Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128d           one_half = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_pd();
179         fiy0             = _mm_setzero_pd();
180         fiz0             = _mm_setzero_pd();
181         fix1             = _mm_setzero_pd();
182         fiy1             = _mm_setzero_pd();
183         fiz1             = _mm_setzero_pd();
184         fix2             = _mm_setzero_pd();
185         fiy2             = _mm_setzero_pd();
186         fiz2             = _mm_setzero_pd();
187         fix3             = _mm_setzero_pd();
188         fiy3             = _mm_setzero_pd();
189         fiz3             = _mm_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_pd();
193         vvdwsum          = _mm_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_pd(ix0,jx0);
211             dy00             = _mm_sub_pd(iy0,jy0);
212             dz00             = _mm_sub_pd(iz0,jz0);
213             dx10             = _mm_sub_pd(ix1,jx0);
214             dy10             = _mm_sub_pd(iy1,jy0);
215             dz10             = _mm_sub_pd(iz1,jz0);
216             dx20             = _mm_sub_pd(ix2,jx0);
217             dy20             = _mm_sub_pd(iy2,jy0);
218             dz20             = _mm_sub_pd(iz2,jz0);
219             dx30             = _mm_sub_pd(ix3,jx0);
220             dy30             = _mm_sub_pd(iy3,jy0);
221             dz30             = _mm_sub_pd(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm_invsqrt_pd(rsq20);
232             rinv30           = gmx_mm_invsqrt_pd(rsq30);
233
234             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
235             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _mm_setzero_pd();
245             fjy0             = _mm_setzero_pd();
246             fjz0             = _mm_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
257             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
258                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
259
260             /* Analytical LJ-PME */
261             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
262             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
263             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
264             exponent         = gmx_simd_exp_d(ewcljrsq);
265             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
266             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
267             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
268             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
269             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
270             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
271             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
272             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = fvdw;
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx00);
281             ty               = _mm_mul_pd(fscal,dy00);
282             tz               = _mm_mul_pd(fscal,dz00);
283
284             /* Update vectorial force */
285             fix0             = _mm_add_pd(fix0,tx);
286             fiy0             = _mm_add_pd(fiy0,ty);
287             fiz0             = _mm_add_pd(fiz0,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r10              = _mm_mul_pd(rsq10,rinv10);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_pd(iq1,jq0);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _mm_mul_pd(r10,ewtabscale);
306             ewitab           = _mm_cvttpd_epi32(ewrt);
307             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
308             ewitab           = _mm_slli_epi32(ewitab,2);
309             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
310             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
311             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
312             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
313             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
314             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
315             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
316             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
317             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
318             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx10);
327             ty               = _mm_mul_pd(fscal,dy10);
328             tz               = _mm_mul_pd(fscal,dz10);
329
330             /* Update vectorial force */
331             fix1             = _mm_add_pd(fix1,tx);
332             fiy1             = _mm_add_pd(fiy1,ty);
333             fiz1             = _mm_add_pd(fiz1,tz);
334
335             fjx0             = _mm_add_pd(fjx0,tx);
336             fjy0             = _mm_add_pd(fjy0,ty);
337             fjz0             = _mm_add_pd(fjz0,tz);
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r20              = _mm_mul_pd(rsq20,rinv20);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _mm_mul_pd(iq2,jq0);
347
348             /* EWALD ELECTROSTATICS */
349
350             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
351             ewrt             = _mm_mul_pd(r20,ewtabscale);
352             ewitab           = _mm_cvttpd_epi32(ewrt);
353             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
354             ewitab           = _mm_slli_epi32(ewitab,2);
355             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
356             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
357             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
358             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
359             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
360             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
361             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
362             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
363             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
364             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velecsum         = _mm_add_pd(velecsum,velec);
368
369             fscal            = felec;
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_pd(fscal,dx20);
373             ty               = _mm_mul_pd(fscal,dy20);
374             tz               = _mm_mul_pd(fscal,dz20);
