtype         = fr->ntype;
1297     vdwparam         = fr->nbfp;
1298     vdwtype          = mdatoms->typeA;
1299
1300     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1301     ewtab            = fr->ic->tabq_coul_F;
1302     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1303     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1304
1305     /* Setup water-specific parameters */
1306     inr              = nlist->iinr[0];
1307     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1308     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1309     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1310     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1311
1312     jq0              = _mm_set1_pd(charge[inr+0]);
1313     jq1              = _mm_set1_pd(charge[inr+1]);
1314     jq2              = _mm_set1_pd(charge[inr+2]);
1315     vdwjidx0A        = 2*vdwtype[inr+0];
1316     qq00             = _mm_mul_pd(iq0,jq0);
1317     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1318     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1319     qq01             = _mm_mul_pd(iq0,jq1);
1320     qq02             = _mm_mul_pd(iq0,jq2);
1321     qq10             = _mm_mul_pd(iq1,jq0);
1322     qq11             = _mm_mul_pd(iq1,jq1);
1323     qq12             = _mm_mul_pd(iq1,jq2);
1324     qq20             = _mm_mul_pd(iq2,jq0);
1325     qq21             = _mm_mul_pd(iq2,jq1);
1326     qq22             = _mm_mul_pd(iq2,jq2);
1327
1328     /* Avoid stupid compiler warnings */
1329     jnrA = jnrB = 0;
1330     j_coord_offsetA = 0;
1331     j_coord_offsetB = 0;
1332
1333     outeriter        = 0;
1334     inneriter        = 0;
1335
1336     /* Start outer loop over neighborlists */
1337     for(iidx=0; iidx<nri; iidx++)
1338     {
1339         /* Load shift vector for this list */
1340         i_shift_offset   = DIM*shiftidx[iidx];
1341
1342         /* Load limits for loop over neighbors */
1343         j_index_start    = jindex[iidx];
1344         j_index_end      = jindex[iidx+1];
1345
1346         /* Get outer coordinate index */
1347         inr              = iinr[iidx];
1348         i_coord_offset   = DIM*inr;
1349
1350         /* Load i particle coords and add shift vector */
1351         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1352                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1353
1354         fix0             = _mm_setzero_pd();
1355         fiy0             = _mm_setzero_pd();
1356         fiz0             = _mm_setzero_pd();
1357         fix1             = _mm_setzero_pd();
1358         fiy1             = _mm_setzero_pd();
1359         fiz1             = _mm_setzero_pd();
1360         fix2             = _mm_setzero_pd();
1361         fiy2             = _mm_setzero_pd();
1362         fiz2             = _mm_setzero_pd();
1363
1364         /* Start inner kernel loop */
1365         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1366         {
1367
1368             /* Get j neighbor index, and coordinate index */
1369             jnrA             = jjnr[jidx];
1370             jnrB             = jjnr[jidx+1];
1371             j_coord_offsetA  = DIM*jnrA;
1372             j_coord_offsetB  = DIM*jnrB;
1373
1374             /* load j atom coordinates */
1375             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1376                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1377
1378             /* Calculate displacement vector */
1379             dx00             = _mm_sub_pd(ix0,jx0);
1380             dy00             = _mm_sub_pd(iy0,jy0);
1381             dz00             = _mm_sub_pd(iz0,jz0);
1382             dx01             = _mm_sub_pd(ix0,jx1);
1383             dy01             = _mm_sub_pd(iy0,jy1);
1384             dz01             = _mm_sub_pd(iz0,jz1);
1385             dx02             = _mm_sub_pd(ix0,jx2);
1386             dy02             = _mm_sub_pd(iy0,jy2);
1387             dz02             = _mm_sub_pd(iz0,jz2);
1388             dx10             = _mm_sub_pd(ix1,jx0);
1389             dy10             = _mm_sub_pd(iy1,jy0);
1390             dz10             = _mm_sub_pd(iz1,jz0);
1391             dx11             = _mm_sub_pd(ix1,jx1);
1392             dy11             = _mm_sub_pd(iy1,jy1);
1393             dz11             = _mm_sub_pd(iz1,jz1);
1394             dx12             = _mm_sub_pd(ix1,jx2);
1395             dy12             = _mm_sub_pd(iy1,jy2);
1396             dz12             = _mm_sub_pd(iz1,jz2);
1397             dx20             = _mm_sub_pd(ix2,jx0);
1398             dy20             = _mm_sub_pd(iy2,jy0);
1399             dz20             = _mm_sub_pd(iz2,jz0);
1400             dx21             = _mm_sub_pd(ix2,jx1);
1401             dy21             = _mm_sub_pd(iy2,jy1);
1402             dz21             = _mm_sub_pd(iz2,jz1);
1403             dx22             = _mm_sub_pd(ix2,jx2);
1404             dy22             = _mm_sub_pd(iy2,jy2);
