Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     real             *vdwgridparam;
108     __m128d           one_half = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_pd();
177         fiy0             = _mm_setzero_pd();
178         fiz0             = _mm_setzero_pd();
179         fix1             = _mm_setzero_pd();
180         fiy1             = _mm_setzero_pd();
181         fiz1             = _mm_setzero_pd();
182         fix2             = _mm_setzero_pd();
183         fiy2             = _mm_setzero_pd();
184         fiz2             = _mm_setzero_pd();
185         fix3             = _mm_setzero_pd();
186         fiy3             = _mm_setzero_pd();
187         fiz3             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217             dx30             = _mm_sub_pd(ix3,jx0);
218             dy30             = _mm_sub_pd(iy3,jy0);
219             dz30             = _mm_sub_pd(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
226
227             rinv00           = gmx_mm_invsqrt_pd(rsq00);
228             rinv10           = gmx_mm_invsqrt_pd(rsq10);
229             rinv20           = gmx_mm_invsqrt_pd(rsq20);
230             rinv30           = gmx_mm_invsqrt_pd(rsq30);
231
232             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
233             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
234             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
235             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241
242             fjx0             = _mm_setzero_pd();
243             fjy0             = _mm_setzero_pd();
244             fjz0             = _mm_setzero_pd();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
255             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
256                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
257
258             /* Analytical LJ-PME */
259             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
260             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
261             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
262             exponent         = gmx_simd_exp_d(ewcljrsq);
263             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
264             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
265             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
266             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
267             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
269             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
270             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
274
275             fscal            = fvdw;
276
277             /* Calculate temporary vectorial force */
278             tx               = _mm_mul_pd(fscal,dx00);
279             ty               = _mm_mul_pd(fscal,dy00);
280             tz               = _mm_mul_pd(fscal,dz00);
281
282             /* Update vectorial force */
283             fix0             = _mm_add_pd(fix0,tx);
284             fiy0             = _mm_add_pd(fiy0,ty);
285             fiz0             = _mm_add_pd(fiz0,tz);
286
287             fjx0             = _mm_add_pd(fjx0,tx);
288             fjy0             = _mm_add_pd(fjy0,ty);
289             fjz0             = _mm_add_pd(fjz0,tz);
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r10              = _mm_mul_pd(rsq10,rinv10);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_pd(iq1,jq0);
299
300             /* EWALD ELECTROSTATICS */
301
302             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303             ewrt             = _mm_mul_pd(r10,ewtabscale);
304             ewitab           = _mm_cvttpd_epi32(ewrt);
305             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
306             ewitab           = _mm_slli_epi32(ewitab,2);
307             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
308             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
309             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
310             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
311             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
312             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
313             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
314             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
315             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
316             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm_mul_pd(fscal,dx10);
325             ty               = _mm_mul_pd(fscal,dy10);
326             tz               = _mm_mul_pd(fscal,dz10);
327
328             /* Update vectorial force */
329             fix1             = _mm_add_pd(fix1,tx);
330             fiy1             = _mm_add_pd(fiy1,ty);
331             fiz1             = _mm_add_pd(fiz1,tz);
332
333             fjx0             = _mm_add_pd(fjx0,tx);
334             fjy0             = _mm_add_pd(fjy0,ty);
335             fjz0             = _mm_add_pd(fjz0,tz);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r20              = _mm_mul_pd(rsq20,rinv20);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq20             = _mm_mul_pd(iq2,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
349             ewrt             = _mm_mul_pd(r20,ewtabscale);
350             ewitab           = _mm_cvttpd_epi32(ewrt);
351             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
352             ewitab           = _mm_slli_epi32(ewitab,2);
353             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
354             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
355             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
356             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
357             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
358             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
