Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomW4W4_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Water4
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     int              vdwjidx1A,vdwjidx1B;
93     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
94     int              vdwjidx2A,vdwjidx2B;
95     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
96     int              vdwjidx3A,vdwjidx3B;
97     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
98     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
100     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
101     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
102     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
103     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
104     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
105     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
106     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
107     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
108     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
109     real             *charge;
110     int              nvdwtype;
111     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
112     int              *vdwtype;
113     real             *vdwparam;
114     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
115     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
116     __m128d           c6grid_00;
117     __m128d           c6grid_11;
118     __m128d           c6grid_12;
119     __m128d           c6grid_13;
120     __m128d           c6grid_21;
121     __m128d           c6grid_22;
122     __m128d           c6grid_23;
123     __m128d           c6grid_31;
124     __m128d           c6grid_32;
125     __m128d           c6grid_33;
126     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
127     real             *vdwgridparam;
128     __m128d           one_half = _mm_set1_pd(0.5);
129     __m128d           minus_one = _mm_set1_pd(-1.0);
130     __m128i          ewitab;
131     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
132     real             *ewtab;
133     __m128d          dummy_mask,cutoff_mask;
134     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
135     __m128d          one     = _mm_set1_pd(1.0);
136     __m128d          two     = _mm_set1_pd(2.0);
137     x                = xx[0];
138     f                = ff[0];
139
140     nri              = nlist->nri;
141     iinr             = nlist->iinr;
142     jindex           = nlist->jindex;
143     jjnr             = nlist->jjnr;
144     shiftidx         = nlist->shift;
145     gid              = nlist->gid;
146     shiftvec         = fr->shift_vec[0];
147     fshift           = fr->fshift[0];
148     facel            = _mm_set1_pd(fr->epsfac);
149     charge           = mdatoms->chargeA;
150     nvdwtype         = fr->ntype;
151     vdwparam         = fr->nbfp;
152     vdwtype          = mdatoms->typeA;
153     vdwgridparam     = fr->ljpme_c6grid;
154     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
155     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
156     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
157
158     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
159     ewtab            = fr->ic->tabq_coul_FDV0;
160     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
161     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
162
163     /* Setup water-specific parameters */
164     inr              = nlist->iinr[0];
165     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
166     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
167     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
168     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170     jq1              = _mm_set1_pd(charge[inr+1]);
171     jq2              = _mm_set1_pd(charge[inr+2]);
172     jq3              = _mm_set1_pd(charge[inr+3]);
173     vdwjidx0A        = 2*vdwtype[inr+0];
174     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
175     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
176     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
177     qq11             = _mm_mul_pd(iq1,jq1);
178     qq12             = _mm_mul_pd(iq1,jq2);
179     qq13             = _mm_mul_pd(iq1,jq3);
180     qq21             = _mm_mul_pd(iq2,jq1);
181     qq22             = _mm_mul_pd(iq2,jq2);
182     qq23             = _mm_mul_pd(iq2,jq3);
183     qq31             = _mm_mul_pd(iq3,jq1);
184     qq32             = _mm_mul_pd(iq3,jq2);
185     qq33             = _mm_mul_pd(iq3,jq3);
186
187     /* Avoid stupid compiler warnings */
188     jnrA = jnrB = 0;
189     j_coord_offsetA = 0;
190     j_coord_offsetB = 0;
191
192     outeriter        = 0;
193     inneriter        = 0;
194
195     /* Start outer loop over neighborlists */
196     for(iidx=0; iidx<nri; iidx++)
197     {
198         /* Load shift vector for this list */
199         i_shift_offset   = DIM*shiftidx[iidx];
200
201         /* Load limits for loop over neighbors */
202         j_index_start    = jindex[iidx];
203         j_index_end      = jindex[iidx+1];
204
205         /* Get outer coordinate index */
206         inr              = iinr[iidx];
207         i_coord_offset   = DIM*inr;
208
209         /* Load i particle coords and add shift vector */
210         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
211                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
212
213         fix0             = _mm_setzero_pd();
214         fiy0             = _mm_setzero_pd();
215         fiz0             = _mm_setzero_pd();
216         fix1             = _mm_setzero_pd();
217         fiy1             = _mm_setzero_pd();
218         fiz1             = _mm_setzero_pd();
219         fix2             = _mm_setzero_pd();
220         fiy2             = _mm_setzero_pd();
221         fiz2             = _mm_setzero_pd();
222         fix3             = _mm_setzero_pd();
223         fiy3             = _mm_setzero_pd();
224         fiz3             = _mm_setzero_pd();
225
226         /* Reset potential sums */
227         velecsum         = _mm_setzero_pd();
228         vvdwsum          = _mm_setzero_pd();
229
230         /* Start inner kernel loop */
231         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
232         {
233
234             /* Get j neighbor index, and coordinate index */
235             jnrA             = jjnr[jidx];
236             jnrB             = jjnr[jidx+1];
237             j_coord_offsetA  = DIM*jnrA;
238             j_coord_offsetB  = DIM*jnrB;
239
240             /* load j atom coordinates */
241             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
242                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
243                                               &jy2,&jz2,&jx3,&jy3,&jz3);
244
245             /* Calculate displacement vector */
246             dx00             = _mm_sub_pd(ix0,jx0);
247             dy00             = _mm_sub_pd(iy0,jy0);
248             dz00             = _mm_sub_pd(iz0,jz0);
249             dx11             = _mm_sub_pd(ix1,jx1);
250             dy11             = _mm_sub_pd(iy1,jy1);
251             dz11             = _mm_sub_pd(iz1,jz1);
252             dx12             = _mm_sub_pd(ix1,jx2);
253             dy12             = _mm_sub_pd(iy1,jy2);
254             dz12             = _mm_sub_pd(iz1,jz2);
255             dx13             = _mm_sub_pd(ix1,jx3);
256             dy13             = _mm_sub_pd(iy1,jy3);
257             dz13             = _mm_sub_pd(iz1,jz3);
258             dx21             = _mm_sub_pd(ix2,jx1);
259             dy21             = _mm_sub_pd(iy2,jy1);
260             dz21             = _mm_sub_pd(iz2,jz1);
261             dx22             = _mm_sub_pd(ix2,jx2);
262             dy22             = _mm_sub_pd(iy2,jy2);
263             dz22             = _mm_sub_pd(iz2,jz2);
264             dx23             = _mm_sub_pd(ix2,jx3);
265             dy23             = _mm_sub_pd(iy2,jy3);
266             dz23             = _mm_sub_pd(iz2,jz3);
267             dx31             = _mm_sub_pd(ix3,jx1);
268             dy31             = _mm_sub_pd(iy3,jy1);
269             dz31             = _mm_sub_pd(iz3,jz1);
270             dx32             = _mm_sub_pd(ix3,jx2);
271             dy32             = _mm_sub_pd(iy3,jy2);
272             dz32             = _mm_sub_pd(iz3,jz2);
273             dx33             = _mm_sub_pd(ix3,jx3);
274             dy33             = _mm_sub_pd(iy3,jy3);
275             dz33             = _mm_sub_pd(iz3,jz3);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
279             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
280             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
281             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
282             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
283             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
284             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
285             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
286             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
287             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
288
289             rinv00           = gmx_mm_invsqrt_pd(rsq00);
290             rinv11           = gmx_mm_invsqrt_pd(rsq11);
291             rinv12           = gmx_mm_invsqrt_pd(rsq12);
292             rinv13           = gmx_mm_invsqrt_pd(rsq13);
293             rinv21           = gmx_mm_invsqrt_pd(rsq21);
294             rinv22           = gmx_mm_invsqrt_pd(rsq22);
295             rinv23           = gmx_mm_invsqrt_pd(rsq23);
296             rinv31           = gmx_mm_invsqrt_pd(rsq31);
297             rinv32           = gmx_mm_invsqrt_pd(rsq32);
298             rinv33           = gmx_mm_invsqrt_pd(rsq33);
299
300             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
301             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
302             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
303             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
304             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
305             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
306             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
307             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
308             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
309             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
310
311             fjx0             = _mm_setzero_pd();
312             fjy0             = _mm_setzero_pd();
313             fjz0             = _mm_setzero_pd();
314             fjx1             = _mm_setzero_pd();
315             fjy1             = _mm_setzero_pd();
316             fjz1             = _mm_setzero_pd();
317             fjx2             = _mm_setzero_pd();
318             fjy2             = _mm_setzero_pd();
319             fjz2             = _mm_setzero_pd();
320             fjx3             = _mm_setzero_pd();
321             fjy3             = _mm_setzero_pd();
322             fjz3             = _mm_setzero_pd();
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r00              = _mm_mul_pd(rsq00,rinv00);
329
330             /* Analytical LJ-PME */
331             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
332             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
333             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
334             exponent         = gmx_simd_exp_d(ewcljrsq);
335             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
336             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
337             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
338             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
339             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
341             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
342             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx00);
351             ty               = _mm_mul_pd(fscal,dy00);
352             tz               = _mm_mul_pd(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_pd(fix0,tx);
356             fiy0             = _mm_add_pd(fiy0,ty);
357             fiz0             = _mm_add_pd(fiz0,tz);
358
359             fjx0             = _mm_add_pd(fjx0,tx);
360             fjy0             = _mm_add_pd(fjy0,ty);
361             fjz0             = _mm_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r11              = _mm_mul_pd(rsq11,rinv11);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_pd(r11,ewtabscale);
373             ewitab           = _mm_cvttpd_epi32(ewrt);
374             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
383             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