1405             dz22             = _mm_sub_pd(iz2,jz2);
1406
1407             /* Calculate squared distance and things based on it */
1408             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1409             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1410             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1411             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1412             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1413             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1414             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1415             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1416             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1417
1418             rinv00           = sse41_invsqrt_d(rsq00);
1419             rinv01           = sse41_invsqrt_d(rsq01);
1420             rinv02           = sse41_invsqrt_d(rsq02);
1421             rinv10           = sse41_invsqrt_d(rsq10);
1422             rinv11           = sse41_invsqrt_d(rsq11);
1423             rinv12           = sse41_invsqrt_d(rsq12);
1424             rinv20           = sse41_invsqrt_d(rsq20);
1425             rinv21           = sse41_invsqrt_d(rsq21);
1426             rinv22           = sse41_invsqrt_d(rsq22);
1427
1428             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1429             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1430             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1431             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1432             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1433             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1434             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1435             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1436             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1437
1438             fjx0             = _mm_setzero_pd();
1439             fjy0             = _mm_setzero_pd();
1440             fjz0             = _mm_setzero_pd();
1441             fjx1             = _mm_setzero_pd();
1442             fjy1             = _mm_setzero_pd();
1443             fjz1             = _mm_setzero_pd();
1444             fjx2             = _mm_setzero_pd();
1445             fjy2             = _mm_setzero_pd();
1446             fjz2             = _mm_setzero_pd();
1447
1448             /**************************
1449              * CALCULATE INTERACTIONS *
1450              **************************/
1451
1452             r00              = _mm_mul_pd(rsq00,rinv00);
1453
1454             /* EWALD ELECTROSTATICS */
1455
1456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1457             ewrt             = _mm_mul_pd(r00,ewtabscale);
1458             ewitab           = _mm_cvttpd_epi32(ewrt);
1459             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1460             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1461                                          &ewtabF,&ewtabFn);
1462             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1463             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1464
1465             /* LENNARD-JONES DISPERSION/REPULSION */
1466
1467             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1468             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1469
1470             fscal            = _mm_add_pd(felec,fvdw);
1471
1472             /* Calculate temporary vectorial force */
1473             tx               = _mm_mul_pd(fscal,dx00);
1474             ty               = _mm_mul_pd(fscal,dy00);
1475             tz               = _mm_mul_pd(fscal,dz00);
1476
1477             /* Update vectorial force */
1478             fix0             = _mm_add_pd(fix0,tx);
1479             fiy0             = _mm_add_pd(fiy0,ty);
1480             fiz0             = _mm_add_pd(fiz0,tz);
1481
1482             fjx0             = _mm_add_pd(fjx0,tx);
1483             fjy0             = _mm_add_pd(fjy0,ty);
1484             fjz0             = _mm_add_pd(fjz0,tz);
1485
1486             /**************************
1487              * CALCULATE INTERACTIONS *
1488              **************************/
1489
1490             r01              = _mm_mul_pd(rsq01,rinv01);
1491
1492             /* EWALD ELECTROSTATICS */
1493
1494             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1495             ewrt             = _mm_mul_pd(r01,ewtabscale);
1496             ewitab           = _mm_cvttpd_epi32(ewrt);
1497             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1498             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1499                                          &ewtabF,&ewtabFn);
1500             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1501             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1502
1503             fscal            = felec;
1504
