Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vvdwsum          = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179
180             rinv00           = sse41_invsqrt_d(rsq00);
181
182             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* EWALD ELECTROSTATICS */
201
202             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
203             ewrt             = _mm_mul_pd(r00,ewtabscale);
204             ewitab           = _mm_cvttpd_epi32(ewrt);
205             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
206             ewitab           = _mm_slli_epi32(ewitab,2);
207             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
208             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
209             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
210             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
211             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
212             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
213             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
214             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
215             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
216             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
217
218             /* LENNARD-JONES DISPERSION/REPULSION */
219
220             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
221             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
222             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
223             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
224             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velecsum         = _mm_add_pd(velecsum,velec);
228             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
229
230             fscal            = _mm_add_pd(felec,fvdw);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_pd(fscal,dx00);
234             ty               = _mm_mul_pd(fscal,dy00);
235             tz               = _mm_mul_pd(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm_add_pd(fix0,tx);
239             fiy0             = _mm_add_pd(fiy0,ty);
240             fiz0             = _mm_add_pd(fiz0,tz);
241
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
243
244             /* Inner loop uses 53 flops */
245         }
246
247         if(jidx<j_index_end)
248         {
249
250             jnrA             = jjnr[jidx];
251             j_coord_offsetA  = DIM*jnrA;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_pd(ix0,jx0);
259             dy00             = _mm_sub_pd(iy0,jy0);
260             dz00             = _mm_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = sse41_invsqrt_d(rsq00);
266
267             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_pd(iq0,jq0);
281             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
282
283             /* EWALD ELECTROSTATICS */
284
285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
286             ewrt             = _mm_mul_pd(r00,ewtabscale);
287             ewitab           = _mm_cvttpd_epi32(ewrt);
288             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
289             ewitab           = _mm_slli_epi32(ewitab,2);
290             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
291             ewtabD           = _mm_setzero_pd();
292             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
293             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
294             ewtabFn          = _mm_setzero_pd();
295             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
296             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
297             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
298             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
299             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
300
301             /* LENNARD-JONES DISPERSION/REPULSION */
302
303             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
304             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
305             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
306             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
307             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
311             velecsum         = _mm_add_pd(velecsum,velec);
312             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
313             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
314
315             fscal            = _mm_add_pd(felec,fvdw);
316
317             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_pd(fscal,dx00);
321             ty               = _mm_mul_pd(fscal,dy00);
322             tz               = _mm_mul_pd(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm_add_pd(fix0,tx);
326             fiy0             = _mm_add_pd(fiy0,ty);
327             fiz0             = _mm_add_pd(fiz0,tz);
328
329             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
330
331             /* Inner loop uses 53 flops */
332         }
333
334         /* End of innermost loop */
335
336         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
337                                               f+i_coord_offset,fshift+i_shift_offset);
338
339         ggid                        = gid[iidx];
340         /* Update potential energies */
341         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
342         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
343
344         /* Increment number of inner iterations */
345         inneriter                  += j_index_end - j_index_start;
346
347         /* Outer loop uses 9 flops */
348     }
349
350     /* Increment number of outer iterations */
351     outeriter        += nri;
352
353     /* Update outer/inner flops */
354
355     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*53);
356 }
357 /*
358  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_double
359  * Electrostatics interaction: Ewald
360  * VdW interaction:            LennardJones
361  * Geometry:                   Particle-Particle
362  * Calculate force/pot:        Force
363  */
364 void
365 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_double
366                     (t_nblist                    * gmx_restrict       nlist,
367                      rvec                        * gmx_restrict          xx,
368                      rvec                        * gmx_restrict          ff,
369                      struct t_forcerec           * gmx_restrict          fr,
370                      t_mdatoms                   * gmx_restrict     mdatoms,
371                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
372                      t_nrnb                      * gmx_restrict        nrnb)
373 {
374     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
375      * just 0 for non-waters.
376      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
377      * jnr indices corresponding to data put in the four positions in the SIMD register.