359             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
360             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
361             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
362             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velecsum         = _mm_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_pd(fscal,dx20);
371             ty               = _mm_mul_pd(fscal,dy20);
372             tz               = _mm_mul_pd(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm_add_pd(fix2,tx);
376             fiy2             = _mm_add_pd(fiy2,ty);
377             fiz2             = _mm_add_pd(fiz2,tz);
378
379             fjx0             = _mm_add_pd(fjx0,tx);
380             fjy0             = _mm_add_pd(fjy0,ty);
381             fjz0             = _mm_add_pd(fjz0,tz);
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             r30              = _mm_mul_pd(rsq30,rinv30);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm_mul_pd(iq3,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r30,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
406             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
407             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velecsum         = _mm_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_pd(fscal,dx30);
417             ty               = _mm_mul_pd(fscal,dy30);
418             tz               = _mm_mul_pd(fscal,dz30);
419
420             /* Update vectorial force */
421             fix3             = _mm_add_pd(fix3,tx);
422             fiy3             = _mm_add_pd(fiy3,ty);
423             fiz3             = _mm_add_pd(fiz3,tz);
424
425             fjx0             = _mm_add_pd(fjx0,tx);
426             fjy0             = _mm_add_pd(fjy0,ty);
427             fjz0             = _mm_add_pd(fjz0,tz);
428
429             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 177 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             jnrA             = jjnr[jidx];
438             j_coord_offsetA  = DIM*jnrA;
439
440             /* load j atom coordinates */
441             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx00             = _mm_sub_pd(ix0,jx0);
446             dy00             = _mm_sub_pd(iy0,jy0);
447             dz00             = _mm_sub_pd(iz0,jz0);
448             dx10             = _mm_sub_pd(ix1,jx0);
449             dy10             = _mm_sub_pd(iy1,jy0);
450             dz10             = _mm_sub_pd(iz1,jz0);
451             dx20             = _mm_sub_pd(ix2,jx0);
452             dy20             = _mm_sub_pd(iy2,jy0);
453             dz20             = _mm_sub_pd(iz2,jz0);
454             dx30             = _mm_sub_pd(ix3,jx0);
455             dy30             = _mm_sub_pd(iy3,jy0);
456             dz30             = _mm_sub_pd(iz3,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
462             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
463
464             rinv00           = gmx_mm_invsqrt_pd(rsq00);
465             rinv10           = gmx_mm_invsqrt_pd(rsq10);
466             rinv20           = gmx_mm_invsqrt_pd(rsq20);
467             rinv30           = gmx_mm_invsqrt_pd(rsq30);
468
469             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
470             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
471             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
472             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
473
474             /* Load parameters for j particles */
475             jq0              = _mm_load_sd(charge+jnrA+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477
478             fjx0             = _mm_setzero_pd();
479             fjy0             = _mm_setzero_pd();
480             fjz0             = _mm_setzero_pd();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
490
491             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
492
493             /* Analytical LJ-PME */
494             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
495             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
496             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
497             exponent         = gmx_simd_exp_d(ewcljrsq);
498             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
499             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
500             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
501             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
502             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
503             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
504             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
505             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
509             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
510
511             fscal            = fvdw;
512
513             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_pd(fscal,dx00);
517             ty               = _mm_mul_pd(fscal,dy00);
518             tz               = _mm_mul_pd(fscal,dz00);
519
520             /* Update vectorial force */
521             fix0             = _mm_add_pd(fix0,tx);
522             fiy0             = _mm_add_pd(fiy0,ty);
523             fiz0             = _mm_add_pd(fiz0,tz);
524
525             fjx0             = _mm_add_pd(fjx0,tx);
526             fjy0             = _mm_add_pd(fjy0,ty);
527             fjz0             = _mm_add_pd(fjz0,tz);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r10              = _mm_mul_pd(rsq10,rinv10);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq10             = _mm_mul_pd(iq1,jq0);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _mm_mul_pd(r10,ewtabscale);
542             ewitab           = _mm_cvttpd_epi32(ewrt);
543             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
544             ewitab           = _mm_slli_epi32(ewitab,2);
