55675a4c85dbc3d62c1966724cbbd121d71e9d5d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128d           one_half = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm_invsqrt_pd(rsq00);
219             rinv10           = gmx_mm_invsqrt_pd(rsq10);
220             rinv20           = gmx_mm_invsqrt_pd(rsq20);
221
222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
246                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
251             ewrt             = _mm_mul_pd(r00,ewtabscale);
252             ewitab           = _mm_cvttpd_epi32(ewrt);
253             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
254             ewitab           = _mm_slli_epi32(ewitab,2);
255             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
256             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
257             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
258             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
259             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
260             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
261             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
262             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
263             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
264             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
265
266             /* Analytical LJ-PME */
267             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
268             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
269             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
270             exponent         = gmx_simd_exp_d(ewcljrsq);
271             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
272             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
273             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
274             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
275             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
276             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
277             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
278             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_pd(velecsum,velec);
282             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
283
284             fscal            = _mm_add_pd(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx00);
288             ty               = _mm_mul_pd(fscal,dy00);
289             tz               = _mm_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_pd(fix0,tx);
293             fiy0             = _mm_add_pd(fiy0,ty);
294             fiz0             = _mm_add_pd(fiz0,tz);
295
296             fjx0             = _mm_add_pd(fjx0,tx);
297             fjy0             = _mm_add_pd(fjy0,ty);
298             fjz0             = _mm_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _mm_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_pd(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r10,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_pd(fscal,dx10);
334             ty               = _mm_mul_pd(fscal,dy10);
335             tz               = _mm_mul_pd(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_pd(fix1,tx);
339             fiy1             = _mm_add_pd(fiy1,ty);
340             fiz1             = _mm_add_pd(fiz1,tz);
341
342             fjx0             = _mm_add_pd(fjx0,tx);
343             fjy0             = _mm_add_pd(fjy0,ty);
344             fjz0             = _mm_add_pd(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r20              = _mm_mul_pd(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_pd(r20,ewtabscale);
359             ewitab           = _mm_cvttpd_epi32(ewrt);
360             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
366             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
367             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
369             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
370             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
371             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_pd(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_pd(fscal,dx20);
380             ty               = _mm_mul_pd(fscal,dy20);
381             tz               = _mm_mul_pd(fscal,dz20);
382
383             /* Update vectorial force */
384             fix2             = _mm_add_pd(fix2,tx);
385             fiy2             = _mm_add_pd(fiy2,ty);
386             fiz2             = _mm_add_pd(fiz2,tz);
387
388             fjx0             = _mm_add_pd(fjx0,tx);
389             fjy0             = _mm_add_pd(fjy0,ty);
390             fjz0             = _mm_add_pd(fjz0,tz);
391
392             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 154 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             jnrA             = jjnr[jidx];
401             j_coord_offsetA  = DIM*jnrA;
402
403             /* load j atom coordinates */
404             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
405                                               &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm_sub_pd(ix0,jx0);
409             dy00             = _mm_sub_pd(iy0,jy0);
410             dz00             = _mm_sub_pd(iz0,jz0);
411             dx10             = _mm_sub_pd(ix1,jx0);
412             dy10             = _mm_sub_pd(iy1,jy0);
413             dz10             = _mm_sub_pd(iz1,jz0);
414             dx20             = _mm_sub_pd(ix2,jx0);
415             dy20             = _mm_sub_pd(iy2,jy0);
416             dz20             = _mm_sub_pd(iz2,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
420             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
422
423             rinv00           = gmx_mm_invsqrt_pd(rsq00);
424             rinv10           = gmx_mm_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm_invsqrt_pd(rsq20);
426
427             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
428             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r00              = _mm_mul_pd(rsq00,rinv00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_pd(iq0,jq0);
447             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
448
449             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r00,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
457             ewitab           = _mm_slli_epi32(ewitab,2);
458             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
459             ewtabD           = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
461             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
462             ewtabFn          = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
464             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
465             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
466             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
467             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
