Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     real             *vdwgridparam;
104     __m128d           one_half = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184         vvdwsum          = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx10             = _mm_sub_pd(ix1,jx0);
205             dy10             = _mm_sub_pd(iy1,jy0);
206             dz10             = _mm_sub_pd(iz1,jz0);
207             dx20             = _mm_sub_pd(ix2,jx0);
208             dy20             = _mm_sub_pd(iy2,jy0);
209             dz20             = _mm_sub_pd(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219
220             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _mm_setzero_pd();
230             fjy0             = _mm_setzero_pd();
231             fjz0             = _mm_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_pd(iq0,jq0);
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
244                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_pd(r00,ewtabscale);
250             ewitab           = _mm_cvttpd_epi32(ewrt);
251             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
252             ewitab           = _mm_slli_epi32(ewitab,2);
253             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
254             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
255             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
256             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
257             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
259             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
260             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
261             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
262             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
263
264             /* Analytical LJ-PME */
265             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
267             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
268             exponent         = gmx_simd_exp_d(ewcljrsq);
269             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
270             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
271             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
272             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
273             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
275             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
276             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_pd(velecsum,velec);
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm_add_pd(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             fjx0             = _mm_add_pd(fjx0,tx);
295             fjy0             = _mm_add_pd(fjy0,ty);
296             fjz0             = _mm_add_pd(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_pd(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_pd(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r10,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
317             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
318             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
320             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
321             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
322             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
323             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_pd(fscal,dx10);
332             ty               = _mm_mul_pd(fscal,dy10);
333             tz               = _mm_mul_pd(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_pd(fix1,tx);
337             fiy1             = _mm_add_pd(fiy1,ty);
338             fiz1             = _mm_add_pd(fiz1,tz);
339
340             fjx0             = _mm_add_pd(fjx0,tx);
341             fjy0             = _mm_add_pd(fjy0,ty);
342             fjz0             = _mm_add_pd(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_pd(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_pd(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_pd(r20,ewtabscale);
357             ewitab           = _mm_cvttpd_epi32(ewrt);
358             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
362             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
363             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
364             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
365             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
366             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
367             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
368             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
369             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm_add_pd(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx20);
378             ty               = _mm_mul_pd(fscal,dy20);
379             tz               = _mm_mul_pd(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm_add_pd(fix2,tx);
383             fiy2             = _mm_add_pd(fiy2,ty);
384             fiz2             = _mm_add_pd(fiz2,tz);
385
386             fjx0             = _mm_add_pd(fjx0,tx);
387             fjy0             = _mm_add_pd(fjy0,ty);
388             fjz0             = _mm_add_pd(fjz0,tz);
389
390             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 154 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             jnrA             = jjnr[jidx];
399             j_coord_offsetA  = DIM*jnrA;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
403                                               &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm_sub_pd(ix0,jx0);
407             dy00             = _mm_sub_pd(iy0,jy0);
408             dz00             = _mm_sub_pd(iz0,jz0);
409             dx10             = _mm_sub_pd(ix1,jx0);
410             dy10             = _mm_sub_pd(iy1,jy0);
411             dz10             = _mm_sub_pd(iz1,jz0);
412             dx20             = _mm_sub_pd(ix2,jx0);
413             dy20             = _mm_sub_pd(iy2,jy0);
414             dz20             = _mm_sub_pd(iz2,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420
421             rinv00           = gmx_mm_invsqrt_pd(rsq00);
422             rinv10           = gmx_mm_invsqrt_pd(rsq10);
423             rinv20           = gmx_mm_invsqrt_pd(rsq20);
424
425             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
426             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
427             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
428
429             /* Load parameters for j particles */
430             jq0              = _mm_load_sd(charge+jnrA+0);
431             vdwjidx0A        = 2*vdwtype[jnrA+0];
432
433             fjx0             = _mm_setzero_pd();
434             fjy0             = _mm_setzero_pd();
435             fjz0             = _mm_setzero_pd();
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             r00              = _mm_mul_pd(rsq00,rinv00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_pd(iq0,jq0);