1505             /* Calculate temporary vectorial force */
1506             tx               = _mm_mul_pd(fscal,dx01);
1507             ty               = _mm_mul_pd(fscal,dy01);
1508             tz               = _mm_mul_pd(fscal,dz01);
1509
1510             /* Update vectorial force */
1511             fix0             = _mm_add_pd(fix0,tx);
1512             fiy0             = _mm_add_pd(fiy0,ty);
1513             fiz0             = _mm_add_pd(fiz0,tz);
1514
1515             fjx1             = _mm_add_pd(fjx1,tx);
1516             fjy1             = _mm_add_pd(fjy1,ty);
1517             fjz1             = _mm_add_pd(fjz1,tz);
1518
1519             /**************************
1520              * CALCULATE INTERACTIONS *
1521              **************************/
1522
1523             r02              = _mm_mul_pd(rsq02,rinv02);
1524
1525             /* EWALD ELECTROSTATICS */
1526
1527             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1528             ewrt             = _mm_mul_pd(r02,ewtabscale);
1529             ewitab           = _mm_cvttpd_epi32(ewrt);
1530             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1531             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1532                                          &ewtabF,&ewtabFn);
1533             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1534             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1535
1536             fscal            = felec;
1537
1538             /* Calculate temporary vectorial force */
1539             tx               = _mm_mul_pd(fscal,dx02);
1540             ty               = _mm_mul_pd(fscal,dy02);
1541             tz               = _mm_mul_pd(fscal,dz02);
1542
1543             /* Update vectorial force */
1544             fix0             = _mm_add_pd(fix0,tx);
1545             fiy0             = _mm_add_pd(fiy0,ty);
1546             fiz0             = _mm_add_pd(fiz0,tz);
1547
1548             fjx2             = _mm_add_pd(fjx2,tx);
1549             fjy2             = _mm_add_pd(fjy2,ty);
1550             fjz2             = _mm_add_pd(fjz2,tz);
1551
1552             /**************************
1553              * CALCULATE INTERACTIONS *
1554              **************************/
1555
1556             r10              = _mm_mul_pd(rsq10,rinv10);
1557
1558             /* EWALD ELECTROSTATICS */
1559
1560             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1561             ewrt             = _mm_mul_pd(r10,ewtabscale);
1562             ewitab           = _mm_cvttpd_epi32(ewrt);
1563             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1564             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1565                                          &ewtabF,&ewtabFn);
1566             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1567             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1568
1569             fscal            = felec;
1570
1571             /* Calculate temporary vectorial force */
1572             tx               = _mm_mul_pd(fscal,dx10);
1573             ty               = _mm_mul_pd(fscal,dy10);
1574             tz               = _mm_mul_pd(fscal,dz10);
1575
1576             /* Update vectorial force */
1577             fix1             = _mm_add_pd(fix1,tx);
1578             fiy1             = _mm_add_pd(fiy1,ty);
1579             fiz1             = _mm_add_pd(fiz1,tz);
1580
1581             fjx0             = _mm_add_pd(fjx0,tx);
1582             fjy0             = _mm_add_pd(fjy0,ty);
1583             fjz0             = _mm_add_pd(fjz0,tz);
1584
1585             /**************************
1586              * CALCULATE INTERACTIONS *
1587              **************************/
1588
1589             r11              = _mm_mul_pd(rsq11,rinv11);
1590
1591             /* EWALD ELECTROSTATICS */
1592
1593             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1594             ewrt             = _mm_mul_pd(r11,ewtabscale);
1595             ewitab           = _mm_cvttpd_epi32(ewrt);
1596             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1597             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1598                                          &ewtabF,&ewtabFn);
1599             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1600             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1601
1602             fscal            = felec;
1603
1604             /* Calculate temporary vectorial force */
1605             tx               = _mm_mul_pd(fscal,dx11);
1606             ty               = _mm_mul_pd(fscal,dy11);
1607             tz               = _mm_mul_pd(fscal,dz11);
1608
1609             /* Update vectorial force */
1610             fix1             = _mm_add_pd(fix1,tx);
1611             fiy1             = _mm_add_pd(fiy1,ty);
1612             fiz1             = _mm_add_pd(fiz1,tz);
1613
1614             fjx1             = _mm_add_pd(fjx1,tx);