384             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_pd(fscal,dx11);
394             ty               = _mm_mul_pd(fscal,dy11);
395             tz               = _mm_mul_pd(fscal,dz11);
396
397             /* Update vectorial force */
398             fix1             = _mm_add_pd(fix1,tx);
399             fiy1             = _mm_add_pd(fiy1,ty);
400             fiz1             = _mm_add_pd(fiz1,tz);
401
402             fjx1             = _mm_add_pd(fjx1,tx);
403             fjy1             = _mm_add_pd(fjy1,ty);
404             fjz1             = _mm_add_pd(fjz1,tz);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r12              = _mm_mul_pd(rsq12,rinv12);
411
412             /* EWALD ELECTROSTATICS */
413
414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
415             ewrt             = _mm_mul_pd(r12,ewtabscale);
416             ewitab           = _mm_cvttpd_epi32(ewrt);
417             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
421             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
422             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
423             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
424             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
425             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
426             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
427             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
428             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velecsum         = _mm_add_pd(velecsum,velec);
432
433             fscal            = felec;
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm_mul_pd(fscal,dx12);
437             ty               = _mm_mul_pd(fscal,dy12);
438             tz               = _mm_mul_pd(fscal,dz12);
439
440             /* Update vectorial force */
441             fix1             = _mm_add_pd(fix1,tx);
442             fiy1             = _mm_add_pd(fiy1,ty);
443             fiz1             = _mm_add_pd(fiz1,tz);
444
445             fjx2             = _mm_add_pd(fjx2,tx);
446             fjy2             = _mm_add_pd(fjy2,ty);
447             fjz2             = _mm_add_pd(fjz2,tz);
448
449             /**************************
450              * CALCULATE INTERACTIONS *
451              **************************/
452
453             r13              = _mm_mul_pd(rsq13,rinv13);
454
455             /* EWALD ELECTROSTATICS */
456
457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
458             ewrt             = _mm_mul_pd(r13,ewtabscale);
459             ewitab           = _mm_cvttpd_epi32(ewrt);
460             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
465             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
466             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
468             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
469             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
470             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
471             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm_mul_pd(fscal,dx13);
480             ty               = _mm_mul_pd(fscal,dy13);
481             tz               = _mm_mul_pd(fscal,dz13);
482
483             /* Update vectorial force */
484             fix1             = _mm_add_pd(fix1,tx);
485             fiy1             = _mm_add_pd(fiy1,ty);
486             fiz1             = _mm_add_pd(fiz1,tz);
487
488             fjx3             = _mm_add_pd(fjx3,tx);
489             fjy3             = _mm_add_pd(fjy3,ty);
490             fjz3             = _mm_add_pd(fjz3,tz);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r21              = _mm_mul_pd(rsq21,rinv21);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
501             ewrt             = _mm_mul_pd(r21,ewtabscale);
502             ewitab           = _mm_cvttpd_epi32(ewrt);
503             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
512             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
513             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velecsum         = _mm_add_pd(velecsum,velec);
518
519             fscal            = felec;
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_pd(fscal,dx21);
523             ty               = _mm_mul_pd(fscal,dy21);
524             tz               = _mm_mul_pd(fscal,dz21);
525
526             /* Update vectorial force */
527             fix2             = _mm_add_pd(fix2,tx);
528             fiy2             = _mm_add_pd(fiy2,ty);
529             fiz2             = _mm_add_pd(fiz2,tz);
530
531             fjx1             = _mm_add_pd(fjx1,tx);
532             fjy1             = _mm_add_pd(fjy1,ty);
533             fjz1             = _mm_add_pd(fjz1,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r22              = _mm_mul_pd(rsq22,rinv22);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = _mm_mul_pd(r22,ewtabscale);
545             ewitab           = _mm_cvttpd_epi32(ewrt);
546             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
555             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
556             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_pd(fscal,dx22);
566             ty               = _mm_mul_pd(fscal,dy22);
567             tz               = _mm_mul_pd(fscal,dz22);
568
569             /* Update vectorial force */
570             fix2             = _mm_add_pd(fix2,tx);
571             fiy2             = _mm_add_pd(fiy2,ty);
572             fiz2             = _mm_add_pd(fiz2,tz);
573
574             fjx2             = _mm_add_pd(fjx2,tx);
575             fjy2             = _mm_add_pd(fjy2,ty);
576             fjz2             = _mm_add_pd(fjz2,tz);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r23              = _mm_mul_pd(rsq23,rinv23);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _mm_mul_pd(r23,ewtabscale);
588             ewitab           = _mm_cvttpd_epi32(ewrt);
589             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
590             ewitab           = _mm_slli_epi32(ewitab,2);
591             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
592             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
593             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
594             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
595             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
596             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
597             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
598             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
599             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
600             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_pd(fscal,dx23);
609             ty               = _mm_mul_pd(fscal,dy23);
610             tz               = _mm_mul_pd(fscal,dz23);
611
612             /* Update vectorial force */
613             fix2             = _mm_add_pd(fix2,tx);
614             fiy2             = _mm_add_pd(fiy2,ty);
615             fiz2             = _mm_add_pd(fiz2,tz);
616
617             fjx3             = _mm_add_pd(fjx3,tx);
618             fjy3             = _mm_add_pd(fjy3,ty);
619             fjz3             = _mm_add_pd(fjz3,tz);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r31              = _mm_mul_pd(rsq31,rinv31);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r31,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
636             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
637             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
638             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
639             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
640             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
641             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
642             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
643             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velecsum         = _mm_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx31);
652             ty               = _mm_mul_pd(fscal,dy31);
653             tz               = _mm_mul_pd(fscal,dz31);
654
655             /* Update vectorial force */
656             fix3             = _mm_add_pd(fix3,tx);
657             fiy3             = _mm_add_pd(fiy3,ty);
658             fiz3             = _mm_add_pd(fiz3,tz);
659
660             fjx1             = _mm_add_pd(fjx1,tx);
661             fjy1             = _mm_add_pd(fjy1,ty);
662             fjz1             = _mm_add_pd(fjz1,tz);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r32              = _mm_mul_pd(rsq32,rinv32);
669
670             /* EWALD ELECTROSTATICS */
671
672             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
673             ewrt             = _mm_mul_pd(r32,ewtabscale);
674             ewitab           = _mm_cvttpd_epi32(ewrt);
675             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
676             ewitab           = _mm_slli_epi32(ewitab,2);
677             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
678             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
679             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
680             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
681             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
682             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
683             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
684             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
685             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
686             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
687
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             velecsum         = _mm_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_pd(fscal,dx32);
695             ty               = _mm_mul_pd(fscal,dy32);
696             tz               = _mm_mul_pd(fscal,dz32);
697
698             /* Update vectorial force */
699             fix3             = _mm_add_pd(fix3,tx);
700             fiy3             = _mm_add_pd(fiy3,ty);
701             fiz3             = _mm_add_pd(fiz3,tz);
702
703             fjx2             = _mm_add_pd(fjx2,tx);
704             fjy2             = _mm_add_pd(fjy2,ty);
705             fjz2             = _mm_add_pd(fjz2,tz);
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             r33              = _mm_mul_pd(rsq33,rinv33);
712
713             /* EWALD ELECTROSTATICS */
714
715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
716             ewrt             = _mm_mul_pd(r33,ewtabscale);
717             ewitab           = _mm_cvttpd_epi32(ewrt);
718             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
719             ewitab           = _mm_slli_epi32(ewitab,2);
720             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
721             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
722             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
723             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
724             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
725             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
726             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
727             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
728             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
729             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
730
731             /* Update potential sum for this i atom from the interaction with this j atom. */
732             velecsum         = _mm_add_pd(velecsum,velec);
733
734             fscal            = felec;
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm_mul_pd(fscal,dx33);
738             ty               = _mm_mul_pd(fscal,dy33);
739             tz               = _mm_mul_pd(fscal,dz33);
740
741             /* Update vectorial force */
742             fix3             = _mm_add_pd(fix3,tx);
743             fiy3             = _mm_add_pd(fiy3,ty);
744             fiz3             = _mm_add_pd(fiz3,tz);
745
746             fjx3             = _mm_add_pd(fjx3,tx);
747             fjy3             = _mm_add_pd(fjy3,ty);
748             fjz3             = _mm_add_pd(fjz3,tz);
749
750             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
751
752             /* Inner loop uses 423 flops */
753         }
754
755         if(jidx<j_index_end)
756         {
757
758             jnrA             = jjnr[jidx];
759             j_coord_offsetA  = DIM*jnrA;
760
761             /* load j atom coordinates */
762             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