375
376             /* Update vectorial force */
377             fix2             = _mm_add_pd(fix2,tx);
378             fiy2             = _mm_add_pd(fiy2,ty);
379             fiz2             = _mm_add_pd(fiz2,tz);
380
381             fjx0             = _mm_add_pd(fjx0,tx);
382             fjy0             = _mm_add_pd(fjy0,ty);
383             fjz0             = _mm_add_pd(fjz0,tz);
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             r30              = _mm_mul_pd(rsq30,rinv30);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq30             = _mm_mul_pd(iq3,jq0);
393
394             /* EWALD ELECTROSTATICS */
395
396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
397             ewrt             = _mm_mul_pd(r30,ewtabscale);
398             ewitab           = _mm_cvttpd_epi32(ewrt);
399             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
400             ewitab           = _mm_slli_epi32(ewitab,2);
401             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
402             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
403             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
404             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
405             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
406             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
407             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
408             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
409             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
410             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velecsum         = _mm_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_pd(fscal,dx30);
419             ty               = _mm_mul_pd(fscal,dy30);
420             tz               = _mm_mul_pd(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm_add_pd(fix3,tx);
424             fiy3             = _mm_add_pd(fiy3,ty);
425             fiz3             = _mm_add_pd(fiz3,tz);
426
427             fjx0             = _mm_add_pd(fjx0,tx);
428             fjy0             = _mm_add_pd(fjy0,ty);
429             fjz0             = _mm_add_pd(fjz0,tz);
430
431             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 177 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             jnrA             = jjnr[jidx];
440             j_coord_offsetA  = DIM*jnrA;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_pd(ix0,jx0);
448             dy00             = _mm_sub_pd(iy0,jy0);
449             dz00             = _mm_sub_pd(iz0,jz0);
450             dx10             = _mm_sub_pd(ix1,jx0);
451             dy10             = _mm_sub_pd(iy1,jy0);
452             dz10             = _mm_sub_pd(iz1,jz0);
453             dx20             = _mm_sub_pd(ix2,jx0);
454             dy20             = _mm_sub_pd(iy2,jy0);
455             dz20             = _mm_sub_pd(iz2,jz0);
456             dx30             = _mm_sub_pd(ix3,jx0);
457             dy30             = _mm_sub_pd(iy3,jy0);
458             dz30             = _mm_sub_pd(iz3,jz0);
459
460             /* Calculate squared distance and things based on it */
461             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
462             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
463             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
464             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
465
466             rinv00           = gmx_mm_invsqrt_pd(rsq00);
467             rinv10           = gmx_mm_invsqrt_pd(rsq10);
468             rinv20           = gmx_mm_invsqrt_pd(rsq20);
469             rinv30           = gmx_mm_invsqrt_pd(rsq30);
470
471             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
472             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
473             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
474             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
475
476             /* Load parameters for j particles */
477             jq0              = _mm_load_sd(charge+jnrA+0);
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479
480             fjx0             = _mm_setzero_pd();
481             fjy0             = _mm_setzero_pd();
482             fjz0             = _mm_setzero_pd();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r00              = _mm_mul_pd(rsq00,rinv00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
492
493             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
494
495             /* Analytical LJ-PME */
496             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
497             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
498             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
499             exponent         = gmx_simd_exp_d(ewcljrsq);
500             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
501             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
502             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
503             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
504             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
505             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
506             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
507             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
511             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
512
513             fscal            = fvdw;
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx00);
519             ty               = _mm_mul_pd(fscal,dy00);
520             tz               = _mm_mul_pd(fscal,dz00);
521
522             /* Update vectorial force */
523             fix0             = _mm_add_pd(fix0,tx);
524             fiy0             = _mm_add_pd(fiy0,ty);
525             fiz0             = _mm_add_pd(fiz0,tz);
526
527             fjx0             = _mm_add_pd(fjx0,tx);
528             fjy0             = _mm_add_pd(fjy0,ty);
529             fjz0             = _mm_add_pd(fjz0,tz);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r10              = _mm_mul_pd(rsq10,rinv10);
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq10             = _mm_mul_pd(iq1,jq0);
539
540             /* EWALD ELECTROSTATICS */
541
542             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