1615             fjy1             = _mm_add_pd(fjy1,ty);
1616             fjz1             = _mm_add_pd(fjz1,tz);
1617
1618             /**************************
1619              * CALCULATE INTERACTIONS *
1620              **************************/
1621
1622             r12              = _mm_mul_pd(rsq12,rinv12);
1623
1624             /* EWALD ELECTROSTATICS */
1625
1626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1627             ewrt             = _mm_mul_pd(r12,ewtabscale);
1628             ewitab           = _mm_cvttpd_epi32(ewrt);
1629             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1630             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1631                                          &ewtabF,&ewtabFn);
1632             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1633             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1634
1635             fscal            = felec;
1636
1637             /* Calculate temporary vectorial force */
1638             tx               = _mm_mul_pd(fscal,dx12);
1639             ty               = _mm_mul_pd(fscal,dy12);
1640             tz               = _mm_mul_pd(fscal,dz12);
1641
1642             /* Update vectorial force */
1643             fix1             = _mm_add_pd(fix1,tx);
1644             fiy1             = _mm_add_pd(fiy1,ty);
1645             fiz1             = _mm_add_pd(fiz1,tz);
1646
1647             fjx2             = _mm_add_pd(fjx2,tx);
1648             fjy2             = _mm_add_pd(fjy2,ty);
1649             fjz2             = _mm_add_pd(fjz2,tz);
1650
1651             /**************************
1652              * CALCULATE INTERACTIONS *
1653              **************************/
1654
1655             r20              = _mm_mul_pd(rsq20,rinv20);
1656
1657             /* EWALD ELECTROSTATICS */
1658
1659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1660             ewrt             = _mm_mul_pd(r20,ewtabscale);
1661             ewitab           = _mm_cvttpd_epi32(ewrt);
1662             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1663             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1664                                          &ewtabF,&ewtabFn);
1665             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1666             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1667
1668             fscal            = felec;
1669
1670             /* Calculate temporary vectorial force */
1671             tx               = _mm_mul_pd(fscal,dx20);
1672             ty               = _mm_mul_pd(fscal,dy20);
1673             tz               = _mm_mul_pd(fscal,dz20);
1674
1675             /* Update vectorial force */
1676             fix2             = _mm_add_pd(fix2,tx);
1677             fiy2             = _mm_add_pd(fiy2,ty);
1678             fiz2             = _mm_add_pd(fiz2,tz);
1679
1680             fjx0             = _mm_add_pd(fjx0,tx);
1681             fjy0             = _mm_add_pd(fjy0,ty);
1682             fjz0             = _mm_add_pd(fjz0,tz);
1683
1684             /**************************
1685              * CALCULATE INTERACTIONS *
1686              **************************/
1687
1688             r21              = _mm_mul_pd(rsq21,rinv21);
1689
1690             /* EWALD ELECTROSTATICS */
1691
1692             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1693             ewrt             = _mm_mul_pd(r21,ewtabscale);
1694             ewitab           = _mm_cvttpd_epi32(ewrt);
1695             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1696             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1697                                          &ewtabF,&ewtabFn);
1698             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1699             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1700
1701             fscal            = felec;
1702
1703             /* Calculate temporary vectorial force */
1704             tx               = _mm_mul_pd(fscal,dx21);
1705             ty               = _mm_mul_pd(fscal,dy21);
1706             tz               = _mm_mul_pd(fscal,dz21);
1707
1708             /* Update vectorial force */
1709             fix2             = _mm_add_pd(fix2,tx);
1710             fiy2             = _mm_add_pd(fiy2,ty);
1711             fiz2             = _mm_add_pd(fiz2,tz);
1712
1713             fjx1             = _mm_add_pd(fjx1,tx);
1714             fjy1             = _mm_add_pd(fjy1,ty);
1715             fjz1             = _mm_add_pd(fjz1,tz);
1716
1717             /**************************
1718              * CALCULATE INTERACTIONS *
1719              **************************/
1720
1721             r22              = _mm_mul_pd(rsq22,rinv22);
1722
1723             /* EWALD ELECTROSTATICS */
1724
1725             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1726             ewrt             = _mm_mul_pd(r22,ewtabscale);
1727             ewitab           = _mm_cvttpd_epi32(ewrt);