545             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
546             ewtabD           = _mm_setzero_pd();
547             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
548             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
549             ewtabFn          = _mm_setzero_pd();
550             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
551             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
552             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
553             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
554             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
558             velecsum         = _mm_add_pd(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_pd(fscal,dx10);
566             ty               = _mm_mul_pd(fscal,dy10);
567             tz               = _mm_mul_pd(fscal,dz10);
568
569             /* Update vectorial force */
570             fix1             = _mm_add_pd(fix1,tx);
571             fiy1             = _mm_add_pd(fiy1,ty);
572             fiz1             = _mm_add_pd(fiz1,tz);
573
574             fjx0             = _mm_add_pd(fjx0,tx);
575             fjy0             = _mm_add_pd(fjy0,ty);
576             fjz0             = _mm_add_pd(fjz0,tz);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r20              = _mm_mul_pd(rsq20,rinv20);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_pd(iq2,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _mm_mul_pd(r20,ewtabscale);
591             ewitab           = _mm_cvttpd_epi32(ewrt);
592             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
597             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
598             ewtabFn          = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
600             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
601             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
602             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
603             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_pd(fscal,dx20);
615             ty               = _mm_mul_pd(fscal,dy20);
616             tz               = _mm_mul_pd(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_pd(fix2,tx);
620             fiy2             = _mm_add_pd(fiy2,ty);
621             fiz2             = _mm_add_pd(fiz2,tz);
622
623             fjx0             = _mm_add_pd(fjx0,tx);
624             fjy0             = _mm_add_pd(fjy0,ty);
625             fjz0             = _mm_add_pd(fjz0,tz);
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r30              = _mm_mul_pd(rsq30,rinv30);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq30             = _mm_mul_pd(iq3,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_pd(r30,ewtabscale);
640             ewitab           = _mm_cvttpd_epi32(ewrt);
641             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_setzero_pd();
645             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
646             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
647             ewtabFn          = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
649             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
650             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
651             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
652             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
656             velecsum         = _mm_add_pd(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm_mul_pd(fscal,dx30);
664             ty               = _mm_mul_pd(fscal,dy30);
665             tz               = _mm_mul_pd(fscal,dz30);
666
667             /* Update vectorial force */
668             fix3             = _mm_add_pd(fix3,tx);
669             fiy3             = _mm_add_pd(fiy3,ty);
670             fiz3             = _mm_add_pd(fiz3,tz);
671
672             fjx0             = _mm_add_pd(fjx0,tx);
673             fjy0             = _mm_add_pd(fjy0,ty);
674             fjz0             = _mm_add_pd(fjz0,tz);
675
676             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
677
678             /* Inner loop uses 177 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         ggid                        = gid[iidx];
687         /* Update potential energies */
688         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
689         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
690
691         /* Increment number of inner iterations */
692         inneriter                  += j_index_end - j_index_start;
693
694         /* Outer loop uses 26 flops */
695     }
696
697     /* Increment number of outer iterations */
698     outeriter        += nri;
699
700     /* Update outer/inner flops */
701
702     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
703 }
704 /*
705  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_double
706  * Electrostatics interaction: Ewald
707  * VdW interaction:            LJEwald
708  * Geometry:                   Water4-Particle
709  * Calculate force/pot:        Force
710  */
711 void
712 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_double
713                     (t_nblist                    * gmx_restrict       nlist,
714                      rvec                        * gmx_restrict          xx,
715                      rvec                        * gmx_restrict          ff,
716                      t_forcerec                  * gmx_restrict          fr,
717                      t_mdatoms                   * gmx_restrict     mdatoms,
718                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
719                      t_nrnb                      * gmx_restrict        nrnb)
720 {
721     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
722      * just 0 for non-waters.
723      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
724      * jnr indices corresponding to data put in the four positions in the SIMD register.