468
469             /* Analytical LJ-PME */
470             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
471             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
472             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
473             exponent         = gmx_simd_exp_d(ewcljrsq);
474             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
475             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
476             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
477             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
478             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
479             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
480             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
481             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
485             velecsum         = _mm_add_pd(velecsum,velec);
486             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
487             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
488
489             fscal            = _mm_add_pd(felec,fvdw);
490
491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm_mul_pd(fscal,dx00);
495             ty               = _mm_mul_pd(fscal,dy00);
496             tz               = _mm_mul_pd(fscal,dz00);
497
498             /* Update vectorial force */
499             fix0             = _mm_add_pd(fix0,tx);
500             fiy0             = _mm_add_pd(fiy0,ty);
501             fiz0             = _mm_add_pd(fiz0,tz);
502
503             fjx0             = _mm_add_pd(fjx0,tx);
504             fjy0             = _mm_add_pd(fjy0,ty);
505             fjz0             = _mm_add_pd(fjz0,tz);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r10              = _mm_mul_pd(rsq10,rinv10);
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq10             = _mm_mul_pd(iq1,jq0);
515
516             /* EWALD ELECTROSTATICS */
517
518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519             ewrt             = _mm_mul_pd(r10,ewtabscale);
520             ewitab           = _mm_cvttpd_epi32(ewrt);
521             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
522             ewitab           = _mm_slli_epi32(ewitab,2);
523             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
524             ewtabD           = _mm_setzero_pd();
525             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
526             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
527             ewtabFn          = _mm_setzero_pd();
528             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
529             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
530             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
531             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
532             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
536             velecsum         = _mm_add_pd(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_pd(fscal,dx10);
544             ty               = _mm_mul_pd(fscal,dy10);
545             tz               = _mm_mul_pd(fscal,dz10);
546
547             /* Update vectorial force */
548             fix1             = _mm_add_pd(fix1,tx);
549             fiy1             = _mm_add_pd(fiy1,ty);
550             fiz1             = _mm_add_pd(fiz1,tz);
551
552             fjx0             = _mm_add_pd(fjx0,tx);
553             fjy0             = _mm_add_pd(fjy0,ty);
554             fjz0             = _mm_add_pd(fjz0,tz);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r20              = _mm_mul_pd(rsq20,rinv20);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq20             = _mm_mul_pd(iq2,jq0);
564
565             /* EWALD ELECTROSTATICS */
566
567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
568             ewrt             = _mm_mul_pd(r20,ewtabscale);
569             ewitab           = _mm_cvttpd_epi32(ewrt);
570             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
575             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
576             ewtabFn          = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
578             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
579             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
580             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
581             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
585             velecsum         = _mm_add_pd(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm_mul_pd(fscal,dx20);
593             ty               = _mm_mul_pd(fscal,dy20);
594             tz               = _mm_mul_pd(fscal,dz20);
595
596             /* Update vectorial force */
597             fix2             = _mm_add_pd(fix2,tx);
598             fiy2             = _mm_add_pd(fiy2,ty);
599             fiz2             = _mm_add_pd(fiz2,tz);
600
601             fjx0             = _mm_add_pd(fjx0,tx);
602             fjy0             = _mm_add_pd(fjy0,ty);
603             fjz0             = _mm_add_pd(fjz0,tz);
604
605             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
606
607             /* Inner loop uses 154 flops */
608         }
609
610         /* End of innermost loop */
611
612         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
613                                               f+i_coord_offset,fshift+i_shift_offset);
614
615         ggid                        = gid[iidx];
616         /* Update potential energies */
617         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
618         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
619
620         /* Increment number of inner iterations */
621         inneriter                  += j_index_end - j_index_start;
622
623         /* Outer loop uses 20 flops */
624     }
625
626     /* Increment number of outer iterations */
627     outeriter        += nri;
628
629     /* Update outer/inner flops */
630
631     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
632 }
633 /*
634  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_double
635  * Electrostatics interaction: Ewald
636  * VdW interaction:            LJEwald
637  * Geometry:                   Water3-Particle
638  * Calculate force/pot:        Force
639  */
640 void
641 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_double
642                     (t_nblist                    * gmx_restrict       nlist,
643                      rvec                        * gmx_restrict          xx,
644                      rvec                        * gmx_restrict          ff,
645                      t_forcerec                  * gmx_restrict          fr,
646                      t_mdatoms                   * gmx_restrict     mdatoms,
647                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
648                      t_nrnb                      * gmx_restrict        nrnb)
649 {
650     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
651      * just 0 for non-waters.