1728             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1729             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1730                                          &ewtabF,&ewtabFn);
1731             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1732             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1733
1734             fscal            = felec;
1735
1736             /* Calculate temporary vectorial force */
1737             tx               = _mm_mul_pd(fscal,dx22);
1738             ty               = _mm_mul_pd(fscal,dy22);
1739             tz               = _mm_mul_pd(fscal,dz22);
1740
1741             /* Update vectorial force */
1742             fix2             = _mm_add_pd(fix2,tx);
1743             fiy2             = _mm_add_pd(fiy2,ty);
1744             fiz2             = _mm_add_pd(fiz2,tz);
1745
1746             fjx2             = _mm_add_pd(fjx2,tx);
1747             fjy2             = _mm_add_pd(fjy2,ty);
1748             fjz2             = _mm_add_pd(fjz2,tz);
1749
1750             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1751
1752             /* Inner loop uses 331 flops */
1753         }
1754
1755         if(jidx<j_index_end)
1756         {
1757
1758             jnrA             = jjnr[jidx];
1759             j_coord_offsetA  = DIM*jnrA;
1760
1761             /* load j atom coordinates */
1762             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1763                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1764
1765             /* Calculate displacement vector */
1766             dx00             = _mm_sub_pd(ix0,jx0);
1767             dy00             = _mm_sub_pd(iy0,jy0);
1768             dz00             = _mm_sub_pd(iz0,jz0);
1769             dx01             = _mm_sub_pd(ix0,jx1);
1770             dy01             = _mm_sub_pd(iy0,jy1);
1771             dz01             = _mm_sub_pd(iz0,jz1);
1772             dx02             = _mm_sub_pd(ix0,jx2);
1773             dy02             = _mm_sub_pd(iy0,jy2);
1774             dz02             = _mm_sub_pd(iz0,jz2);
1775             dx10             = _mm_sub_pd(ix1,jx0);
1776             dy10             = _mm_sub_pd(iy1,jy0);
1777             dz10             = _mm_sub_pd(iz1,jz0);
1778             dx11             = _mm_sub_pd(ix1,jx1);
1779             dy11             = _mm_sub_pd(iy1,jy1);
1780             dz11             = _mm_sub_pd(iz1,jz1);
1781             dx12             = _mm_sub_pd(ix1,jx2);
1782             dy12             = _mm_sub_pd(iy1,jy2);
1783             dz12             = _mm_sub_pd(iz1,jz2);
1784             dx20             = _mm_sub_pd(ix2,jx0);
1785             dy20             = _mm_sub_pd(iy2,jy0);
1786             dz20             = _mm_sub_pd(iz2,jz0);
1787             dx21             = _mm_sub_pd(ix2,jx1);
1788             dy21             = _mm_sub_pd(iy2,jy1);
1789             dz21             = _mm_sub_pd(iz2,jz1);
1790             dx22             = _mm_sub_pd(ix2,jx2);
1791             dy22             = _mm_sub_pd(iy2,jy2);
1792             dz22             = _mm_sub_pd(iz2,jz2);
1793
1794             /* Calculate squared distance and things based on it */
1795             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1796             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1797             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1798             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1799             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1800             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1801             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1802             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1803             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1804
1805             rinv00           = sse41_invsqrt_d(rsq00);
1806             rinv01           = sse41_invsqrt_d(rsq01);
1807             rinv02           = sse41_invsqrt_d(rsq02);
1808             rinv10           = sse41_invsqrt_d(rsq10);
1809             rinv11           = sse41_invsqrt_d(rsq11);
1810             rinv12           = sse41_invsqrt_d(rsq12);
1811             rinv20           = sse41_invsqrt_d(rsq20);
1812             rinv21           = sse41_invsqrt_d(rsq21);
1813             rinv22           = sse41_invsqrt_d(rsq22);
1814
1815             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1816             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1817             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1818             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1819             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1820             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1821             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1822             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1823             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1824