543             ewrt             = _mm_mul_pd(r10,ewtabscale);
544             ewitab           = _mm_cvttpd_epi32(ewrt);
545             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
546             ewitab           = _mm_slli_epi32(ewitab,2);
547             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
548             ewtabD           = _mm_setzero_pd();
549             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
550             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
551             ewtabFn          = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
553             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
554             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
555             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
556             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_pd(fscal,dx10);
568             ty               = _mm_mul_pd(fscal,dy10);
569             tz               = _mm_mul_pd(fscal,dz10);
570
571             /* Update vectorial force */
572             fix1             = _mm_add_pd(fix1,tx);
573             fiy1             = _mm_add_pd(fiy1,ty);
574             fiz1             = _mm_add_pd(fiz1,tz);
575
576             fjx0             = _mm_add_pd(fjx0,tx);
577             fjy0             = _mm_add_pd(fjy0,ty);
578             fjz0             = _mm_add_pd(fjz0,tz);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r20              = _mm_mul_pd(rsq20,rinv20);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm_mul_pd(iq2,jq0);
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = _mm_mul_pd(r20,ewtabscale);
593             ewitab           = _mm_cvttpd_epi32(ewrt);
594             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
595             ewitab           = _mm_slli_epi32(ewitab,2);
596             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
597             ewtabD           = _mm_setzero_pd();
598             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
599             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
600             ewtabFn          = _mm_setzero_pd();
601             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
602             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
603             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
604             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
605             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
609             velecsum         = _mm_add_pd(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm_mul_pd(fscal,dx20);
617             ty               = _mm_mul_pd(fscal,dy20);
618             tz               = _mm_mul_pd(fscal,dz20);
619
620             /* Update vectorial force */
621             fix2             = _mm_add_pd(fix2,tx);
622             fiy2             = _mm_add_pd(fiy2,ty);
623             fiz2             = _mm_add_pd(fiz2,tz);
624
625             fjx0             = _mm_add_pd(fjx0,tx);
626             fjy0             = _mm_add_pd(fjy0,ty);
627             fjz0             = _mm_add_pd(fjz0,tz);
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             r30              = _mm_mul_pd(rsq30,rinv30);
634
635             /* Compute parameters for interactions between i and j atoms */
636             qq30             = _mm_mul_pd(iq3,jq0);
637
638             /* EWALD ELECTROSTATICS */
639
640             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
641             ewrt             = _mm_mul_pd(r30,ewtabscale);
642             ewitab           = _mm_cvttpd_epi32(ewrt);
643             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
644             ewitab           = _mm_slli_epi32(ewitab,2);
645             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
646             ewtabD           = _mm_setzero_pd();
647             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
648             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
649             ewtabFn          = _mm_setzero_pd();
650             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
651             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
652             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
653             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
654             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
658             velecsum         = _mm_add_pd(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm_mul_pd(fscal,dx30);
666             ty               = _mm_mul_pd(fscal,dy30);
667             tz               = _mm_mul_pd(fscal,dz30);
668
669             /* Update vectorial force */
670             fix3             = _mm_add_pd(fix3,tx);
671             fiy3             = _mm_add_pd(fiy3,ty);
672             fiz3             = _mm_add_pd(fiz3,tz);
673
674             fjx0             = _mm_add_pd(fjx0,tx);
675             fjy0             = _mm_add_pd(fjy0,ty);
676             fjz0             = _mm_add_pd(fjz0,tz);
677
678             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 177 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
691         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 26 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
705 }
706 /*
707  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_double
708  * Electrostatics interaction: Ewald
709  * VdW interaction:            LJEwald
710  * Geometry:                   Water4-Particle
711  * Calculate force/pot:        Force
712  */
713 void
714 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_double
715                     (t_nblist                    * gmx_restrict       nlist,
716                      rvec                        * gmx_restrict          xx,
717                      rvec                        * gmx_restrict          ff,
718                      t_forcerec                  * gmx_restrict          fr,
719                      t_mdatoms                   * gmx_restrict     mdatoms,
720                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
721                      t_nrnb                      * gmx_restrict        nrnb)
722 {
723     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
724      * just 0 for non-waters.
725      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
726      * jnr indices corresponding to data put in the four positions in the SIMD register.