445             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
446
447             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
448
449             /* EWALD ELECTROSTATICS */
450
451             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
452             ewrt             = _mm_mul_pd(r00,ewtabscale);
453             ewitab           = _mm_cvttpd_epi32(ewrt);
454             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
455             ewitab           = _mm_slli_epi32(ewitab,2);
456             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
457             ewtabD           = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
459             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
460             ewtabFn          = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
462             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
463             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
464             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
465             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
466
467             /* Analytical LJ-PME */
468             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
469             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
470             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
471             exponent         = gmx_simd_exp_d(ewcljrsq);
472             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
473             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
474             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
475             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
476             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
477             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
478             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
479             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
483             velecsum         = _mm_add_pd(velecsum,velec);
484             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
485             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
486
487             fscal            = _mm_add_pd(felec,fvdw);
488
489             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm_mul_pd(fscal,dx00);
493             ty               = _mm_mul_pd(fscal,dy00);
494             tz               = _mm_mul_pd(fscal,dz00);
495
496             /* Update vectorial force */
497             fix0             = _mm_add_pd(fix0,tx);
498             fiy0             = _mm_add_pd(fiy0,ty);
499             fiz0             = _mm_add_pd(fiz0,tz);
500
501             fjx0             = _mm_add_pd(fjx0,tx);
502             fjy0             = _mm_add_pd(fjy0,ty);
503             fjz0             = _mm_add_pd(fjz0,tz);
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             r10              = _mm_mul_pd(rsq10,rinv10);
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq10             = _mm_mul_pd(iq1,jq0);
513
514             /* EWALD ELECTROSTATICS */
515
516             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517             ewrt             = _mm_mul_pd(r10,ewtabscale);
518             ewitab           = _mm_cvttpd_epi32(ewrt);
519             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
520             ewitab           = _mm_slli_epi32(ewitab,2);
521             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
522             ewtabD           = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
524             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
525             ewtabFn          = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
527             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
528             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
529             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
530             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
534             velecsum         = _mm_add_pd(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm_mul_pd(fscal,dx10);
542             ty               = _mm_mul_pd(fscal,dy10);
543             tz               = _mm_mul_pd(fscal,dz10);
544
545             /* Update vectorial force */
546             fix1             = _mm_add_pd(fix1,tx);
547             fiy1             = _mm_add_pd(fiy1,ty);
548             fiz1             = _mm_add_pd(fiz1,tz);
549
550             fjx0             = _mm_add_pd(fjx0,tx);
551             fjy0             = _mm_add_pd(fjy0,ty);
552             fjz0             = _mm_add_pd(fjz0,tz);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r20              = _mm_mul_pd(rsq20,rinv20);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq20             = _mm_mul_pd(iq2,jq0);
562
563             /* EWALD ELECTROSTATICS */
564
565             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
566             ewrt             = _mm_mul_pd(r20,ewtabscale);
567             ewitab           = _mm_cvttpd_epi32(ewrt);
568             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
569             ewitab           = _mm_slli_epi32(ewitab,2);
570             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
571             ewtabD           = _mm_setzero_pd();
572             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
573             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
574             ewtabFn          = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
576             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
577             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
578             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
579             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
583             velecsum         = _mm_add_pd(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm_mul_pd(fscal,dx20);
591             ty               = _mm_mul_pd(fscal,dy20);
592             tz               = _mm_mul_pd(fscal,dz20);
593
594             /* Update vectorial force */
595             fix2             = _mm_add_pd(fix2,tx);
596             fiy2             = _mm_add_pd(fiy2,ty);
597             fiz2             = _mm_add_pd(fiz2,tz);
598
599             fjx0             = _mm_add_pd(fjx0,tx);
600             fjy0             = _mm_add_pd(fjy0,ty);
601             fjz0             = _mm_add_pd(fjz0,tz);
602
603             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 154 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
611                                               f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 20 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_double
633  * Electrostatics interaction: Ewald
634  * VdW interaction:            LJEwald
635  * Geometry:                   Water3-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      t_forcerec                  * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
649      * just 0 for non-waters.