1825             fjx0             = _mm_setzero_pd();
1826             fjy0             = _mm_setzero_pd();
1827             fjz0             = _mm_setzero_pd();
1828             fjx1             = _mm_setzero_pd();
1829             fjy1             = _mm_setzero_pd();
1830             fjz1             = _mm_setzero_pd();
1831             fjx2             = _mm_setzero_pd();
1832             fjy2             = _mm_setzero_pd();
1833             fjz2             = _mm_setzero_pd();
1834
1835             /**************************
1836              * CALCULATE INTERACTIONS *
1837              **************************/
1838
1839             r00              = _mm_mul_pd(rsq00,rinv00);
1840
1841             /* EWALD ELECTROSTATICS */
1842
1843             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1844             ewrt             = _mm_mul_pd(r00,ewtabscale);
1845             ewitab           = _mm_cvttpd_epi32(ewrt);
1846             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1847             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1848             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1849             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1850
1851             /* LENNARD-JONES DISPERSION/REPULSION */
1852
1853             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1854             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1855
1856             fscal            = _mm_add_pd(felec,fvdw);
1857
1858             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1859
1860             /* Calculate temporary vectorial force */
1861             tx               = _mm_mul_pd(fscal,dx00);
1862             ty               = _mm_mul_pd(fscal,dy00);
1863             tz               = _mm_mul_pd(fscal,dz00);
1864
1865             /* Update vectorial force */
1866             fix0             = _mm_add_pd(fix0,tx);
1867             fiy0             = _mm_add_pd(fiy0,ty);
1868             fiz0             = _mm_add_pd(fiz0,tz);
1869
1870             fjx0             = _mm_add_pd(fjx0,tx);
1871             fjy0             = _mm_add_pd(fjy0,ty);
1872             fjz0             = _mm_add_pd(fjz0,tz);
1873
1874             /**************************
1875              * CALCULATE INTERACTIONS *
1876              **************************/
1877
1878             r01              = _mm_mul_pd(rsq01,rinv01);
1879
1880             /* EWALD ELECTROSTATICS */
1881
1882             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1883             ewrt             = _mm_mul_pd(r01,ewtabscale);
1884             ewitab           = _mm_cvttpd_epi32(ewrt);
1885             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1886             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1887             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1888             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1889
1890             fscal            = felec;
1891
1892             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1893
1894             /* Calculate temporary vectorial force */
1895             tx               = _mm_mul_pd(fscal,dx01);
1896             ty               = _mm_mul_pd(fscal,dy01);
1897             tz               = _mm_mul_pd(fscal,dz01);
1898
1899             /* Update vectorial force */
1900             fix0             = _mm_add_pd(fix0,tx);
1901             fiy0             = _mm_add_pd(fiy0,ty);
1902             fiz0             = _mm_add_pd(fiz0,tz);
1903
1904             fjx1             = _mm_add_pd(fjx1,tx);
1905             fjy1             = _mm_add_pd(fjy1,ty);
1906             fjz1             = _mm_add_pd(fjz1,tz);
1907
1908             /**************************
1909              * CALCULATE INTERACTIONS *
1910              **************************/
1911
1912             r02              = _mm_mul_pd(rsq02,rinv02);
1913
1914             /* EWALD ELECTROSTATICS */
1915
1916             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1917             ewrt             = _mm_mul_pd(r02,ewtabscale);
1918             ewitab           = _mm_cvttpd_epi32(ewrt);
1919             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1920             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1921             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1922             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1923
1924             fscal            = felec;
1925
1926             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1927
1928             /* Calculate temporary vectorial force */
1929             tx               = _mm_mul_pd(fscal,dx02);
1930             ty               = _mm_mul_pd(fscal,dy02);
1931             tz               = _mm_mul_pd(fscal,dz02);
1932
1933             /* Update vectorial force */
1934             fix0             = _mm_add_pd(fix0,tx);
1935             fiy0             = _mm_add_pd(fiy0,ty);