727      */
728     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
729     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
730     int              jnrA,jnrB;
731     int              j_coord_offsetA,j_coord_offsetB;
732     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
733     real             rcutoff_scalar;
734     real             *shiftvec,*fshift,*x,*f;
735     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     int              vdwioffset0;
737     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     int              vdwioffset1;
739     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     int              vdwioffset2;
741     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwioffset3;
743     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
744     int              vdwjidx0A,vdwjidx0B;
745     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
746     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
747     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
748     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
749     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
750     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
751     real             *charge;
752     int              nvdwtype;
753     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
754     int              *vdwtype;
755     real             *vdwparam;
756     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
757     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
758     __m128d           c6grid_00;
759     __m128d           c6grid_10;
760     __m128d           c6grid_20;
761     __m128d           c6grid_30;
762     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
763     real             *vdwgridparam;
764     __m128d           one_half = _mm_set1_pd(0.5);
765     __m128d           minus_one = _mm_set1_pd(-1.0);
766     __m128i          ewitab;
767     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
768     real             *ewtab;
769     __m128d          dummy_mask,cutoff_mask;
770     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
771     __m128d          one     = _mm_set1_pd(1.0);
772     __m128d          two     = _mm_set1_pd(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm_set1_pd(fr->epsfac);
785     charge           = mdatoms->chargeA;
786     nvdwtype         = fr->ntype;
787     vdwparam         = fr->nbfp;
788     vdwtype          = mdatoms->typeA;
789     vdwgridparam     = fr->ljpme_c6grid;
790     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
791     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
792     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
793
794     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
795     ewtab            = fr->ic->tabq_coul_F;
796     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
797     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
798
799     /* Setup water-specific parameters */
800     inr              = nlist->iinr[0];
801     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
802     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
803     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
804     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
805
806     /* Avoid stupid compiler warnings */
807     jnrA = jnrB = 0;
808     j_coord_offsetA = 0;
809     j_coord_offsetB = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
830                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
831
832         fix0             = _mm_setzero_pd();
833         fiy0             = _mm_setzero_pd();
834         fiz0             = _mm_setzero_pd();
835         fix1             = _mm_setzero_pd();
836         fiy1             = _mm_setzero_pd();
837         fiz1             = _mm_setzero_pd();
838         fix2             = _mm_setzero_pd();
839         fiy2             = _mm_setzero_pd();
840         fiz2             = _mm_setzero_pd();
841         fix3             = _mm_setzero_pd();
842         fiy3             = _mm_setzero_pd();
843         fiz3             = _mm_setzero_pd();
844
845         /* Start inner kernel loop */
846         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
847         {
848
849             /* Get j neighbor index, and coordinate index */
850             jnrA             = jjnr[jidx];
851             jnrB             = jjnr[jidx+1];
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854
855             /* load j atom coordinates */
856             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
857                                               &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm_sub_pd(ix0,jx0);
861             dy00             = _mm_sub_pd(iy0,jy0);
862             dz00             = _mm_sub_pd(iz0,jz0);
863             dx10             = _mm_sub_pd(ix1,jx0);
864             dy10             = _mm_sub_pd(iy1,jy0);
865             dz10             = _mm_sub_pd(iz1,jz0);
866             dx20             = _mm_sub_pd(ix2,jx0);
867             dy20             = _mm_sub_pd(iy2,jy0);
868             dz20             = _mm_sub_pd(iz2,jz0);
869             dx30             = _mm_sub_pd(ix3,jx0);
870             dy30             = _mm_sub_pd(iy3,jy0);
871             dz30             = _mm_sub_pd(iz3,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
875             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
876             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
877             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
878
879             rinv00           = gmx_mm_invsqrt_pd(rsq00);
880             rinv10           = gmx_mm_invsqrt_pd(rsq10);
881             rinv20           = gmx_mm_invsqrt_pd(rsq20);
882             rinv30           = gmx_mm_invsqrt_pd(rsq30);
883
884             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
885             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
886             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
887             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
888
889             /* Load parameters for j particles */
890             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
891             vdwjidx0A        = 2*vdwtype[jnrA+0];
892             vdwjidx0B        = 2*vdwtype[jnrB+0];
893
894             fjx0             = _mm_setzero_pd();
895             fjy0             = _mm_setzero_pd();
896             fjz0             = _mm_setzero_pd();
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             r00              = _mm_mul_pd(rsq00,rinv00);
903
904             /* Compute parameters for interactions between i and j atoms */
905             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