378      */
379     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
380     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
381     int              jnrA,jnrB;
382     int              j_coord_offsetA,j_coord_offsetB;
383     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
384     real             rcutoff_scalar;
385     real             *shiftvec,*fshift,*x,*f;
386     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
387     int              vdwioffset0;
388     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
389     int              vdwjidx0A,vdwjidx0B;
390     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
391     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
392     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
393     real             *charge;
394     int              nvdwtype;
395     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
396     int              *vdwtype;
397     real             *vdwparam;
398     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
399     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
400     __m128i          ewitab;
401     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
402     real             *ewtab;
403     __m128d          dummy_mask,cutoff_mask;
404     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
405     __m128d          one     = _mm_set1_pd(1.0);
406     __m128d          two     = _mm_set1_pd(2.0);
407     x                = xx[0];
408     f                = ff[0];
409
410     nri              = nlist->nri;
411     iinr             = nlist->iinr;
412     jindex           = nlist->jindex;
413     jjnr             = nlist->jjnr;
414     shiftidx         = nlist->shift;
415     gid              = nlist->gid;
416     shiftvec         = fr->shift_vec[0];
417     fshift           = fr->fshift[0];
418     facel            = _mm_set1_pd(fr->ic->epsfac);
419     charge           = mdatoms->chargeA;
420     nvdwtype         = fr->ntype;
421     vdwparam         = fr->nbfp;
422     vdwtype          = mdatoms->typeA;
423
424     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
425     ewtab            = fr->ic->tabq_coul_F;
426     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
427     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
428
429     /* Avoid stupid compiler warnings */
430     jnrA = jnrB = 0;
431     j_coord_offsetA = 0;
432     j_coord_offsetB = 0;
433
434     outeriter        = 0;
435     inneriter        = 0;
436
437     /* Start outer loop over neighborlists */
438     for(iidx=0; iidx<nri; iidx++)
439     {
440         /* Load shift vector for this list */
441         i_shift_offset   = DIM*shiftidx[iidx];
442
443         /* Load limits for loop over neighbors */
444         j_index_start    = jindex[iidx];
445         j_index_end      = jindex[iidx+1];
446
447         /* Get outer coordinate index */
448         inr              = iinr[iidx];
449         i_coord_offset   = DIM*inr;
450
451         /* Load i particle coords and add shift vector */
452         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
453
454         fix0             = _mm_setzero_pd();
455         fiy0             = _mm_setzero_pd();
456         fiz0             = _mm_setzero_pd();
457
458         /* Load parameters for i particles */
459         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
460         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
461
462         /* Start inner kernel loop */
463         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrA             = jjnr[jidx];
468             jnrB             = jjnr[jidx+1];
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471
472             /* load j atom coordinates */
473             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474                                               &jx0,&jy0,&jz0);
475
476             /* Calculate displacement vector */
477             dx00             = _mm_sub_pd(ix0,jx0);
478             dy00             = _mm_sub_pd(iy0,jy0);
479             dz00             = _mm_sub_pd(iz0,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483
484             rinv00           = sse41_invsqrt_d(rsq00);
485
486             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
490             vdwjidx0A        = 2*vdwtype[jnrA+0];
491             vdwjidx0B        = 2*vdwtype[jnrB+0];
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r00              = _mm_mul_pd(rsq00,rinv00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq00             = _mm_mul_pd(iq0,jq0);
501             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
502                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = _mm_mul_pd(r00,ewtabscale);
508             ewitab           = _mm_cvttpd_epi32(ewrt);
509             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
510             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
511                                          &ewtabF,&ewtabFn);
512             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
513             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
514
515             /* LENNARD-JONES DISPERSION/REPULSION */
516
517             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
518             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
519
520             fscal            = _mm_add_pd(felec,fvdw);
521
522             /* Calculate temporary vectorial force */
523             tx               = _mm_mul_pd(fscal,dx00);
524             ty               = _mm_mul_pd(fscal,dy00);
525             tz               = _mm_mul_pd(fscal,dz00);
526
527             /* Update vectorial force */
528             fix0             = _mm_add_pd(fix0,tx);
529             fiy0             = _mm_add_pd(fiy0,ty);
530             fiz0             = _mm_add_pd(fiz0,tz);
531
532             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
533
534             /* Inner loop uses 43 flops */
535         }
536
537         if(jidx<j_index_end)
538         {
539
540             jnrA             = jjnr[jidx];
541             j_coord_offsetA  = DIM*jnrA;
542
543             /* load j atom coordinates */
544             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_pd(ix0,jx0);
549             dy00             = _mm_sub_pd(iy0,jy0);
550             dz00             = _mm_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = sse41_invsqrt_d(rsq00);
556
557             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = _mm_load_sd(charge+jnrA+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             r00              = _mm_mul_pd(rsq00,rinv00);
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq00             = _mm_mul_pd(iq0,jq0);
571             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = _mm_mul_pd(r00,ewtabscale);
577             ewitab           = _mm_cvttpd_epi32(ewrt);
578             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
579             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
580             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
581             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
582
583             /* LENNARD-JONES DISPERSION/REPULSION */
584
585             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
586             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
587
588             fscal            = _mm_add_pd(felec,fvdw);
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm_mul_pd(fscal,dx00);
594             ty               = _mm_mul_pd(fscal,dy00);
595             tz               = _mm_mul_pd(fscal,dz00);
596
597             /* Update vectorial force */
598             fix0             = _mm_add_pd(fix0,tx);
599             fiy0             = _mm_add_pd(fiy0,ty);
600             fiz0             = _mm_add_pd(fiz0,tz);
601
602             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
603
604             /* Inner loop uses 43 flops */
605         }
606
607         /* End of innermost loop */
608
609         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
610                                               f+i_coord_offset,fshift+i_shift_offset);
611
612         /* Increment number of inner iterations */
613         inneriter                  += j_index_end - j_index_start;
614
615         /* Outer loop uses 7 flops */
616     }
617
618     /* Increment number of outer iterations */
619     outeriter        += nri;
620
621     /* Update outer/inner flops */
622
623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*43);
624 }