763                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
764                                               &jy2,&jz2,&jx3,&jy3,&jz3);
765
766             /* Calculate displacement vector */
767             dx00             = _mm_sub_pd(ix0,jx0);
768             dy00             = _mm_sub_pd(iy0,jy0);
769             dz00             = _mm_sub_pd(iz0,jz0);
770             dx11             = _mm_sub_pd(ix1,jx1);
771             dy11             = _mm_sub_pd(iy1,jy1);
772             dz11             = _mm_sub_pd(iz1,jz1);
773             dx12             = _mm_sub_pd(ix1,jx2);
774             dy12             = _mm_sub_pd(iy1,jy2);
775             dz12             = _mm_sub_pd(iz1,jz2);
776             dx13             = _mm_sub_pd(ix1,jx3);
777             dy13             = _mm_sub_pd(iy1,jy3);
778             dz13             = _mm_sub_pd(iz1,jz3);
779             dx21             = _mm_sub_pd(ix2,jx1);
780             dy21             = _mm_sub_pd(iy2,jy1);
781             dz21             = _mm_sub_pd(iz2,jz1);
782             dx22             = _mm_sub_pd(ix2,jx2);
783             dy22             = _mm_sub_pd(iy2,jy2);
784             dz22             = _mm_sub_pd(iz2,jz2);
785             dx23             = _mm_sub_pd(ix2,jx3);
786             dy23             = _mm_sub_pd(iy2,jy3);
787             dz23             = _mm_sub_pd(iz2,jz3);
788             dx31             = _mm_sub_pd(ix3,jx1);
789             dy31             = _mm_sub_pd(iy3,jy1);
790             dz31             = _mm_sub_pd(iz3,jz1);
791             dx32             = _mm_sub_pd(ix3,jx2);
792             dy32             = _mm_sub_pd(iy3,jy2);
793             dz32             = _mm_sub_pd(iz3,jz2);
794             dx33             = _mm_sub_pd(ix3,jx3);
795             dy33             = _mm_sub_pd(iy3,jy3);
796             dz33             = _mm_sub_pd(iz3,jz3);
797
798             /* Calculate squared distance and things based on it */
799             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
800             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
801             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
802             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
803             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
804             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
805             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
806             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
807             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
808             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
809
810             rinv00           = gmx_mm_invsqrt_pd(rsq00);
811             rinv11           = gmx_mm_invsqrt_pd(rsq11);
812             rinv12           = gmx_mm_invsqrt_pd(rsq12);
813             rinv13           = gmx_mm_invsqrt_pd(rsq13);
814             rinv21           = gmx_mm_invsqrt_pd(rsq21);
815             rinv22           = gmx_mm_invsqrt_pd(rsq22);
816             rinv23           = gmx_mm_invsqrt_pd(rsq23);
817             rinv31           = gmx_mm_invsqrt_pd(rsq31);
818             rinv32           = gmx_mm_invsqrt_pd(rsq32);
819             rinv33           = gmx_mm_invsqrt_pd(rsq33);
820
821             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
822             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
823             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
824             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
825             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
826             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
827             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
828             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
829             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
830             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
831
832             fjx0             = _mm_setzero_pd();
833             fjy0             = _mm_setzero_pd();
834             fjz0             = _mm_setzero_pd();
835             fjx1             = _mm_setzero_pd();
836             fjy1             = _mm_setzero_pd();
837             fjz1             = _mm_setzero_pd();
838             fjx2             = _mm_setzero_pd();
839             fjy2             = _mm_setzero_pd();
840             fjz2             = _mm_setzero_pd();
841             fjx3             = _mm_setzero_pd();
842             fjy3             = _mm_setzero_pd();
843             fjz3             = _mm_setzero_pd();
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             r00              = _mm_mul_pd(rsq00,rinv00);
850
851             /* Analytical LJ-PME */
852             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
853             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
854             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
855             exponent         = gmx_simd_exp_d(ewcljrsq);
856             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
857             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
858             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
859             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
860             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
861             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
862             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
863             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
864
865             /* Update potential sum for this i atom from the interaction with this j atom. */
866             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
867             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
868
869             fscal            = fvdw;
870
871             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm_mul_pd(fscal,dx00);
875             ty               = _mm_mul_pd(fscal,dy00);
876             tz               = _mm_mul_pd(fscal,dz00);
877
878             /* Update vectorial force */
879             fix0             = _mm_add_pd(fix0,tx);
880             fiy0             = _mm_add_pd(fiy0,ty);
881             fiz0             = _mm_add_pd(fiz0,tz);
882
883             fjx0             = _mm_add_pd(fjx0,tx);
884             fjy0             = _mm_add_pd(fjy0,ty);
885             fjz0             = _mm_add_pd(fjz0,tz);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r11              = _mm_mul_pd(rsq11,rinv11);
892
893             /* EWALD ELECTROSTATICS */
894
895             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
896             ewrt             = _mm_mul_pd(r11,ewtabscale);
897             ewitab           = _mm_cvttpd_epi32(ewrt);
898             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
899             ewitab           = _mm_slli_epi32(ewitab,2);
900             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
901             ewtabD           = _mm_setzero_pd();
902             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
903             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
904             ewtabFn          = _mm_setzero_pd();
905             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
906             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
907             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
908             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
909             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
910
911             /* Update potential sum for this i atom from the interaction with this j atom. */
912             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
913             velecsum         = _mm_add_pd(velecsum,velec);
914
915             fscal            = felec;
916
917             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx11);
921             ty               = _mm_mul_pd(fscal,dy11);
922             tz               = _mm_mul_pd(fscal,dz11);
923
924             /* Update vectorial force */
925             fix1             = _mm_add_pd(fix1,tx);
926             fiy1             = _mm_add_pd(fiy1,ty);
927             fiz1             = _mm_add_pd(fiz1,tz);
928
929             fjx1             = _mm_add_pd(fjx1,tx);
930             fjy1             = _mm_add_pd(fjy1,ty);
931             fjz1             = _mm_add_pd(fjz1,tz);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             r12              = _mm_mul_pd(rsq12,rinv12);
938
939             /* EWALD ELECTROSTATICS */
940
941             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
942             ewrt             = _mm_mul_pd(r12,ewtabscale);
943             ewitab           = _mm_cvttpd_epi32(ewrt);
944             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
945             ewitab           = _mm_slli_epi32(ewitab,2);
946             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
947             ewtabD           = _mm_setzero_pd();
948             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
949             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
950             ewtabFn          = _mm_setzero_pd();
951             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
952             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
953             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
954             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
955             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
956
957             /* Update potential sum for this i atom from the interaction with this j atom. */
958             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
959             velecsum         = _mm_add_pd(velecsum,velec);
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_pd(fscal,dx12);
967             ty               = _mm_mul_pd(fscal,dy12);
968             tz               = _mm_mul_pd(fscal,dz12);
969
970             /* Update vectorial force */
971             fix1             = _mm_add_pd(fix1,tx);
972             fiy1             = _mm_add_pd(fiy1,ty);
973             fiz1             = _mm_add_pd(fiz1,tz);
974
975             fjx2             = _mm_add_pd(fjx2,tx);
976             fjy2             = _mm_add_pd(fjy2,ty);
977             fjz2             = _mm_add_pd(fjz2,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r13              = _mm_mul_pd(rsq13,rinv13);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r13,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
991             ewitab           = _mm_slli_epi32(ewitab,2);
992             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
993             ewtabD           = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
995             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
996             ewtabFn          = _mm_setzero_pd();
997             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
998             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
999             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1000             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
1001             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1002
1003             /* Update potential sum for this i atom from the interaction with this j atom. */
1004             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1005             velecsum         = _mm_add_pd(velecsum,velec);
1006
1007             fscal            = felec;
1008
1009             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_pd(fscal,dx13);
1013             ty               = _mm_mul_pd(fscal,dy13);
1014             tz               = _mm_mul_pd(fscal,dz13);
1015
1016             /* Update vectorial force */
1017             fix1             = _mm_add_pd(fix1,tx);
1018             fiy1             = _mm_add_pd(fiy1,ty);
1019             fiz1             = _mm_add_pd(fiz1,tz);
1020
1021             fjx3             = _mm_add_pd(fjx3,tx);
1022             fjy3             = _mm_add_pd(fjy3,ty);
1023             fjz3             = _mm_add_pd(fjz3,tz);
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             r21              = _mm_mul_pd(rsq21,rinv21);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_pd(r21,ewtabscale);
1035             ewitab           = _mm_cvttpd_epi32(ewrt);
1036             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1037             ewitab           = _mm_slli_epi32(ewitab,2);
1038             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1039             ewtabD           = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1041             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1042             ewtabFn          = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1044             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1045             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1046             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1047             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1048