650      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB;
656     int              j_coord_offsetA,j_coord_offsetB;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
661     int              vdwioffset0;
662     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
663     int              vdwioffset1;
664     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
665     int              vdwioffset2;
666     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
667     int              vdwjidx0A,vdwjidx0B;
668     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
669     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
670     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
671     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
672     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
673     real             *charge;
674     int              nvdwtype;
675     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
676     int              *vdwtype;
677     real             *vdwparam;
678     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
679     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
680     __m128d           c6grid_00;
681     __m128d           c6grid_10;
682     __m128d           c6grid_20;
683     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
684     real             *vdwgridparam;
685     __m128d           one_half = _mm_set1_pd(0.5);
686     __m128d           minus_one = _mm_set1_pd(-1.0);
687     __m128i          ewitab;
688     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
689     real             *ewtab;
690     __m128d          dummy_mask,cutoff_mask;
691     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
692     __m128d          one     = _mm_set1_pd(1.0);
693     __m128d          two     = _mm_set1_pd(2.0);
694     x                = xx[0];
695     f                = ff[0];
696
697     nri              = nlist->nri;
698     iinr             = nlist->iinr;
699     jindex           = nlist->jindex;
700     jjnr             = nlist->jjnr;
701     shiftidx         = nlist->shift;
702     gid              = nlist->gid;
703     shiftvec         = fr->shift_vec[0];
704     fshift           = fr->fshift[0];
705     facel            = _mm_set1_pd(fr->epsfac);
706     charge           = mdatoms->chargeA;
707     nvdwtype         = fr->ntype;
708     vdwparam         = fr->nbfp;
709     vdwtype          = mdatoms->typeA;
710     vdwgridparam     = fr->ljpme_c6grid;
711     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
712     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
713     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
714
715     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
716     ewtab            = fr->ic->tabq_coul_F;
717     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
718     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
719
720     /* Setup water-specific parameters */
721     inr              = nlist->iinr[0];
722     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
723     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
724     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
725     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
726
727     /* Avoid stupid compiler warnings */
728     jnrA = jnrB = 0;
729     j_coord_offsetA = 0;
730     j_coord_offsetB = 0;
731
732     outeriter        = 0;
733     inneriter        = 0;
734
735     /* Start outer loop over neighborlists */
736     for(iidx=0; iidx<nri; iidx++)
737     {
738         /* Load shift vector for this list */
739         i_shift_offset   = DIM*shiftidx[iidx];
740
741         /* Load limits for loop over neighbors */
742         j_index_start    = jindex[iidx];
743         j_index_end      = jindex[iidx+1];
744
745         /* Get outer coordinate index */
746         inr              = iinr[iidx];
747         i_coord_offset   = DIM*inr;
748
749         /* Load i particle coords and add shift vector */
750         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
751                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
752
753         fix0             = _mm_setzero_pd();
754         fiy0             = _mm_setzero_pd();
755         fiz0             = _mm_setzero_pd();
756         fix1             = _mm_setzero_pd();
757         fiy1             = _mm_setzero_pd();
758         fiz1             = _mm_setzero_pd();
759         fix2             = _mm_setzero_pd();
760         fiy2             = _mm_setzero_pd();
761         fiz2             = _mm_setzero_pd();
762
763         /* Start inner kernel loop */
764         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
765         {
766
767             /* Get j neighbor index, and coordinate index */
768             jnrA             = jjnr[jidx];
769             jnrB             = jjnr[jidx+1];
770             j_coord_offsetA  = DIM*jnrA;
771             j_coord_offsetB  = DIM*jnrB;
772
773             /* load j atom coordinates */
774             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
775                                               &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm_sub_pd(ix0,jx0);
779             dy00             = _mm_sub_pd(iy0,jy0);
780             dz00             = _mm_sub_pd(iz0,jz0);
781             dx10             = _mm_sub_pd(ix1,jx0);
782             dy10             = _mm_sub_pd(iy1,jy0);
783             dz10             = _mm_sub_pd(iz1,jz0);
784             dx20             = _mm_sub_pd(ix2,jx0);
785             dy20             = _mm_sub_pd(iy2,jy0);
786             dz20             = _mm_sub_pd(iz2,jz0);
787
788             /* Calculate squared distance and things based on it */
789             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
790             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
791             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
792
793             rinv00           = gmx_mm_invsqrt_pd(rsq00);
794             rinv10           = gmx_mm_invsqrt_pd(rsq10);
795             rinv20           = gmx_mm_invsqrt_pd(rsq20);
796
797             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
798             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
799             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
800
801             /* Load parameters for j particles */
802             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
803             vdwjidx0A        = 2*vdwtype[jnrA+0];
804             vdwjidx0B        = 2*vdwtype[jnrB+0];