652      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
653      * jnr indices corresponding to data put in the four positions in the SIMD register.
654      */
655     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
656     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
657     int              jnrA,jnrB;
658     int              j_coord_offsetA,j_coord_offsetB;
659     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
660     real             rcutoff_scalar;
661     real             *shiftvec,*fshift,*x,*f;
662     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
663     int              vdwioffset0;
664     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
665     int              vdwioffset1;
666     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
667     int              vdwioffset2;
668     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
669     int              vdwjidx0A,vdwjidx0B;
670     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
671     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
672     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
673     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
674     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
675     real             *charge;
676     int              nvdwtype;
677     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
678     int              *vdwtype;
679     real             *vdwparam;
680     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
681     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
682     __m128d           c6grid_00;
683     __m128d           c6grid_10;
684     __m128d           c6grid_20;
685     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
686     real             *vdwgridparam;
687     __m128d           one_half = _mm_set1_pd(0.5);
688     __m128d           minus_one = _mm_set1_pd(-1.0);
689     __m128i          ewitab;
690     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
691     real             *ewtab;
692     __m128d          dummy_mask,cutoff_mask;
693     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
694     __m128d          one     = _mm_set1_pd(1.0);
695     __m128d          two     = _mm_set1_pd(2.0);
696     x                = xx[0];
697     f                = ff[0];
698
699     nri              = nlist->nri;
700     iinr             = nlist->iinr;
701     jindex           = nlist->jindex;
702     jjnr             = nlist->jjnr;
703     shiftidx         = nlist->shift;
704     gid              = nlist->gid;
705     shiftvec         = fr->shift_vec[0];
706     fshift           = fr->fshift[0];
707     facel            = _mm_set1_pd(fr->epsfac);
708     charge           = mdatoms->chargeA;
709     nvdwtype         = fr->ntype;
710     vdwparam         = fr->nbfp;
711     vdwtype          = mdatoms->typeA;
712     vdwgridparam     = fr->ljpme_c6grid;
713     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
714     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
715     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
716
717     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
718     ewtab            = fr->ic->tabq_coul_F;
719     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
720     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
721
722     /* Setup water-specific parameters */
723     inr              = nlist->iinr[0];
724     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
725     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
726     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
727     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
728
729     /* Avoid stupid compiler warnings */
730     jnrA = jnrB = 0;
731     j_coord_offsetA = 0;
732     j_coord_offsetB = 0;
733
734     outeriter        = 0;
735     inneriter        = 0;
736
737     /* Start outer loop over neighborlists */
738     for(iidx=0; iidx<nri; iidx++)
739     {
740         /* Load shift vector for this list */
741         i_shift_offset   = DIM*shiftidx[iidx];
742
743         /* Load limits for loop over neighbors */
744         j_index_start    = jindex[iidx];
745         j_index_end      = jindex[iidx+1];
746
747         /* Get outer coordinate index */
748         inr              = iinr[iidx];
749         i_coord_offset   = DIM*inr;
750
751         /* Load i particle coords and add shift vector */
752         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
753                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
754
755         fix0             = _mm_setzero_pd();
756         fiy0             = _mm_setzero_pd();
757         fiz0             = _mm_setzero_pd();
758         fix1             = _mm_setzero_pd();
759         fiy1             = _mm_setzero_pd();
760         fiz1             = _mm_setzero_pd();
761         fix2             = _mm_setzero_pd();
762         fiy2             = _mm_setzero_pd();
763         fiz2             = _mm_setzero_pd();
764
765         /* Start inner kernel loop */
766         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
767         {
768
769             /* Get j neighbor index, and coordinate index */
770             jnrA             = jjnr[jidx];
771             jnrB             = jjnr[jidx+1];
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774
775             /* load j atom coordinates */
776             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
777                                               &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm_sub_pd(ix0,jx0);
781             dy00             = _mm_sub_pd(iy0,jy0);
782             dz00             = _mm_sub_pd(iz0,jz0);