725      */
726     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
727     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
728     int              jnrA,jnrB;
729     int              j_coord_offsetA,j_coord_offsetB;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
734     int              vdwioffset0;
735     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
736     int              vdwioffset1;
737     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
738     int              vdwioffset2;
739     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
740     int              vdwioffset3;
741     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
742     int              vdwjidx0A,vdwjidx0B;
743     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
748     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
749     real             *charge;
750     int              nvdwtype;
751     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
752     int              *vdwtype;
753     real             *vdwparam;
754     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
755     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
756     __m128d           c6grid_00;
757     __m128d           c6grid_10;
758     __m128d           c6grid_20;
759     __m128d           c6grid_30;
760     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
761     real             *vdwgridparam;
762     __m128d           one_half = _mm_set1_pd(0.5);
763     __m128d           minus_one = _mm_set1_pd(-1.0);
764     __m128i          ewitab;
765     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
766     real             *ewtab;
767     __m128d          dummy_mask,cutoff_mask;
768     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
769     __m128d          one     = _mm_set1_pd(1.0);
770     __m128d          two     = _mm_set1_pd(2.0);
771     x                = xx[0];
772     f                = ff[0];
773
774     nri              = nlist->nri;
775     iinr             = nlist->iinr;
776     jindex           = nlist->jindex;
777     jjnr             = nlist->jjnr;
778     shiftidx         = nlist->shift;
779     gid              = nlist->gid;
780     shiftvec         = fr->shift_vec[0];
781     fshift           = fr->fshift[0];
782     facel            = _mm_set1_pd(fr->epsfac);
783     charge           = mdatoms->chargeA;
784     nvdwtype         = fr->ntype;
785     vdwparam         = fr->nbfp;
786     vdwtype          = mdatoms->typeA;
787     vdwgridparam     = fr->ljpme_c6grid;
788     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
789     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
790     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
791
792     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
793     ewtab            = fr->ic->tabq_coul_F;
794     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
795     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
796
797     /* Setup water-specific parameters */
798     inr              = nlist->iinr[0];
799     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
800     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
801     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
802     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
803
804     /* Avoid stupid compiler warnings */
805     jnrA = jnrB = 0;
806     j_coord_offsetA = 0;
807     j_coord_offsetB = 0;
808
809     outeriter        = 0;
810     inneriter        = 0;
811
812     /* Start outer loop over neighborlists */
813     for(iidx=0; iidx<nri; iidx++)
814     {
815         /* Load shift vector for this list */
816         i_shift_offset   = DIM*shiftidx[iidx];
817
818         /* Load limits for loop over neighbors */
819         j_index_start    = jindex[iidx];
820         j_index_end      = jindex[iidx+1];
821
822         /* Get outer coordinate index */
823         inr              = iinr[iidx];
824         i_coord_offset   = DIM*inr;
825
826         /* Load i particle coords and add shift vector */
827         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
828                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
829
830         fix0             = _mm_setzero_pd();
831         fiy0             = _mm_setzero_pd();
832         fiz0             = _mm_setzero_pd();
833         fix1             = _mm_setzero_pd();
834         fiy1             = _mm_setzero_pd();
835         fiz1             = _mm_setzero_pd();
836         fix2             = _mm_setzero_pd();
837         fiy2             = _mm_setzero_pd();
838         fiz2             = _mm_setzero_pd();
839         fix3             = _mm_setzero_pd();
840         fiy3             = _mm_setzero_pd();
841         fiz3             = _mm_setzero_pd();
842
843         /* Start inner kernel loop */
844         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrA             = jjnr[jidx];
849             jnrB             = jjnr[jidx+1];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852
853             /* load j atom coordinates */
854             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
855                                               &jx0,&jy0,&jz0);
856
857             /* Calculate displacement vector */
858             dx00             = _mm_sub_pd(ix0,jx0);
859             dy00             = _mm_sub_pd(iy0,jy0);
860             dz00             = _mm_sub_pd(iz0,jz0);
861             dx10             = _mm_sub_pd(ix1,jx0);
862             dy10             = _mm_sub_pd(iy1,jy0);
863             dz10             = _mm_sub_pd(iz1,jz0);