906                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
907             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
908                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
909
910             /* Analytical LJ-PME */
911             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
912             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
913             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
914             exponent         = gmx_simd_exp_d(ewcljrsq);
915             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
916             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
917             /* f6A = 6 * C6grid * (1 - poly) */
918             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
919             /* f6B = C6grid * exponent * beta^6 */
920             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
921             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
922             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
923
924             fscal            = fvdw;
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_pd(fscal,dx00);
928             ty               = _mm_mul_pd(fscal,dy00);
929             tz               = _mm_mul_pd(fscal,dz00);
930
931             /* Update vectorial force */
932             fix0             = _mm_add_pd(fix0,tx);
933             fiy0             = _mm_add_pd(fiy0,ty);
934             fiz0             = _mm_add_pd(fiz0,tz);
935
936             fjx0             = _mm_add_pd(fjx0,tx);
937             fjy0             = _mm_add_pd(fjy0,ty);
938             fjz0             = _mm_add_pd(fjz0,tz);
939
940             /**************************
941              * CALCULATE INTERACTIONS *
942              **************************/
943
944             r10              = _mm_mul_pd(rsq10,rinv10);
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq10             = _mm_mul_pd(iq1,jq0);
948
949             /* EWALD ELECTROSTATICS */
950
951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
952             ewrt             = _mm_mul_pd(r10,ewtabscale);
953             ewitab           = _mm_cvttpd_epi32(ewrt);
954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
955             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
956                                          &ewtabF,&ewtabFn);
957             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
958             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
959
960             fscal            = felec;
961
962             /* Calculate temporary vectorial force */
963             tx               = _mm_mul_pd(fscal,dx10);
964             ty               = _mm_mul_pd(fscal,dy10);
965             tz               = _mm_mul_pd(fscal,dz10);
966
967             /* Update vectorial force */
968             fix1             = _mm_add_pd(fix1,tx);
969             fiy1             = _mm_add_pd(fiy1,ty);
970             fiz1             = _mm_add_pd(fiz1,tz);
971
972             fjx0             = _mm_add_pd(fjx0,tx);
973             fjy0             = _mm_add_pd(fjy0,ty);
974             fjz0             = _mm_add_pd(fjz0,tz);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r20              = _mm_mul_pd(rsq20,rinv20);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _mm_mul_pd(iq2,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r20,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
991             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
992                                          &ewtabF,&ewtabFn);
993             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
994             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_pd(fscal,dx20);
1000             ty               = _mm_mul_pd(fscal,dy20);
1001             tz               = _mm_mul_pd(fscal,dz20);
1002
1003             /* Update vectorial force */
1004             fix2             = _mm_add_pd(fix2,tx);
1005             fiy2             = _mm_add_pd(fiy2,ty);
1006             fiz2             = _mm_add_pd(fiz2,tz);
1007
1008             fjx0             = _mm_add_pd(fjx0,tx);
1009             fjy0             = _mm_add_pd(fjy0,ty);
1010             fjz0             = _mm_add_pd(fjz0,tz);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r30              = _mm_mul_pd(rsq30,rinv30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm_mul_pd(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_pd(r30,ewtabscale);
1025             ewitab           = _mm_cvttpd_epi32(ewrt);
1026             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1027             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1028                                          &ewtabF,&ewtabFn);
1029             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1030             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1031
1032             fscal            = felec;
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm_mul_pd(fscal,dx30);
1036             ty               = _mm_mul_pd(fscal,dy30);
1037             tz               = _mm_mul_pd(fscal,dz30);
1038
1039             /* Update vectorial force */
1040             fix3             = _mm_add_pd(fix3,tx);
1041             fiy3             = _mm_add_pd(fiy3,ty);
1042             fiz3             = _mm_add_pd(fiz3,tz);
1043
1044             fjx0             = _mm_add_pd(fjx0,tx);
1045             fjy0             = _mm_add_pd(fjy0,ty);
1046             fjz0             = _mm_add_pd(fjz0,tz);
1047
1048             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1049
1050             /* Inner loop uses 157 flops */
1051         }
1052
1053         if(jidx<j_index_end)
1054         {
1055
1056             jnrA             = jjnr[jidx];
1057             j_coord_offsetA  = DIM*jnrA;
1058
1059             /* load j atom coordinates */
1060             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1061                                               &jx0,&jy0,&jz0);
1062
1063             /* Calculate displacement vector */
1064             dx00             = _mm_sub_pd(ix0,jx0);
1065             dy00             = _mm_sub_pd(iy0,jy0);
1066             dz00             = _mm_sub_pd(iz0,jz0);
1067             dx10             = _mm_sub_pd(ix1,jx0);
1068             dy10             = _mm_sub_pd(iy1,jy0);
1069             dz10             = _mm_sub_pd(iz1,jz0);
1070             dx20             = _mm_sub_pd(ix2,jx0);
1071             dy20             = _mm_sub_pd(iy2,jy0);
1072             dz20             = _mm_sub_pd(iz2,jz0);
1073             dx30             = _mm_sub_pd(ix3,jx0);
1074             dy30             = _mm_sub_pd(iy3,jy0);