1049             /* Update potential sum for this i atom from the interaction with this j atom. */
1050             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1051             velecsum         = _mm_add_pd(velecsum,velec);
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm_mul_pd(fscal,dx21);
1059             ty               = _mm_mul_pd(fscal,dy21);
1060             tz               = _mm_mul_pd(fscal,dz21);
1061
1062             /* Update vectorial force */
1063             fix2             = _mm_add_pd(fix2,tx);
1064             fiy2             = _mm_add_pd(fiy2,ty);
1065             fiz2             = _mm_add_pd(fiz2,tz);
1066
1067             fjx1             = _mm_add_pd(fjx1,tx);
1068             fjy1             = _mm_add_pd(fjy1,ty);
1069             fjz1             = _mm_add_pd(fjz1,tz);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             r22              = _mm_mul_pd(rsq22,rinv22);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _mm_mul_pd(r22,ewtabscale);
1081             ewitab           = _mm_cvttpd_epi32(ewrt);
1082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1083             ewitab           = _mm_slli_epi32(ewitab,2);
1084             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1085             ewtabD           = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1087             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1088             ewtabFn          = _mm_setzero_pd();
1089             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1090             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1091             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1092             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1094
1095             /* Update potential sum for this i atom from the interaction with this j atom. */
1096             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1097             velecsum         = _mm_add_pd(velecsum,velec);
1098
1099             fscal            = felec;
1100
1101             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1102
1103             /* Calculate temporary vectorial force */
1104             tx               = _mm_mul_pd(fscal,dx22);
1105             ty               = _mm_mul_pd(fscal,dy22);
1106             tz               = _mm_mul_pd(fscal,dz22);
1107
1108             /* Update vectorial force */
1109             fix2             = _mm_add_pd(fix2,tx);
1110             fiy2             = _mm_add_pd(fiy2,ty);
1111             fiz2             = _mm_add_pd(fiz2,tz);
1112
1113             fjx2             = _mm_add_pd(fjx2,tx);
1114             fjy2             = _mm_add_pd(fjy2,ty);
1115             fjz2             = _mm_add_pd(fjz2,tz);
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             r23              = _mm_mul_pd(rsq23,rinv23);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1126             ewrt             = _mm_mul_pd(r23,ewtabscale);
1127             ewitab           = _mm_cvttpd_epi32(ewrt);
1128             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1129             ewitab           = _mm_slli_epi32(ewitab,2);
1130             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1131             ewtabD           = _mm_setzero_pd();
1132             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1133             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1134             ewtabFn          = _mm_setzero_pd();
1135             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1136             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1137             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1138             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
1139             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1140
1141             /* Update potential sum for this i atom from the interaction with this j atom. */
1142             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1143             velecsum         = _mm_add_pd(velecsum,velec);
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_pd(fscal,dx23);
1151             ty               = _mm_mul_pd(fscal,dy23);
1152             tz               = _mm_mul_pd(fscal,dz23);
1153
1154             /* Update vectorial force */
1155             fix2             = _mm_add_pd(fix2,tx);
1156             fiy2             = _mm_add_pd(fiy2,ty);
1157             fiz2             = _mm_add_pd(fiz2,tz);
1158
1159             fjx3             = _mm_add_pd(fjx3,tx);
1160             fjy3             = _mm_add_pd(fjy3,ty);
1161             fjz3             = _mm_add_pd(fjz3,tz);
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             r31              = _mm_mul_pd(rsq31,rinv31);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm_mul_pd(r31,ewtabscale);
1173             ewitab           = _mm_cvttpd_epi32(ewrt);
1174             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1175             ewitab           = _mm_slli_epi32(ewitab,2);
1176             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1177             ewtabD           = _mm_setzero_pd();
1178             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1179             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1180             ewtabFn          = _mm_setzero_pd();
1181             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1182             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1183             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1184             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1185             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1186
1187             /* Update potential sum for this i atom from the interaction with this j atom. */
1188             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1189             velecsum         = _mm_add_pd(velecsum,velec);
1190
1191             fscal            = felec;
1192
1193             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm_mul_pd(fscal,dx31);
1197             ty               = _mm_mul_pd(fscal,dy31);
1198             tz               = _mm_mul_pd(fscal,dz31);
1199
1200             /* Update vectorial force */
1201             fix3             = _mm_add_pd(fix3,tx);
1202             fiy3             = _mm_add_pd(fiy3,ty);
1203             fiz3             = _mm_add_pd(fiz3,tz);
1204
1205             fjx1             = _mm_add_pd(fjx1,tx);
1206             fjy1             = _mm_add_pd(fjy1,ty);
1207             fjz1             = _mm_add_pd(fjz1,tz);
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             r32              = _mm_mul_pd(rsq32,rinv32);
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1218             ewrt             = _mm_mul_pd(r32,ewtabscale);
1219             ewitab           = _mm_cvttpd_epi32(ewrt);
1220             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1221             ewitab           = _mm_slli_epi32(ewitab,2);
1222             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1223             ewtabD           = _mm_setzero_pd();
1224             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1225             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1226             ewtabFn          = _mm_setzero_pd();
1227             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1228             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1229             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1230             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1231             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1232
1233             /* Update potential sum for this i atom from the interaction with this j atom. */
1234             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1235             velecsum         = _mm_add_pd(velecsum,velec);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_pd(fscal,dx32);
1243             ty               = _mm_mul_pd(fscal,dy32);
1244             tz               = _mm_mul_pd(fscal,dz32);
1245
1246             /* Update vectorial force */
1247             fix3             = _mm_add_pd(fix3,tx);
1248             fiy3             = _mm_add_pd(fiy3,ty);
1249             fiz3             = _mm_add_pd(fiz3,tz);
1250
1251             fjx2             = _mm_add_pd(fjx2,tx);
1252             fjy2             = _mm_add_pd(fjy2,ty);
1253             fjz2             = _mm_add_pd(fjz2,tz);
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             r33              = _mm_mul_pd(rsq33,rinv33);
1260
1261             /* EWALD ELECTROSTATICS */
1262
1263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1264             ewrt             = _mm_mul_pd(r33,ewtabscale);
1265             ewitab           = _mm_cvttpd_epi32(ewrt);
1266             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1267             ewitab           = _mm_slli_epi32(ewitab,2);
1268             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1269             ewtabD           = _mm_setzero_pd();
1270             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1271             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1272             ewtabFn          = _mm_setzero_pd();
1273             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1274             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1275             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1276             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1277             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1278
1279             /* Update potential sum for this i atom from the interaction with this j atom. */
1280             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1281             velecsum         = _mm_add_pd(velecsum,velec);
1282
1283             fscal            = felec;
1284
1285             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_pd(fscal,dx33);
1289             ty               = _mm_mul_pd(fscal,dy33);
1290             tz               = _mm_mul_pd(fscal,dz33);
1291
1292             /* Update vectorial force */
1293             fix3             = _mm_add_pd(fix3,tx);
1294             fiy3             = _mm_add_pd(fiy3,ty);
1295             fiz3             = _mm_add_pd(fiz3,tz);
1296
1297             fjx3             = _mm_add_pd(fjx3,tx);
1298             fjy3             = _mm_add_pd(fjy3,ty);
1299             fjz3             = _mm_add_pd(fjz3,tz);
1300
1301             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1302
1303             /* Inner loop uses 423 flops */
1304         }
1305
1306         /* End of innermost loop */
1307
1308         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1309                                               f+i_coord_offset,fshift+i_shift_offset);
1310
1311         ggid                        = gid[iidx];
1312         /* Update potential energies */
1313         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1314         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1315
1316         /* Increment number of inner iterations */
1317         inneriter                  += j_index_end - j_index_start;
1318
1319         /* Outer loop uses 26 flops */
1320     }
1321
1322     /* Increment number of outer iterations */
1323     outeriter        += nri;
1324
1325     /* Update outer/inner flops */
1326
1327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*423);
1328 }
1329 /*
1330  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_sse4_1_double
1331  * Electrostatics interaction: Ewald
1332  * VdW interaction:            LJEwald
1333  * Geometry:                   Water4-Water4
1334  * Calculate force/pot:        Force
1335  */
1336 void
1337 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_sse4_1_double
1338                     (t_nblist                    * gmx_restrict       nlist,
1339                      rvec                        * gmx_restrict          xx,
1340                      rvec                        * gmx_restrict          ff,
1341                      t_forcerec                  * gmx_restrict          fr,
1342                      t_mdatoms                   * gmx_restrict     mdatoms,
1343                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1344                      t_nrnb                      * gmx_restrict        nrnb)
1345 {
1346     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1347      * just 0 for non-waters.
1348      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1349      * jnr indices corresponding to data put in the four positions in the SIMD register.