864             dx20             = _mm_sub_pd(ix2,jx0);
865             dy20             = _mm_sub_pd(iy2,jy0);
866             dz20             = _mm_sub_pd(iz2,jz0);
867             dx30             = _mm_sub_pd(ix3,jx0);
868             dy30             = _mm_sub_pd(iy3,jy0);
869             dz30             = _mm_sub_pd(iz3,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
873             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
874             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
875             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
876
877             rinv00           = gmx_mm_invsqrt_pd(rsq00);
878             rinv10           = gmx_mm_invsqrt_pd(rsq10);
879             rinv20           = gmx_mm_invsqrt_pd(rsq20);
880             rinv30           = gmx_mm_invsqrt_pd(rsq30);
881
882             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
883             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
884             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
885             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
886
887             /* Load parameters for j particles */
888             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
889             vdwjidx0A        = 2*vdwtype[jnrA+0];
890             vdwjidx0B        = 2*vdwtype[jnrB+0];
891
892             fjx0             = _mm_setzero_pd();
893             fjy0             = _mm_setzero_pd();
894             fjz0             = _mm_setzero_pd();
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             r00              = _mm_mul_pd(rsq00,rinv00);
901
902             /* Compute parameters for interactions between i and j atoms */
903             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
904                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
905             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
906                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
907
908             /* Analytical LJ-PME */
909             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
910             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
911             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
912             exponent         = gmx_simd_exp_d(ewcljrsq);
913             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
914             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
915             /* f6A = 6 * C6grid * (1 - poly) */
916             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
917             /* f6B = C6grid * exponent * beta^6 */
918             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
919             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
920             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
921
922             fscal            = fvdw;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm_mul_pd(fscal,dx00);
926             ty               = _mm_mul_pd(fscal,dy00);
927             tz               = _mm_mul_pd(fscal,dz00);
928
929             /* Update vectorial force */
930             fix0             = _mm_add_pd(fix0,tx);
931             fiy0             = _mm_add_pd(fiy0,ty);
932             fiz0             = _mm_add_pd(fiz0,tz);
933
934             fjx0             = _mm_add_pd(fjx0,tx);
935             fjy0             = _mm_add_pd(fjy0,ty);
936             fjz0             = _mm_add_pd(fjz0,tz);
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             r10              = _mm_mul_pd(rsq10,rinv10);
943
944             /* Compute parameters for interactions between i and j atoms */
945             qq10             = _mm_mul_pd(iq1,jq0);
946
947             /* EWALD ELECTROSTATICS */
948
949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
950             ewrt             = _mm_mul_pd(r10,ewtabscale);
951             ewitab           = _mm_cvttpd_epi32(ewrt);
952             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
953             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
954                                          &ewtabF,&ewtabFn);
955             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
956             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
957
958             fscal            = felec;
959
960             /* Calculate temporary vectorial force */
961             tx               = _mm_mul_pd(fscal,dx10);
962             ty               = _mm_mul_pd(fscal,dy10);
963             tz               = _mm_mul_pd(fscal,dz10);
964
965             /* Update vectorial force */
966             fix1             = _mm_add_pd(fix1,tx);
967             fiy1             = _mm_add_pd(fiy1,ty);
968             fiz1             = _mm_add_pd(fiz1,tz);
969
970             fjx0             = _mm_add_pd(fjx0,tx);
971             fjy0             = _mm_add_pd(fjy0,ty);
972             fjz0             = _mm_add_pd(fjz0,tz);
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             r20              = _mm_mul_pd(rsq20,rinv20);
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq20             = _mm_mul_pd(iq2,jq0);
982
983             /* EWALD ELECTROSTATICS */
984
985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
986             ewrt             = _mm_mul_pd(r20,ewtabscale);
987             ewitab           = _mm_cvttpd_epi32(ewrt);
988             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
989             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
990                                          &ewtabF,&ewtabFn);