783             dx10             = _mm_sub_pd(ix1,jx0);
784             dy10             = _mm_sub_pd(iy1,jy0);
785             dz10             = _mm_sub_pd(iz1,jz0);
786             dx20             = _mm_sub_pd(ix2,jx0);
787             dy20             = _mm_sub_pd(iy2,jy0);
788             dz20             = _mm_sub_pd(iz2,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
792             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
793             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
794
795             rinv00           = gmx_mm_invsqrt_pd(rsq00);
796             rinv10           = gmx_mm_invsqrt_pd(rsq10);
797             rinv20           = gmx_mm_invsqrt_pd(rsq20);
798
799             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
800             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
801             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
805             vdwjidx0A        = 2*vdwtype[jnrA+0];
806             vdwjidx0B        = 2*vdwtype[jnrB+0];
807
808             fjx0             = _mm_setzero_pd();
809             fjy0             = _mm_setzero_pd();
810             fjz0             = _mm_setzero_pd();
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             r00              = _mm_mul_pd(rsq00,rinv00);
817
818             /* Compute parameters for interactions between i and j atoms */
819             qq00             = _mm_mul_pd(iq0,jq0);
820             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
821                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
822             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
823                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
824
825             /* EWALD ELECTROSTATICS */
826
827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
828             ewrt             = _mm_mul_pd(r00,ewtabscale);
829             ewitab           = _mm_cvttpd_epi32(ewrt);
830             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
831             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
832                                          &ewtabF,&ewtabFn);
833             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
834             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
835
836             /* Analytical LJ-PME */
837             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
838             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
839             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
840             exponent         = gmx_simd_exp_d(ewcljrsq);
841             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
842             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
843             /* f6A = 6 * C6grid * (1 - poly) */
844             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
845             /* f6B = C6grid * exponent * beta^6 */
846             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
847             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
848             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
849
850             fscal            = _mm_add_pd(felec,fvdw);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm_mul_pd(fscal,dx00);
854             ty               = _mm_mul_pd(fscal,dy00);
855             tz               = _mm_mul_pd(fscal,dz00);
856
857             /* Update vectorial force */
858             fix0             = _mm_add_pd(fix0,tx);
859             fiy0             = _mm_add_pd(fiy0,ty);
860             fiz0             = _mm_add_pd(fiz0,tz);
861
862             fjx0             = _mm_add_pd(fjx0,tx);
863             fjy0             = _mm_add_pd(fjy0,ty);
864             fjz0             = _mm_add_pd(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r10              = _mm_mul_pd(rsq10,rinv10);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq10             = _mm_mul_pd(iq1,jq0);
874
875             /* EWALD ELECTROSTATICS */
876
877             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
878             ewrt             = _mm_mul_pd(r10,ewtabscale);
879             ewitab           = _mm_cvttpd_epi32(ewrt);
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
882                                          &ewtabF,&ewtabFn);
883             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
884             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
885
886             fscal            = felec;
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm_mul_pd(fscal,dx10);
890             ty               = _mm_mul_pd(fscal,dy10);
891             tz               = _mm_mul_pd(fscal,dz10);
892
893             /* Update vectorial force */
894             fix1             = _mm_add_pd(fix1,tx);
895             fiy1             = _mm_add_pd(fiy1,ty);
896             fiz1             = _mm_add_pd(fiz1,tz);
897
898             fjx0             = _mm_add_pd(fjx0,tx);
899             fjy0             = _mm_add_pd(fjy0,ty);
900             fjz0             = _mm_add_pd(fjz0,tz);
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r20              = _mm_mul_pd(rsq20,rinv20);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq20             = _mm_mul_pd(iq2,jq0);
910
911             /* EWALD ELECTROSTATICS */
912
913             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
914             ewrt             = _mm_mul_pd(r20,ewtabscale);
915             ewitab           = _mm_cvttpd_epi32(ewrt);
916             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
917             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