1350      */
1351     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1352     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1353     int              jnrA,jnrB;
1354     int              j_coord_offsetA,j_coord_offsetB;
1355     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1356     real             rcutoff_scalar;
1357     real             *shiftvec,*fshift,*x,*f;
1358     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1359     int              vdwioffset0;
1360     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1361     int              vdwioffset1;
1362     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1363     int              vdwioffset2;
1364     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1365     int              vdwioffset3;
1366     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1367     int              vdwjidx0A,vdwjidx0B;
1368     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1369     int              vdwjidx1A,vdwjidx1B;
1370     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1371     int              vdwjidx2A,vdwjidx2B;
1372     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1373     int              vdwjidx3A,vdwjidx3B;
1374     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1375     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1376     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1377     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1378     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1379     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1380     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1381     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1382     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1383     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1384     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1385     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1386     real             *charge;
1387     int              nvdwtype;
1388     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1389     int              *vdwtype;
1390     real             *vdwparam;
1391     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1392     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1393     __m128d           c6grid_00;
1394     __m128d           c6grid_11;
1395     __m128d           c6grid_12;
1396     __m128d           c6grid_13;
1397     __m128d           c6grid_21;
1398     __m128d           c6grid_22;
1399     __m128d           c6grid_23;
1400     __m128d           c6grid_31;
1401     __m128d           c6grid_32;
1402     __m128d           c6grid_33;
1403     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1404     real             *vdwgridparam;
1405     __m128d           one_half = _mm_set1_pd(0.5);
1406     __m128d           minus_one = _mm_set1_pd(-1.0);
1407     __m128i          ewitab;
1408     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1409     real             *ewtab;
1410     __m128d          dummy_mask,cutoff_mask;
1411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1412     __m128d          one     = _mm_set1_pd(1.0);
1413     __m128d          two     = _mm_set1_pd(2.0);
1414     x                = xx[0];
1415     f                = ff[0];
1416
1417     nri              = nlist->nri;
1418     iinr             = nlist->iinr;
1419     jindex           = nlist->jindex;
1420     jjnr             = nlist->jjnr;
1421     shiftidx         = nlist->shift;
1422     gid              = nlist->gid;
1423     shiftvec         = fr->shift_vec[0];
1424     fshift           = fr->fshift[0];
1425     facel            = _mm_set1_pd(fr->epsfac);
1426     charge           = mdatoms->chargeA;
1427     nvdwtype         = fr->ntype;
1428     vdwparam         = fr->nbfp;
1429     vdwtype          = mdatoms->typeA;
1430     vdwgridparam     = fr->ljpme_c6grid;
1431     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1432     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1433     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1434
1435     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1436     ewtab            = fr->ic->tabq_coul_F;
1437     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1438     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1439
1440     /* Setup water-specific parameters */
1441     inr              = nlist->iinr[0];
1442     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1443     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1444     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1445     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1446
1447     jq1              = _mm_set1_pd(charge[inr+1]);
1448     jq2              = _mm_set1_pd(charge[inr+2]);
1449     jq3              = _mm_set1_pd(charge[inr+3]);
1450     vdwjidx0A        = 2*vdwtype[inr+0];
1451     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1452     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1453     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1454     qq11             = _mm_mul_pd(iq1,jq1);
1455     qq12             = _mm_mul_pd(iq1,jq2);
1456     qq13             = _mm_mul_pd(iq1,jq3);
1457     qq21             = _mm_mul_pd(iq2,jq1);
1458     qq22             = _mm_mul_pd(iq2,jq2);
1459     qq23             = _mm_mul_pd(iq2,jq3);
1460     qq31             = _mm_mul_pd(iq3,jq1);
1461     qq32             = _mm_mul_pd(iq3,jq2);
1462     qq33             = _mm_mul_pd(iq3,jq3);
1463
1464     /* Avoid stupid compiler warnings */
1465     jnrA = jnrB = 0;
1466     j_coord_offsetA = 0;
1467     j_coord_offsetB = 0;
1468
1469     outeriter        = 0;
1470     inneriter        = 0;
1471
1472     /* Start outer loop over neighborlists */
1473     for(iidx=0; iidx<nri; iidx++)
1474     {
1475         /* Load shift vector for this list */
1476         i_shift_offset   = DIM*shiftidx[iidx];
1477
1478         /* Load limits for loop over neighbors */
1479         j_index_start    = jindex[iidx];
1480         j_index_end      = jindex[iidx+1];
1481
1482         /* Get outer coordinate index */
1483         inr              = iinr[iidx];
1484         i_coord_offset   = DIM*inr;
1485
1486         /* Load i particle coords and add shift vector */
1487         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1488                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1489
1490         fix0             = _mm_setzero_pd();
1491         fiy0             = _mm_setzero_pd();
1492         fiz0             = _mm_setzero_pd();
1493         fix1             = _mm_setzero_pd();
1494         fiy1             = _mm_setzero_pd();
1495         fiz1             = _mm_setzero_pd();
1496         fix2             = _mm_setzero_pd();
1497         fiy2             = _mm_setzero_pd();
1498         fiz2             = _mm_setzero_pd();
1499         fix3             = _mm_setzero_pd();
1500         fiy3             = _mm_setzero_pd();
1501         fiz3             = _mm_setzero_pd();
1502
1503         /* Start inner kernel loop */
1504         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1505         {
1506
1507             /* Get j neighbor index, and coordinate index */
1508             jnrA             = jjnr[jidx];
1509             jnrB             = jjnr[jidx+1];
1510             j_coord_offsetA  = DIM*jnrA;
1511             j_coord_offsetB  = DIM*jnrB;
1512
1513             /* load j atom coordinates */
1514             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1515                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1516                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1517
1518             /* Calculate displacement vector */
1519             dx00             = _mm_sub_pd(ix0,jx0);
1520             dy00             = _mm_sub_pd(iy0,jy0);
1521             dz00             = _mm_sub_pd(iz0,jz0);
1522             dx11             = _mm_sub_pd(ix1,jx1);
1523             dy11             = _mm_sub_pd(iy1,jy1);
1524             dz11             = _mm_sub_pd(iz1,jz1);
1525             dx12             = _mm_sub_pd(ix1,jx2);
1526             dy12             = _mm_sub_pd(iy1,jy2);
1527             dz12             = _mm_sub_pd(iz1,jz2);
1528             dx13             = _mm_sub_pd(ix1,jx3);
1529             dy13             = _mm_sub_pd(iy1,jy3);
1530             dz13             = _mm_sub_pd(iz1,jz3);
1531             dx21             = _mm_sub_pd(ix2,jx1);
1532             dy21             = _mm_sub_pd(iy2,jy1);
1533             dz21             = _mm_sub_pd(iz2,jz1);
1534             dx22             = _mm_sub_pd(ix2,jx2);
1535             dy22             = _mm_sub_pd(iy2,jy2);
1536             dz22             = _mm_sub_pd(iz2,jz2);
1537             dx23             = _mm_sub_pd(ix2,jx3);
1538             dy23             = _mm_sub_pd(iy2,jy3);
1539             dz23             = _mm_sub_pd(iz2,jz3);
1540             dx31             = _mm_sub_pd(ix3,jx1);
1541             dy31             = _mm_sub_pd(iy3,jy1);
1542             dz31             = _mm_sub_pd(iz3,jz1);
1543             dx32             = _mm_sub_pd(ix3,jx2);
1544             dy32             = _mm_sub_pd(iy3,jy2);
1545             dz32             = _mm_sub_pd(iz3,jz2);
1546             dx33             = _mm_sub_pd(ix3,jx3);
1547             dy33             = _mm_sub_pd(iy3,jy3);
1548             dz33             = _mm_sub_pd(iz3,jz3);
1549
1550             /* Calculate squared distance and things based on it */
1551             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1552             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1553             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1554             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1555             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1556             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1557             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1558             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1559             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1560             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1561
1562             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1563             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1564             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1565             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1566             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1567             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1568             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1569             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1570             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1571             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1572
1573             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1574             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1575             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1576             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1577             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1578             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1579             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1580             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1581             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1582             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1583
1584             fjx0             = _mm_setzero_pd();
1585             fjy0             = _mm_setzero_pd();
1586             fjz0             = _mm_setzero_pd();
1587             fjx1             = _mm_setzero_pd();
1588             fjy1             = _mm_setzero_pd();
1589             fjz1             = _mm_setzero_pd();
1590             fjx2             = _mm_setzero_pd();
1591             fjy2             = _mm_setzero_pd();
1592             fjz2             = _mm_setzero_pd();