805
806             fjx0             = _mm_setzero_pd();
807             fjy0             = _mm_setzero_pd();
808             fjz0             = _mm_setzero_pd();
809
810             /**************************
811              * CALCULATE INTERACTIONS *
812              **************************/
813
814             r00              = _mm_mul_pd(rsq00,rinv00);
815
816             /* Compute parameters for interactions between i and j atoms */
817             qq00             = _mm_mul_pd(iq0,jq0);
818             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
819                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
820             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
821                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
822
823             /* EWALD ELECTROSTATICS */
824
825             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
826             ewrt             = _mm_mul_pd(r00,ewtabscale);
827             ewitab           = _mm_cvttpd_epi32(ewrt);
828             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
829             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
830                                          &ewtabF,&ewtabFn);
831             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
832             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
833
834             /* Analytical LJ-PME */
835             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
836             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
837             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
838             exponent         = gmx_simd_exp_d(ewcljrsq);
839             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
840             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
841             /* f6A = 6 * C6grid * (1 - poly) */
842             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
843             /* f6B = C6grid * exponent * beta^6 */
844             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
845             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
846             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
847
848             fscal            = _mm_add_pd(felec,fvdw);
849
850             /* Calculate temporary vectorial force */
851             tx               = _mm_mul_pd(fscal,dx00);
852             ty               = _mm_mul_pd(fscal,dy00);
853             tz               = _mm_mul_pd(fscal,dz00);
854
855             /* Update vectorial force */
856             fix0             = _mm_add_pd(fix0,tx);
857             fiy0             = _mm_add_pd(fiy0,ty);
858             fiz0             = _mm_add_pd(fiz0,tz);
859
860             fjx0             = _mm_add_pd(fjx0,tx);
861             fjy0             = _mm_add_pd(fjy0,ty);
862             fjz0             = _mm_add_pd(fjz0,tz);
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r10              = _mm_mul_pd(rsq10,rinv10);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq10             = _mm_mul_pd(iq1,jq0);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_pd(r10,ewtabscale);
877             ewitab           = _mm_cvttpd_epi32(ewrt);
878             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
879             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
880                                          &ewtabF,&ewtabFn);
881             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
882             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
883
884             fscal            = felec;
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx10);
888             ty               = _mm_mul_pd(fscal,dy10);
889             tz               = _mm_mul_pd(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_pd(fix1,tx);
893             fiy1             = _mm_add_pd(fiy1,ty);
894             fiz1             = _mm_add_pd(fiz1,tz);
895
896             fjx0             = _mm_add_pd(fjx0,tx);
897             fjy0             = _mm_add_pd(fjy0,ty);
898             fjz0             = _mm_add_pd(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r20              = _mm_mul_pd(rsq20,rinv20);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_pd(iq2,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912             ewrt             = _mm_mul_pd(r20,ewtabscale);
913             ewitab           = _mm_cvttpd_epi32(ewrt);
914             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
915             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
916                                          &ewtabF,&ewtabFn);
917             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
918             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm_mul_pd(fscal,dx20);
924             ty               = _mm_mul_pd(fscal,dy20);
925             tz               = _mm_mul_pd(fscal,dz20);
926
927             /* Update vectorial force */
928             fix2             = _mm_add_pd(fix2,tx);
929             fiy2             = _mm_add_pd(fiy2,ty);
930             fiz2             = _mm_add_pd(fiz2,tz);
931
932             fjx0             = _mm_add_pd(fjx0,tx);
933             fjy0             = _mm_add_pd(fjy0,ty);
934             fjz0             = _mm_add_pd(fjz0,tz);
935
936             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
937
938             /* Inner loop uses 134 flops */
939         }
940
941         if(jidx<j_index_end)
942         {
943
944             jnrA             = jjnr[jidx];
945             j_coord_offsetA  = DIM*jnrA;
946
947             /* load j atom coordinates */
948             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
949                                               &jx0,&jy0,&jz0);
950
951             /* Calculate displacement vector */
952             dx00             = _mm_sub_pd(ix0,jx0);
953             dy00             = _mm_sub_pd(iy0,jy0);
954             dz00             = _mm_sub_pd(iz0,jz0);
955             dx10             = _mm_sub_pd(ix1,jx0);
956             dy10             = _mm_sub_pd(iy1,jy0);
957             dz10             = _mm_sub_pd(iz1,jz0);
958             dx20             = _mm_sub_pd(ix2,jx0);
959             dy20             = _mm_sub_pd(iy2,jy0);
960             dz20             = _mm_sub_pd(iz2,jz0);
961
962             /* Calculate squared distance and things based on it */
963             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
964             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