1936             fiz0             = _mm_add_pd(fiz0,tz);
1937
1938             fjx2             = _mm_add_pd(fjx2,tx);
1939             fjy2             = _mm_add_pd(fjy2,ty);
1940             fjz2             = _mm_add_pd(fjz2,tz);
1941
1942             /**************************
1943              * CALCULATE INTERACTIONS *
1944              **************************/
1945
1946             r10              = _mm_mul_pd(rsq10,rinv10);
1947
1948             /* EWALD ELECTROSTATICS */
1949
1950             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1951             ewrt             = _mm_mul_pd(r10,ewtabscale);
1952             ewitab           = _mm_cvttpd_epi32(ewrt);
1953             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1954             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1955             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1956             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1957
1958             fscal            = felec;
1959
1960             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1961
1962             /* Calculate temporary vectorial force */
1963             tx               = _mm_mul_pd(fscal,dx10);
1964             ty               = _mm_mul_pd(fscal,dy10);
1965             tz               = _mm_mul_pd(fscal,dz10);
1966
1967             /* Update vectorial force */
1968             fix1             = _mm_add_pd(fix1,tx);
1969             fiy1             = _mm_add_pd(fiy1,ty);
1970             fiz1             = _mm_add_pd(fiz1,tz);
1971
1972             fjx0             = _mm_add_pd(fjx0,tx);
1973             fjy0             = _mm_add_pd(fjy0,ty);
1974             fjz0             = _mm_add_pd(fjz0,tz);
1975
1976             /**************************
1977              * CALCULATE INTERACTIONS *
1978              **************************/
1979
1980             r11              = _mm_mul_pd(rsq11,rinv11);
1981
1982             /* EWALD ELECTROSTATICS */
1983
1984             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1985             ewrt             = _mm_mul_pd(r11,ewtabscale);
1986             ewitab           = _mm_cvttpd_epi32(ewrt);
1987             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1988             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1989             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1990             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1991
1992             fscal            = felec;
1993
1994             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1995
1996             /* Calculate temporary vectorial force */
1997             tx               = _mm_mul_pd(fscal,dx11);
1998             ty               = _mm_mul_pd(fscal,dy11);
1999             tz               = _mm_mul_pd(fscal,dz11);
2000
2001             /* Update vectorial force */
2002             fix1             = _mm_add_pd(fix1,tx);
2003             fiy1             = _mm_add_pd(fiy1,ty);
2004             fiz1             = _mm_add_pd(fiz1,tz);
2005
2006             fjx1             = _mm_add_pd(fjx1,tx);
2007             fjy1             = _mm_add_pd(fjy1,ty);
2008             fjz1             = _mm_add_pd(fjz1,tz);
2009
2010             /**************************
2011              * CALCULATE INTERACTIONS *
2012              **************************/
2013
2014             r12              = _mm_mul_pd(rsq12,rinv12);
2015
2016             /* EWALD ELECTROSTATICS */
2017
2018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2019             ewrt             = _mm_mul_pd(r12,ewtabscale);
2020             ewitab           = _mm_cvttpd_epi32(ewrt);
2021             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2022             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2023             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2024             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2025
2026             fscal            = felec;
2027
2028             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2029
2030             /* Calculate temporary vectorial force */
2031             tx               = _mm_mul_pd(fscal,dx12);
2032             ty               = _mm_mul_pd(fscal,dy12);
2033             tz               = _mm_mul_pd(fscal,dz12);
2034
2035             /* Update vectorial force */
2036             fix1             = _mm_add_pd(fix1,tx);
2037             fiy1             = _mm_add_pd(fiy1,ty);
2038             fiz1             = _mm_add_pd(fiz1,tz);
2039
2040             fjx2             = _mm_add_pd(fjx2,tx);
2041             fjy2             = _mm_add_pd(fjy2,ty);
2042             fjz2             = _mm_add_pd(fjz2,tz);
2043
2044             /**************************
2045              * CALCULATE INTERACTIONS *
2046              **************************/
2047
2048             r20              = _mm_mul_pd(rsq20,rinv20);
2049
2050             /* EWALD ELECTROSTATICS */