1593             fjx3             = _mm_setzero_pd();
1594             fjy3             = _mm_setzero_pd();
1595             fjz3             = _mm_setzero_pd();
1596
1597             /**************************
1598              * CALCULATE INTERACTIONS *
1599              **************************/
1600
1601             r00              = _mm_mul_pd(rsq00,rinv00);
1602
1603             /* Analytical LJ-PME */
1604             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1605             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1606             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1607             exponent         = gmx_simd_exp_d(ewcljrsq);
1608             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1609             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1610             /* f6A = 6 * C6grid * (1 - poly) */
1611             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1612             /* f6B = C6grid * exponent * beta^6 */
1613             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1614             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1615             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1616
1617             fscal            = fvdw;
1618
1619             /* Calculate temporary vectorial force */
1620             tx               = _mm_mul_pd(fscal,dx00);
1621             ty               = _mm_mul_pd(fscal,dy00);
1622             tz               = _mm_mul_pd(fscal,dz00);
1623
1624             /* Update vectorial force */
1625             fix0             = _mm_add_pd(fix0,tx);
1626             fiy0             = _mm_add_pd(fiy0,ty);
1627             fiz0             = _mm_add_pd(fiz0,tz);
1628
1629             fjx0             = _mm_add_pd(fjx0,tx);
1630             fjy0             = _mm_add_pd(fjy0,ty);
1631             fjz0             = _mm_add_pd(fjz0,tz);
1632
1633             /**************************
1634              * CALCULATE INTERACTIONS *
1635              **************************/
1636
1637             r11              = _mm_mul_pd(rsq11,rinv11);
1638
1639             /* EWALD ELECTROSTATICS */
1640
1641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1642             ewrt             = _mm_mul_pd(r11,ewtabscale);
1643             ewitab           = _mm_cvttpd_epi32(ewrt);
1644             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1645             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1646                                          &ewtabF,&ewtabFn);
1647             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1648             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1649
1650             fscal            = felec;
1651
1652             /* Calculate temporary vectorial force */
1653             tx               = _mm_mul_pd(fscal,dx11);
1654             ty               = _mm_mul_pd(fscal,dy11);
1655             tz               = _mm_mul_pd(fscal,dz11);
1656
1657             /* Update vectorial force */
1658             fix1             = _mm_add_pd(fix1,tx);
1659             fiy1             = _mm_add_pd(fiy1,ty);
1660             fiz1             = _mm_add_pd(fiz1,tz);
1661
1662             fjx1             = _mm_add_pd(fjx1,tx);
1663             fjy1             = _mm_add_pd(fjy1,ty);
1664             fjz1             = _mm_add_pd(fjz1,tz);
1665
1666             /**************************
1667              * CALCULATE INTERACTIONS *
1668              **************************/
1669
1670             r12              = _mm_mul_pd(rsq12,rinv12);
1671
1672             /* EWALD ELECTROSTATICS */
1673
1674             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1675             ewrt             = _mm_mul_pd(r12,ewtabscale);
1676             ewitab           = _mm_cvttpd_epi32(ewrt);
1677             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1678             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1679                                          &ewtabF,&ewtabFn);
1680             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1681             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1682
1683             fscal            = felec;
1684
1685             /* Calculate temporary vectorial force */
1686             tx               = _mm_mul_pd(fscal,dx12);
1687             ty               = _mm_mul_pd(fscal,dy12);
1688             tz               = _mm_mul_pd(fscal,dz12);
1689
1690             /* Update vectorial force */
1691             fix1             = _mm_add_pd(fix1,tx);
1692             fiy1             = _mm_add_pd(fiy1,ty);
1693             fiz1             = _mm_add_pd(fiz1,tz);
1694
1695             fjx2             = _mm_add_pd(fjx2,tx);
1696             fjy2             = _mm_add_pd(fjy2,ty);
1697             fjz2             = _mm_add_pd(fjz2,tz);
1698
1699             /**************************
1700              * CALCULATE INTERACTIONS *
1701              **************************/
1702
1703             r13              = _mm_mul_pd(rsq13,rinv13);
1704
1705             /* EWALD ELECTROSTATICS */
1706
1707             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1708             ewrt             = _mm_mul_pd(r13,ewtabscale);
1709             ewitab           = _mm_cvttpd_epi32(ewrt);
1710             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1711             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1712                                          &ewtabF,&ewtabFn);
1713             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1714             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1715
1716             fscal            = felec;
1717
1718             /* Calculate temporary vectorial force */
1719             tx               = _mm_mul_pd(fscal,dx13);
1720             ty               = _mm_mul_pd(fscal,dy13);
1721             tz               = _mm_mul_pd(fscal,dz13);
1722
1723             /* Update vectorial force */
1724             fix1             = _mm_add_pd(fix1,tx);
1725             fiy1             = _mm_add_pd(fiy1,ty);
1726             fiz1             = _mm_add_pd(fiz1,tz);
1727
1728             fjx3             = _mm_add_pd(fjx3,tx);
1729             fjy3             = _mm_add_pd(fjy3,ty);
1730             fjz3             = _mm_add_pd(fjz3,tz);
1731
1732             /**************************
1733              * CALCULATE INTERACTIONS *
1734              **************************/
1735
1736             r21              = _mm_mul_pd(rsq21,rinv21);
1737
1738             /* EWALD ELECTROSTATICS */
1739
1740             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1741             ewrt             = _mm_mul_pd(r21,ewtabscale);
1742             ewitab           = _mm_cvttpd_epi32(ewrt);
1743             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1744             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1745                                          &ewtabF,&ewtabFn);
1746             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1747             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1748
1749             fscal            = felec;
1750
1751             /* Calculate temporary vectorial force */
1752             tx               = _mm_mul_pd(fscal,dx21);
1753             ty               = _mm_mul_pd(fscal,dy21);
1754             tz               = _mm_mul_pd(fscal,dz21);
1755
1756             /* Update vectorial force */
1757             fix2             = _mm_add_pd(fix2,tx);
1758             fiy2             = _mm_add_pd(fiy2,ty);
1759             fiz2             = _mm_add_pd(fiz2,tz);
1760
1761             fjx1             = _mm_add_pd(fjx1,tx);
1762             fjy1             = _mm_add_pd(fjy1,ty);
1763             fjz1             = _mm_add_pd(fjz1,tz);
1764
1765             /**************************
1766              * CALCULATE INTERACTIONS *
1767              **************************/
1768
1769             r22              = _mm_mul_pd(rsq22,rinv22);
1770
1771             /* EWALD ELECTROSTATICS */
1772
1773             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1774             ewrt             = _mm_mul_pd(r22,ewtabscale);
1775             ewitab           = _mm_cvttpd_epi32(ewrt);
1776             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1777             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1778                                          &ewtabF,&ewtabFn);
1779             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1780             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1781
1782             fscal            = felec;
1783
1784             /* Calculate temporary vectorial force */
1785             tx               = _mm_mul_pd(fscal,dx22);
1786             ty               = _mm_mul_pd(fscal,dy22);
1787             tz               = _mm_mul_pd(fscal,dz22);
1788
1789             /* Update vectorial force */
1790             fix2             = _mm_add_pd(fix2,tx);
1791             fiy2             = _mm_add_pd(fiy2,ty);
1792             fiz2             = _mm_add_pd(fiz2,tz);
1793
1794             fjx2             = _mm_add_pd(fjx2,tx);
1795             fjy2             = _mm_add_pd(fjy2,ty);
1796             fjz2             = _mm_add_pd(fjz2,tz);
1797
1798             /**************************
1799              * CALCULATE INTERACTIONS *
1800              **************************/
1801
1802             r23              = _mm_mul_pd(rsq23,rinv23);
1803
1804             /* EWALD ELECTROSTATICS */
1805
1806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1807             ewrt             = _mm_mul_pd(r23,ewtabscale);
1808             ewitab           = _mm_cvttpd_epi32(ewrt);
1809             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1810             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1811                                          &ewtabF,&ewtabFn);
1812             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1813             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1814
1815             fscal            = felec;
1816
1817             /* Calculate temporary vectorial force */
1818             tx               = _mm_mul_pd(fscal,dx23);
1819             ty               = _mm_mul_pd(fscal,dy23);
1820             tz               = _mm_mul_pd(fscal,dz23);
1821
1822             /* Update vectorial force */
1823             fix2             = _mm_add_pd(fix2,tx);
1824             fiy2             = _mm_add_pd(fiy2,ty);
1825             fiz2             = _mm_add_pd(fiz2,tz);
1826
1827             fjx3             = _mm_add_pd(fjx3,tx);
1828             fjy3             = _mm_add_pd(fjy3,ty);
1829             fjz3             = _mm_add_pd(fjz3,tz);
1830
1831             /**************************
1832              * CALCULATE INTERACTIONS *
1833              **************************/
1834
1835             r31              = _mm_mul_pd(rsq31,rinv31);
1836
1837             /* EWALD ELECTROSTATICS */
1838
1839             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1840             ewrt             = _mm_mul_pd(r31,ewtabscale);
1841             ewitab           = _mm_cvttpd_epi32(ewrt);
1842             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1843             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1844                                          &ewtabF,&ewtabFn);
1845             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1846             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1847
1848             fscal            = felec;
1849
1850             /* Calculate temporary vectorial force */
1851             tx               = _mm_mul_pd(fscal,dx31);
1852             ty               = _mm_mul_pd(fscal,dy31);
1853             tz               = _mm_mul_pd(fscal,dz31);
1854
1855             /* Update vectorial force */
1856             fix3             = _mm_add_pd(fix3,tx);
1857             fiy3             = _mm_add_pd(fiy3,ty);
1858             fiz3             = _mm_add_pd(fiz3,tz);
1859