965             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
966
967             rinv00           = gmx_mm_invsqrt_pd(rsq00);
968             rinv10           = gmx_mm_invsqrt_pd(rsq10);
969             rinv20           = gmx_mm_invsqrt_pd(rsq20);
970
971             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
972             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
973             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
974
975             /* Load parameters for j particles */
976             jq0              = _mm_load_sd(charge+jnrA+0);
977             vdwjidx0A        = 2*vdwtype[jnrA+0];
978
979             fjx0             = _mm_setzero_pd();
980             fjy0             = _mm_setzero_pd();
981             fjz0             = _mm_setzero_pd();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r00              = _mm_mul_pd(rsq00,rinv00);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq00             = _mm_mul_pd(iq0,jq0);
991             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
992
993             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
994
995             /* EWALD ELECTROSTATICS */
996
997             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
998             ewrt             = _mm_mul_pd(r00,ewtabscale);
999             ewitab           = _mm_cvttpd_epi32(ewrt);
1000             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1001             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1002             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1003             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1004
1005             /* Analytical LJ-PME */
1006             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1007             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1008             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1009             exponent         = gmx_simd_exp_d(ewcljrsq);
1010             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1011             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1012             /* f6A = 6 * C6grid * (1 - poly) */
1013             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1014             /* f6B = C6grid * exponent * beta^6 */
1015             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1016             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1017             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1018
1019             fscal            = _mm_add_pd(felec,fvdw);
1020
1021             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_pd(fscal,dx00);
1025             ty               = _mm_mul_pd(fscal,dy00);
1026             tz               = _mm_mul_pd(fscal,dz00);
1027
1028             /* Update vectorial force */
1029             fix0             = _mm_add_pd(fix0,tx);
1030             fiy0             = _mm_add_pd(fiy0,ty);
1031             fiz0             = _mm_add_pd(fiz0,tz);
1032
1033             fjx0             = _mm_add_pd(fjx0,tx);
1034             fjy0             = _mm_add_pd(fjy0,ty);
1035             fjz0             = _mm_add_pd(fjz0,tz);
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r10              = _mm_mul_pd(rsq10,rinv10);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm_mul_pd(iq1,jq0);
1045
1046             /* EWALD ELECTROSTATICS */
1047
1048             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1049             ewrt             = _mm_mul_pd(r10,ewtabscale);
1050             ewitab           = _mm_cvttpd_epi32(ewrt);
1051             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1052             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1053             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1054             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1055
1056             fscal            = felec;
1057
1058             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm_mul_pd(fscal,dx10);
1062             ty               = _mm_mul_pd(fscal,dy10);
1063             tz               = _mm_mul_pd(fscal,dz10);
1064
1065             /* Update vectorial force */
1066             fix1             = _mm_add_pd(fix1,tx);
1067             fiy1             = _mm_add_pd(fiy1,ty);
1068             fiz1             = _mm_add_pd(fiz1,tz);
1069
1070             fjx0             = _mm_add_pd(fjx0,tx);
1071             fjy0             = _mm_add_pd(fjy0,ty);
1072             fjz0             = _mm_add_pd(fjz0,tz);
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             r20              = _mm_mul_pd(rsq20,rinv20);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq20             = _mm_mul_pd(iq2,jq0);
1082
1083             /* EWALD ELECTROSTATICS */
1084
1085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086             ewrt             = _mm_mul_pd(r20,ewtabscale);
1087             ewitab           = _mm_cvttpd_epi32(ewrt);
1088             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1089             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1090             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1091             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_pd(fscal,dx20);
1099             ty               = _mm_mul_pd(fscal,dy20);
1100             tz               = _mm_mul_pd(fscal,dz20);
1101
1102             /* Update vectorial force */
1103             fix2             = _mm_add_pd(fix2,tx);
1104             fiy2             = _mm_add_pd(fiy2,ty);
1105             fiz2             = _mm_add_pd(fiz2,tz);
1106
1107             fjx0             = _mm_add_pd(fjx0,tx);
1108             fjy0             = _mm_add_pd(fjy0,ty);
1109             fjz0             = _mm_add_pd(fjz0,tz);
1110
1111             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1112
1113             /* Inner loop uses 134 flops */
1114         }
1115
1116         /* End of innermost loop */
1117
1118         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1119                                               f+i_coord_offset,fshift+i_shift_offset);
1120
1121         /* Increment number of inner iterations */
1122         inneriter                  += j_index_end - j_index_start;
1123
1124         /* Outer loop uses 18 flops */
1125     }
1126
1127     /* Increment number of outer iterations */
1128     outeriter        += nri;
1129
1130     /* Update outer/inner flops */
1131
1132     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1133 }