1075             dz30             = _mm_sub_pd(iz3,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1079             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1080             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1081             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1082
1083             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1084             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1085             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1086             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1087
1088             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1089             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1090             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1091             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1092
1093             /* Load parameters for j particles */
1094             jq0              = _mm_load_sd(charge+jnrA+0);
1095             vdwjidx0A        = 2*vdwtype[jnrA+0];
1096
1097             fjx0             = _mm_setzero_pd();
1098             fjy0             = _mm_setzero_pd();
1099             fjz0             = _mm_setzero_pd();
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r00              = _mm_mul_pd(rsq00,rinv00);
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1109
1110             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1111
1112             /* Analytical LJ-PME */
1113             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1114             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1115             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1116             exponent         = gmx_simd_exp_d(ewcljrsq);
1117             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1118             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1119             /* f6A = 6 * C6grid * (1 - poly) */
1120             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1121             /* f6B = C6grid * exponent * beta^6 */
1122             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1123             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1124             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1125
1126             fscal            = fvdw;
1127
1128             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1129
1130             /* Calculate temporary vectorial force */
1131             tx               = _mm_mul_pd(fscal,dx00);
1132             ty               = _mm_mul_pd(fscal,dy00);
1133             tz               = _mm_mul_pd(fscal,dz00);
1134
1135             /* Update vectorial force */
1136             fix0             = _mm_add_pd(fix0,tx);
1137             fiy0             = _mm_add_pd(fiy0,ty);
1138             fiz0             = _mm_add_pd(fiz0,tz);
1139
1140             fjx0             = _mm_add_pd(fjx0,tx);
1141             fjy0             = _mm_add_pd(fjy0,ty);
1142             fjz0             = _mm_add_pd(fjz0,tz);
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             r10              = _mm_mul_pd(rsq10,rinv10);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq10             = _mm_mul_pd(iq1,jq0);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_pd(r10,ewtabscale);
1157             ewitab           = _mm_cvttpd_epi32(ewrt);
1158             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1159             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1160             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1161             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm_mul_pd(fscal,dx10);
1169             ty               = _mm_mul_pd(fscal,dy10);
1170             tz               = _mm_mul_pd(fscal,dz10);
1171
1172             /* Update vectorial force */
1173             fix1             = _mm_add_pd(fix1,tx);
1174             fiy1             = _mm_add_pd(fiy1,ty);
1175             fiz1             = _mm_add_pd(fiz1,tz);
1176
1177             fjx0             = _mm_add_pd(fjx0,tx);
1178             fjy0             = _mm_add_pd(fjy0,ty);
1179             fjz0             = _mm_add_pd(fjz0,tz);
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             r20              = _mm_mul_pd(rsq20,rinv20);
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq20             = _mm_mul_pd(iq2,jq0);
1189
1190             /* EWALD ELECTROSTATICS */
1191
1192             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1193             ewrt             = _mm_mul_pd(r20,ewtabscale);
1194             ewitab           = _mm_cvttpd_epi32(ewrt);
1195             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1196             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1197             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1198             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1199
1200             fscal            = felec;
1201
1202             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm_mul_pd(fscal,dx20);
1206             ty               = _mm_mul_pd(fscal,dy20);
1207             tz               = _mm_mul_pd(fscal,dz20);
1208
1209             /* Update vectorial force */
1210             fix2             = _mm_add_pd(fix2,tx);
1211             fiy2             = _mm_add_pd(fiy2,ty);
1212             fiz2             = _mm_add_pd(fiz2,tz);
1213
1214             fjx0             = _mm_add_pd(fjx0,tx);
1215             fjy0             = _mm_add_pd(fjy0,ty);
1216             fjz0             = _mm_add_pd(fjz0,tz);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r30              = _mm_mul_pd(rsq30,rinv30);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq30             = _mm_mul_pd(iq3,jq0);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _mm_mul_pd(r30,ewtabscale);
1231             ewitab           = _mm_cvttpd_epi32(ewrt);
1232             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1233             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1234             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1235             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_pd(fscal,dx30);
1243             ty               = _mm_mul_pd(fscal,dy30);
1244             tz               = _mm_mul_pd(fscal,dz30);
1245
1246             /* Update vectorial force */
1247             fix3             = _mm_add_pd(fix3,tx);
1248             fiy3             = _mm_add_pd(fiy3,ty);
1249             fiz3             = _mm_add_pd(fiz3,tz);
1250
1251             fjx0             = _mm_add_pd(fjx0,tx);
1252             fjy0             = _mm_add_pd(fjy0,ty);
1253             fjz0             = _mm_add_pd(fjz0,tz);
1254
1255             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 157 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 24 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*157);
1277 }