1860             fjx1             = _mm_add_pd(fjx1,tx);
1861             fjy1             = _mm_add_pd(fjy1,ty);
1862             fjz1             = _mm_add_pd(fjz1,tz);
1863
1864             /**************************
1865              * CALCULATE INTERACTIONS *
1866              **************************/
1867
1868             r32              = _mm_mul_pd(rsq32,rinv32);
1869
1870             /* EWALD ELECTROSTATICS */
1871
1872             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1873             ewrt             = _mm_mul_pd(r32,ewtabscale);
1874             ewitab           = _mm_cvttpd_epi32(ewrt);
1875             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1876             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1877                                          &ewtabF,&ewtabFn);
1878             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1879             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1880
1881             fscal            = felec;
1882
1883             /* Calculate temporary vectorial force */
1884             tx               = _mm_mul_pd(fscal,dx32);
1885             ty               = _mm_mul_pd(fscal,dy32);
1886             tz               = _mm_mul_pd(fscal,dz32);
1887
1888             /* Update vectorial force */
1889             fix3             = _mm_add_pd(fix3,tx);
1890             fiy3             = _mm_add_pd(fiy3,ty);
1891             fiz3             = _mm_add_pd(fiz3,tz);
1892
1893             fjx2             = _mm_add_pd(fjx2,tx);
1894             fjy2             = _mm_add_pd(fjy2,ty);
1895             fjz2             = _mm_add_pd(fjz2,tz);
1896
1897             /**************************
1898              * CALCULATE INTERACTIONS *
1899              **************************/
1900
1901             r33              = _mm_mul_pd(rsq33,rinv33);
1902
1903             /* EWALD ELECTROSTATICS */
1904
1905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1906             ewrt             = _mm_mul_pd(r33,ewtabscale);
1907             ewitab           = _mm_cvttpd_epi32(ewrt);
1908             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1909             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1910                                          &ewtabF,&ewtabFn);
1911             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1912             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1913
1914             fscal            = felec;
1915
1916             /* Calculate temporary vectorial force */
1917             tx               = _mm_mul_pd(fscal,dx33);
1918             ty               = _mm_mul_pd(fscal,dy33);
1919             tz               = _mm_mul_pd(fscal,dz33);
1920
1921             /* Update vectorial force */
1922             fix3             = _mm_add_pd(fix3,tx);
1923             fiy3             = _mm_add_pd(fiy3,ty);
1924             fiz3             = _mm_add_pd(fiz3,tz);
1925
1926             fjx3             = _mm_add_pd(fjx3,tx);
1927             fjy3             = _mm_add_pd(fjy3,ty);
1928             fjz3             = _mm_add_pd(fjz3,tz);
1929
1930             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1931
1932             /* Inner loop uses 373 flops */
1933         }
1934
1935         if(jidx<j_index_end)
1936         {
1937
1938             jnrA             = jjnr[jidx];
1939             j_coord_offsetA  = DIM*jnrA;
1940
1941             /* load j atom coordinates */
1942             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1943                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1944                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1945
1946             /* Calculate displacement vector */
1947             dx00             = _mm_sub_pd(ix0,jx0);
1948             dy00             = _mm_sub_pd(iy0,jy0);
1949             dz00             = _mm_sub_pd(iz0,jz0);
1950             dx11             = _mm_sub_pd(ix1,jx1);
1951             dy11             = _mm_sub_pd(iy1,jy1);
1952             dz11             = _mm_sub_pd(iz1,jz1);
1953             dx12             = _mm_sub_pd(ix1,jx2);
1954             dy12             = _mm_sub_pd(iy1,jy2);
1955             dz12             = _mm_sub_pd(iz1,jz2);
1956             dx13             = _mm_sub_pd(ix1,jx3);
1957             dy13             = _mm_sub_pd(iy1,jy3);
1958             dz13             = _mm_sub_pd(iz1,jz3);
1959             dx21             = _mm_sub_pd(ix2,jx1);
1960             dy21             = _mm_sub_pd(iy2,jy1);
1961             dz21             = _mm_sub_pd(iz2,jz1);
1962             dx22             = _mm_sub_pd(ix2,jx2);
1963             dy22             = _mm_sub_pd(iy2,jy2);
1964             dz22             = _mm_sub_pd(iz2,jz2);
1965             dx23             = _mm_sub_pd(ix2,jx3);
1966             dy23             = _mm_sub_pd(iy2,jy3);
1967             dz23             = _mm_sub_pd(iz2,jz3);
1968             dx31             = _mm_sub_pd(ix3,jx1);
1969             dy31             = _mm_sub_pd(iy3,jy1);
1970             dz31             = _mm_sub_pd(iz3,jz1);
1971             dx32             = _mm_sub_pd(ix3,jx2);
1972             dy32             = _mm_sub_pd(iy3,jy2);
1973             dz32             = _mm_sub_pd(iz3,jz2);
1974             dx33             = _mm_sub_pd(ix3,jx3);
1975             dy33             = _mm_sub_pd(iy3,jy3);
1976             dz33             = _mm_sub_pd(iz3,jz3);
1977
1978             /* Calculate squared distance and things based on it */
1979             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1980             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1981             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1982             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1983             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1984             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1985             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1986             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1987             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1988             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1989
1990             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1991             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1992             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1993             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1994             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1995             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1996             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1997             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1998             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1999             rinv33           = gmx_mm_invsqrt_pd(rsq33);
2000
2001             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2002             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2003             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2004             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
2005             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2006             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2007             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
2008             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
2009             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
2010             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
2011
2012             fjx0             = _mm_setzero_pd();
2013             fjy0             = _mm_setzero_pd();
2014             fjz0             = _mm_setzero_pd();
2015             fjx1             = _mm_setzero_pd();
2016             fjy1             = _mm_setzero_pd();
2017             fjz1             = _mm_setzero_pd();
2018             fjx2             = _mm_setzero_pd();
2019             fjy2             = _mm_setzero_pd();
2020             fjz2             = _mm_setzero_pd();
2021             fjx3             = _mm_setzero_pd();
2022             fjy3             = _mm_setzero_pd();
2023             fjz3             = _mm_setzero_pd();
2024
2025             /**************************
2026              * CALCULATE INTERACTIONS *
2027              **************************/
2028
2029             r00              = _mm_mul_pd(rsq00,rinv00);
2030
2031             /* Analytical LJ-PME */
2032             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2033             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
2034             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
2035             exponent         = gmx_simd_exp_d(ewcljrsq);
2036             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2037             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
2038             /* f6A = 6 * C6grid * (1 - poly) */
2039             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
2040             /* f6B = C6grid * exponent * beta^6 */
2041             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
2042             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2043             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2044
2045             fscal            = fvdw;
2046
2047             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2048
2049             /* Calculate temporary vectorial force */
2050             tx               = _mm_mul_pd(fscal,dx00);
2051             ty               = _mm_mul_pd(fscal,dy00);
2052             tz               = _mm_mul_pd(fscal,dz00);
2053
2054             /* Update vectorial force */
2055             fix0             = _mm_add_pd(fix0,tx);
2056             fiy0             = _mm_add_pd(fiy0,ty);
2057             fiz0             = _mm_add_pd(fiz0,tz);
2058
2059             fjx0             = _mm_add_pd(fjx0,tx);
2060             fjy0             = _mm_add_pd(fjy0,ty);
2061             fjz0             = _mm_add_pd(fjz0,tz);
2062
2063             /**************************
2064              * CALCULATE INTERACTIONS *
2065              **************************/
2066
2067             r11              = _mm_mul_pd(rsq11,rinv11);
2068
2069             /* EWALD ELECTROSTATICS */
2070
2071             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2072             ewrt             = _mm_mul_pd(r11,ewtabscale);
2073             ewitab           = _mm_cvttpd_epi32(ewrt);
2074             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2075             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2076             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2077             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2078
2079             fscal            = felec;
2080
2081             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2082
2083             /* Calculate temporary vectorial force */
2084             tx               = _mm_mul_pd(fscal,dx11);
2085             ty               = _mm_mul_pd(fscal,dy11);
2086             tz               = _mm_mul_pd(fscal,dz11);
2087
2088             /* Update vectorial force */
2089             fix1             = _mm_add_pd(fix1,tx);
2090             fiy1             = _mm_add_pd(fiy1,ty);
2091             fiz1             = _mm_add_pd(fiz1,tz);
2092
2093             fjx1             = _mm_add_pd(fjx1,tx);
2094             fjy1             = _mm_add_pd(fjy1,ty);
2095             fjz1             = _mm_add_pd(fjz1,tz);
2096
2097             /**************************
2098              * CALCULATE INTERACTIONS *
2099              **************************/
2100
2101             r12              = _mm_mul_pd(rsq12,rinv12);
2102
2103             /* EWALD ELECTROSTATICS */
2104
2105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2106             ewrt             = _mm_mul_pd(r12,ewtabscale);
2107             ewitab           = _mm_cvttpd_epi32(ewrt);