991             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
992             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm_mul_pd(fscal,dx20);
998             ty               = _mm_mul_pd(fscal,dy20);
999             tz               = _mm_mul_pd(fscal,dz20);
1000
1001             /* Update vectorial force */
1002             fix2             = _mm_add_pd(fix2,tx);
1003             fiy2             = _mm_add_pd(fiy2,ty);
1004             fiz2             = _mm_add_pd(fiz2,tz);
1005
1006             fjx0             = _mm_add_pd(fjx0,tx);
1007             fjy0             = _mm_add_pd(fjy0,ty);
1008             fjz0             = _mm_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r30              = _mm_mul_pd(rsq30,rinv30);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq30             = _mm_mul_pd(iq3,jq0);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _mm_mul_pd(r30,ewtabscale);
1023             ewitab           = _mm_cvttpd_epi32(ewrt);
1024             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1025             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1026                                          &ewtabF,&ewtabFn);
1027             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1028             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1029
1030             fscal            = felec;
1031
1032             /* Calculate temporary vectorial force */
1033             tx               = _mm_mul_pd(fscal,dx30);
1034             ty               = _mm_mul_pd(fscal,dy30);
1035             tz               = _mm_mul_pd(fscal,dz30);
1036
1037             /* Update vectorial force */
1038             fix3             = _mm_add_pd(fix3,tx);
1039             fiy3             = _mm_add_pd(fiy3,ty);
1040             fiz3             = _mm_add_pd(fiz3,tz);
1041
1042             fjx0             = _mm_add_pd(fjx0,tx);
1043             fjy0             = _mm_add_pd(fjy0,ty);
1044             fjz0             = _mm_add_pd(fjz0,tz);
1045
1046             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1047
1048             /* Inner loop uses 157 flops */
1049         }
1050
1051         if(jidx<j_index_end)
1052         {
1053
1054             jnrA             = jjnr[jidx];
1055             j_coord_offsetA  = DIM*jnrA;
1056
1057             /* load j atom coordinates */
1058             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1059                                               &jx0,&jy0,&jz0);
1060
1061             /* Calculate displacement vector */
1062             dx00             = _mm_sub_pd(ix0,jx0);
1063             dy00             = _mm_sub_pd(iy0,jy0);
1064             dz00             = _mm_sub_pd(iz0,jz0);
1065             dx10             = _mm_sub_pd(ix1,jx0);
1066             dy10             = _mm_sub_pd(iy1,jy0);
1067             dz10             = _mm_sub_pd(iz1,jz0);
1068             dx20             = _mm_sub_pd(ix2,jx0);
1069             dy20             = _mm_sub_pd(iy2,jy0);
1070             dz20             = _mm_sub_pd(iz2,jz0);
1071             dx30             = _mm_sub_pd(ix3,jx0);
1072             dy30             = _mm_sub_pd(iy3,jy0);
1073             dz30             = _mm_sub_pd(iz3,jz0);
1074
1075             /* Calculate squared distance and things based on it */
1076             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1077             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1078             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1079             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1080
1081             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1082             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1083             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1084             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1085
1086             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1087             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1088             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1089             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1090
1091             /* Load parameters for j particles */
1092             jq0              = _mm_load_sd(charge+jnrA+0);
1093             vdwjidx0A        = 2*vdwtype[jnrA+0];
1094
1095             fjx0             = _mm_setzero_pd();
1096             fjy0             = _mm_setzero_pd();
1097             fjz0             = _mm_setzero_pd();
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             r00              = _mm_mul_pd(rsq00,rinv00);
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1107
1108             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1109
1110             /* Analytical LJ-PME */
1111             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1112             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1113             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1114             exponent         = gmx_simd_exp_d(ewcljrsq);
1115             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1116             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1117             /* f6A = 6 * C6grid * (1 - poly) */
1118             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1119             /* f6B = C6grid * exponent * beta^6 */
1120             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1121             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1122             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1123