2051
2052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2053             ewrt             = _mm_mul_pd(r20,ewtabscale);
2054             ewitab           = _mm_cvttpd_epi32(ewrt);
2055             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2056             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2057             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2058             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2059
2060             fscal            = felec;
2061
2062             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2063
2064             /* Calculate temporary vectorial force */
2065             tx               = _mm_mul_pd(fscal,dx20);
2066             ty               = _mm_mul_pd(fscal,dy20);
2067             tz               = _mm_mul_pd(fscal,dz20);
2068
2069             /* Update vectorial force */
2070             fix2             = _mm_add_pd(fix2,tx);
2071             fiy2             = _mm_add_pd(fiy2,ty);
2072             fiz2             = _mm_add_pd(fiz2,tz);
2073
2074             fjx0             = _mm_add_pd(fjx0,tx);
2075             fjy0             = _mm_add_pd(fjy0,ty);
2076             fjz0             = _mm_add_pd(fjz0,tz);
2077
2078             /**************************
2079              * CALCULATE INTERACTIONS *
2080              **************************/
2081
2082             r21              = _mm_mul_pd(rsq21,rinv21);
2083
2084             /* EWALD ELECTROSTATICS */
2085
2086             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2087             ewrt             = _mm_mul_pd(r21,ewtabscale);
2088             ewitab           = _mm_cvttpd_epi32(ewrt);
2089             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2090             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2091             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2092             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2093
2094             fscal            = felec;
2095
2096             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2097
2098             /* Calculate temporary vectorial force */
2099             tx               = _mm_mul_pd(fscal,dx21);
2100             ty               = _mm_mul_pd(fscal,dy21);
2101             tz               = _mm_mul_pd(fscal,dz21);
2102
2103             /* Update vectorial force */
2104             fix2             = _mm_add_pd(fix2,tx);
2105             fiy2             = _mm_add_pd(fiy2,ty);
2106             fiz2             = _mm_add_pd(fiz2,tz);
2107
2108             fjx1             = _mm_add_pd(fjx1,tx);
2109             fjy1             = _mm_add_pd(fjy1,ty);
2110             fjz1             = _mm_add_pd(fjz1,tz);
2111
2112             /**************************
2113              * CALCULATE INTERACTIONS *
2114              **************************/
2115
2116             r22              = _mm_mul_pd(rsq22,rinv22);
2117
2118             /* EWALD ELECTROSTATICS */
2119
2120             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2121             ewrt             = _mm_mul_pd(r22,ewtabscale);
2122             ewitab           = _mm_cvttpd_epi32(ewrt);
2123             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2124             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2125             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2126             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2127
2128             fscal            = felec;
2129
2130             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2131
2132             /* Calculate temporary vectorial force */
2133             tx               = _mm_mul_pd(fscal,dx22);
2134             ty               = _mm_mul_pd(fscal,dy22);
2135             tz               = _mm_mul_pd(fscal,dz22);
2136
2137             /* Update vectorial force */
2138             fix2             = _mm_add_pd(fix2,tx);
2139             fiy2             = _mm_add_pd(fiy2,ty);
2140             fiz2             = _mm_add_pd(fiz2,tz);
2141
2142             fjx2             = _mm_add_pd(fjx2,tx);
2143             fjy2             = _mm_add_pd(fjy2,ty);
2144             fjz2             = _mm_add_pd(fjz2,tz);
2145
2146             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2147
2148             /* Inner loop uses 331 flops */
2149         }
2150
2151         /* End of innermost loop */
2152
2153         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2154                                               f+i_coord_offset,fshift+i_shift_offset);
2155
2156         /* Increment number of inner iterations */
2157         inneriter                  += j_index_end - j_index_start;
2158
2159         /* Outer loop uses 18 flops */
2160     }
2161
2162     /* Increment number of outer iterations */
2163     outeriter        += nri;
2164
2165     /* Update outer/inner flops */
2166
2167     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*331);
2168 }