2108             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2109             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2110             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2111             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2112
2113             fscal            = felec;
2114
2115             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2116
2117             /* Calculate temporary vectorial force */
2118             tx               = _mm_mul_pd(fscal,dx12);
2119             ty               = _mm_mul_pd(fscal,dy12);
2120             tz               = _mm_mul_pd(fscal,dz12);
2121
2122             /* Update vectorial force */
2123             fix1             = _mm_add_pd(fix1,tx);
2124             fiy1             = _mm_add_pd(fiy1,ty);
2125             fiz1             = _mm_add_pd(fiz1,tz);
2126
2127             fjx2             = _mm_add_pd(fjx2,tx);
2128             fjy2             = _mm_add_pd(fjy2,ty);
2129             fjz2             = _mm_add_pd(fjz2,tz);
2130
2131             /**************************
2132              * CALCULATE INTERACTIONS *
2133              **************************/
2134
2135             r13              = _mm_mul_pd(rsq13,rinv13);
2136
2137             /* EWALD ELECTROSTATICS */
2138
2139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2140             ewrt             = _mm_mul_pd(r13,ewtabscale);
2141             ewitab           = _mm_cvttpd_epi32(ewrt);
2142             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2143             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2144             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2145             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2146
2147             fscal            = felec;
2148
2149             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2150
2151             /* Calculate temporary vectorial force */
2152             tx               = _mm_mul_pd(fscal,dx13);
2153             ty               = _mm_mul_pd(fscal,dy13);
2154             tz               = _mm_mul_pd(fscal,dz13);
2155
2156             /* Update vectorial force */
2157             fix1             = _mm_add_pd(fix1,tx);
2158             fiy1             = _mm_add_pd(fiy1,ty);
2159             fiz1             = _mm_add_pd(fiz1,tz);
2160
2161             fjx3             = _mm_add_pd(fjx3,tx);
2162             fjy3             = _mm_add_pd(fjy3,ty);
2163             fjz3             = _mm_add_pd(fjz3,tz);
2164
2165             /**************************
2166              * CALCULATE INTERACTIONS *
2167              **************************/
2168
2169             r21              = _mm_mul_pd(rsq21,rinv21);
2170
2171             /* EWALD ELECTROSTATICS */
2172
2173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2174             ewrt             = _mm_mul_pd(r21,ewtabscale);
2175             ewitab           = _mm_cvttpd_epi32(ewrt);
2176             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2177             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2178             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2179             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2180
2181             fscal            = felec;
2182
2183             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2184
2185             /* Calculate temporary vectorial force */
2186             tx               = _mm_mul_pd(fscal,dx21);
2187             ty               = _mm_mul_pd(fscal,dy21);
2188             tz               = _mm_mul_pd(fscal,dz21);
2189
2190             /* Update vectorial force */
2191             fix2             = _mm_add_pd(fix2,tx);
2192             fiy2             = _mm_add_pd(fiy2,ty);
2193             fiz2             = _mm_add_pd(fiz2,tz);
2194
2195             fjx1             = _mm_add_pd(fjx1,tx);
2196             fjy1             = _mm_add_pd(fjy1,ty);
2197             fjz1             = _mm_add_pd(fjz1,tz);
2198
2199             /**************************
2200              * CALCULATE INTERACTIONS *
2201              **************************/
2202
2203             r22              = _mm_mul_pd(rsq22,rinv22);
2204
2205             /* EWALD ELECTROSTATICS */
2206
2207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2208             ewrt             = _mm_mul_pd(r22,ewtabscale);
2209             ewitab           = _mm_cvttpd_epi32(ewrt);
2210             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2211             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2212             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2213             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2214
2215             fscal            = felec;
2216
2217             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2218
2219             /* Calculate temporary vectorial force */
2220             tx               = _mm_mul_pd(fscal,dx22);
2221             ty               = _mm_mul_pd(fscal,dy22);
2222             tz               = _mm_mul_pd(fscal,dz22);
2223
2224             /* Update vectorial force */
2225             fix2             = _mm_add_pd(fix2,tx);
2226             fiy2             = _mm_add_pd(fiy2,ty);
2227             fiz2             = _mm_add_pd(fiz2,tz);
2228
2229             fjx2             = _mm_add_pd(fjx2,tx);
2230             fjy2             = _mm_add_pd(fjy2,ty);
2231             fjz2             = _mm_add_pd(fjz2,tz);
2232
2233             /**************************
2234              * CALCULATE INTERACTIONS *
2235              **************************/
2236
2237             r23              = _mm_mul_pd(rsq23,rinv23);
2238
2239             /* EWALD ELECTROSTATICS */
2240
2241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2242             ewrt             = _mm_mul_pd(r23,ewtabscale);
2243             ewitab           = _mm_cvttpd_epi32(ewrt);
2244             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2245             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2246             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2247             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2248
2249             fscal            = felec;
2250
2251             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2252
2253             /* Calculate temporary vectorial force */
2254             tx               = _mm_mul_pd(fscal,dx23);
2255             ty               = _mm_mul_pd(fscal,dy23);
2256             tz               = _mm_mul_pd(fscal,dz23);
2257
2258             /* Update vectorial force */
2259             fix2             = _mm_add_pd(fix2,tx);
2260             fiy2             = _mm_add_pd(fiy2,ty);
2261             fiz2             = _mm_add_pd(fiz2,tz);
2262
2263             fjx3             = _mm_add_pd(fjx3,tx);
2264             fjy3             = _mm_add_pd(fjy3,ty);
2265             fjz3             = _mm_add_pd(fjz3,tz);
2266
2267             /**************************
2268              * CALCULATE INTERACTIONS *
2269              **************************/
2270
2271             r31              = _mm_mul_pd(rsq31,rinv31);
2272
2273             /* EWALD ELECTROSTATICS */
2274
2275             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2276             ewrt             = _mm_mul_pd(r31,ewtabscale);
2277             ewitab           = _mm_cvttpd_epi32(ewrt);
2278             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2279             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2280             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2281             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2282
2283             fscal            = felec;
2284
2285             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2286
2287             /* Calculate temporary vectorial force */
2288             tx               = _mm_mul_pd(fscal,dx31);
2289             ty               = _mm_mul_pd(fscal,dy31);
2290             tz               = _mm_mul_pd(fscal,dz31);
2291
2292             /* Update vectorial force */
2293             fix3             = _mm_add_pd(fix3,tx);
2294             fiy3             = _mm_add_pd(fiy3,ty);
2295             fiz3             = _mm_add_pd(fiz3,tz);
2296
2297             fjx1             = _mm_add_pd(fjx1,tx);
2298             fjy1             = _mm_add_pd(fjy1,ty);
2299             fjz1             = _mm_add_pd(fjz1,tz);
2300
2301             /**************************
2302              * CALCULATE INTERACTIONS *
2303              **************************/
2304
2305             r32              = _mm_mul_pd(rsq32,rinv32);
2306
2307             /* EWALD ELECTROSTATICS */
2308
2309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2310             ewrt             = _mm_mul_pd(r32,ewtabscale);
2311             ewitab           = _mm_cvttpd_epi32(ewrt);
2312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2313             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2314             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2315             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2316
2317             fscal            = felec;
2318
2319             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2320
2321             /* Calculate temporary vectorial force */
2322             tx               = _mm_mul_pd(fscal,dx32);
2323             ty               = _mm_mul_pd(fscal,dy32);
2324             tz               = _mm_mul_pd(fscal,dz32);
2325
2326             /* Update vectorial force */
2327             fix3             = _mm_add_pd(fix3,tx);
2328             fiy3             = _mm_add_pd(fiy3,ty);
2329             fiz3             = _mm_add_pd(fiz3,tz);
2330
2331             fjx2             = _mm_add_pd(fjx2,tx);
2332             fjy2             = _mm_add_pd(fjy2,ty);
2333             fjz2             = _mm_add_pd(fjz2,tz);
2334
2335             /**************************
2336              * CALCULATE INTERACTIONS *
2337              **************************/
2338
2339             r33              = _mm_mul_pd(rsq33,rinv33);
2340
2341             /* EWALD ELECTROSTATICS */
2342
2343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2344             ewrt             = _mm_mul_pd(r33,ewtabscale);
2345             ewitab           = _mm_cvttpd_epi32(ewrt);
2346             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2347             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2348             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2349             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2350
2351             fscal            = felec;
2352
2353             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2354
2355             /* Calculate temporary vectorial force */
2356             tx               = _mm_mul_pd(fscal,dx33);
2357             ty               = _mm_mul_pd(fscal,dy33);
2358             tz               = _mm_mul_pd(fscal,dz33);
2359
2360             /* Update vectorial force */
2361             fix3             = _mm_add_pd(fix3,tx);
2362             fiy3             = _mm_add_pd(fiy3,ty);
2363             fiz3             = _mm_add_pd(fiz3,tz);
2364
2365             fjx3             = _mm_add_pd(fjx3,tx);
2366             fjy3             = _mm_add_pd(fjy3,ty);
2367             fjz3             = _mm_add_pd(fjz3,tz);
2368
2369             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2370
2371             /* Inner loop uses 373 flops */
2372         }
2373
2374         /* End of innermost loop */
2375
2376         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2377                                               f+i_coord_offset,fshift+i_shift_offset);
2378
2379         /* Increment number of inner iterations */
2380         inneriter                  += j_index_end - j_index_start;
2381
2382         /* Outer loop uses 24 flops */
2383     }
2384
2385     /* Increment number of outer iterations */
2386     outeriter        += nri;
2387
2388     /* Update outer/inner flops */
2389
2390     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*373);
2391 }