1124             fscal            = fvdw;
1125
1126             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1127
1128             /* Calculate temporary vectorial force */
1129             tx               = _mm_mul_pd(fscal,dx00);
1130             ty               = _mm_mul_pd(fscal,dy00);
1131             tz               = _mm_mul_pd(fscal,dz00);
1132
1133             /* Update vectorial force */
1134             fix0             = _mm_add_pd(fix0,tx);
1135             fiy0             = _mm_add_pd(fiy0,ty);
1136             fiz0             = _mm_add_pd(fiz0,tz);
1137
1138             fjx0             = _mm_add_pd(fjx0,tx);
1139             fjy0             = _mm_add_pd(fjy0,ty);
1140             fjz0             = _mm_add_pd(fjz0,tz);
1141
1142             /**************************
1143              * CALCULATE INTERACTIONS *
1144              **************************/
1145
1146             r10              = _mm_mul_pd(rsq10,rinv10);
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq10             = _mm_mul_pd(iq1,jq0);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_pd(r10,ewtabscale);
1155             ewitab           = _mm_cvttpd_epi32(ewrt);
1156             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1157             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1158             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1159             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_pd(fscal,dx10);
1167             ty               = _mm_mul_pd(fscal,dy10);
1168             tz               = _mm_mul_pd(fscal,dz10);
1169
1170             /* Update vectorial force */
1171             fix1             = _mm_add_pd(fix1,tx);
1172             fiy1             = _mm_add_pd(fiy1,ty);
1173             fiz1             = _mm_add_pd(fiz1,tz);
1174
1175             fjx0             = _mm_add_pd(fjx0,tx);
1176             fjy0             = _mm_add_pd(fjy0,ty);
1177             fjz0             = _mm_add_pd(fjz0,tz);
1178
1179             /**************************
1180              * CALCULATE INTERACTIONS *
1181              **************************/
1182
1183             r20              = _mm_mul_pd(rsq20,rinv20);
1184
1185             /* Compute parameters for interactions between i and j atoms */
1186             qq20             = _mm_mul_pd(iq2,jq0);
1187
1188             /* EWALD ELECTROSTATICS */
1189
1190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1191             ewrt             = _mm_mul_pd(r20,ewtabscale);
1192             ewitab           = _mm_cvttpd_epi32(ewrt);
1193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1194             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1195             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1196             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm_mul_pd(fscal,dx20);
1204             ty               = _mm_mul_pd(fscal,dy20);
1205             tz               = _mm_mul_pd(fscal,dz20);
1206
1207             /* Update vectorial force */
1208             fix2             = _mm_add_pd(fix2,tx);
1209             fiy2             = _mm_add_pd(fiy2,ty);
1210             fiz2             = _mm_add_pd(fiz2,tz);
1211
1212             fjx0             = _mm_add_pd(fjx0,tx);
1213             fjy0             = _mm_add_pd(fjy0,ty);
1214             fjz0             = _mm_add_pd(fjz0,tz);
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             r30              = _mm_mul_pd(rsq30,rinv30);
1221
1222             /* Compute parameters for interactions between i and j atoms */
1223             qq30             = _mm_mul_pd(iq3,jq0);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm_mul_pd(r30,ewtabscale);
1229             ewitab           = _mm_cvttpd_epi32(ewrt);
1230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1231             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1232             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1233             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1234
1235             fscal            = felec;
1236
1237             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1238
1239             /* Calculate temporary vectorial force */
1240             tx               = _mm_mul_pd(fscal,dx30);
1241             ty               = _mm_mul_pd(fscal,dy30);
1242             tz               = _mm_mul_pd(fscal,dz30);
1243
1244             /* Update vectorial force */
1245             fix3             = _mm_add_pd(fix3,tx);
1246             fiy3             = _mm_add_pd(fiy3,ty);
1247             fiz3             = _mm_add_pd(fiz3,tz);
1248
1249             fjx0             = _mm_add_pd(fjx0,tx);
1250             fjy0             = _mm_add_pd(fjy0,ty);
1251             fjz0             = _mm_add_pd(fjz0,tz);
1252
1253             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1254
1255             /* Inner loop uses 157 flops */
1256         }
1257
1258         /* End of innermost loop */
1259
1260         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1261                                               f+i_coord_offset,fshift+i_shift_offset);
1262
1263         /* Increment number of inner iterations */
1264         inneriter                  += j_index_end - j_index_start;
1265
1266         /* Outer loop uses 24 flops */
1267     }
1268
1269     /* Increment number of outer iterations */
1270     outeriter        += nri;
1271
1272     /* Update outer/inner flops */
1273
1274     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*157);
1275 }