918                                          &ewtabF,&ewtabFn);
919             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
920             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
921
922             fscal            = felec;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm_mul_pd(fscal,dx20);
926             ty               = _mm_mul_pd(fscal,dy20);
927             tz               = _mm_mul_pd(fscal,dz20);
928
929             /* Update vectorial force */
930             fix2             = _mm_add_pd(fix2,tx);
931             fiy2             = _mm_add_pd(fiy2,ty);
932             fiz2             = _mm_add_pd(fiz2,tz);
933
934             fjx0             = _mm_add_pd(fjx0,tx);
935             fjy0             = _mm_add_pd(fjy0,ty);
936             fjz0             = _mm_add_pd(fjz0,tz);
937
938             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
939
940             /* Inner loop uses 134 flops */
941         }
942
943         if(jidx<j_index_end)
944         {
945
946             jnrA             = jjnr[jidx];
947             j_coord_offsetA  = DIM*jnrA;
948
949             /* load j atom coordinates */
950             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
951                                               &jx0,&jy0,&jz0);
952
953             /* Calculate displacement vector */
954             dx00             = _mm_sub_pd(ix0,jx0);
955             dy00             = _mm_sub_pd(iy0,jy0);
956             dz00             = _mm_sub_pd(iz0,jz0);
957             dx10             = _mm_sub_pd(ix1,jx0);
958             dy10             = _mm_sub_pd(iy1,jy0);
959             dz10             = _mm_sub_pd(iz1,jz0);
960             dx20             = _mm_sub_pd(ix2,jx0);
961             dy20             = _mm_sub_pd(iy2,jy0);
962             dz20             = _mm_sub_pd(iz2,jz0);
963
964             /* Calculate squared distance and things based on it */
965             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
966             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
967             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
968
969             rinv00           = gmx_mm_invsqrt_pd(rsq00);
970             rinv10           = gmx_mm_invsqrt_pd(rsq10);
971             rinv20           = gmx_mm_invsqrt_pd(rsq20);
972
973             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
974             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
975             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
976
977             /* Load parameters for j particles */
978             jq0              = _mm_load_sd(charge+jnrA+0);
979             vdwjidx0A        = 2*vdwtype[jnrA+0];
980
981             fjx0             = _mm_setzero_pd();
982             fjy0             = _mm_setzero_pd();
983             fjz0             = _mm_setzero_pd();
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r00              = _mm_mul_pd(rsq00,rinv00);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq00             = _mm_mul_pd(iq0,jq0);
993             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
994
995             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm_mul_pd(r00,ewtabscale);
1001             ewitab           = _mm_cvttpd_epi32(ewrt);
1002             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1003             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1004             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1005             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1006
1007             /* Analytical LJ-PME */
1008             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1009             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1010             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1011             exponent         = gmx_simd_exp_d(ewcljrsq);
1012             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1013             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1014             /* f6A = 6 * C6grid * (1 - poly) */
1015             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1016             /* f6B = C6grid * exponent * beta^6 */
1017             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1018             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1019             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1020
1021             fscal            = _mm_add_pd(felec,fvdw);
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_pd(fscal,dx00);
1027             ty               = _mm_mul_pd(fscal,dy00);
1028             tz               = _mm_mul_pd(fscal,dz00);
1029
1030             /* Update vectorial force */
1031             fix0             = _mm_add_pd(fix0,tx);
1032             fiy0             = _mm_add_pd(fiy0,ty);
1033             fiz0             = _mm_add_pd(fiz0,tz);
1034
1035             fjx0             = _mm_add_pd(fjx0,tx);
1036             fjy0             = _mm_add_pd(fjy0,ty);
1037             fjz0             = _mm_add_pd(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r10              = _mm_mul_pd(rsq10,rinv10);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq10             = _mm_mul_pd(iq1,jq0);
1047
1048             /* EWALD ELECTROSTATICS */
1049
1050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1051             ewrt             = _mm_mul_pd(r10,ewtabscale);
1052             ewitab           = _mm_cvttpd_epi32(ewrt);
1053             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1054             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1055             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1056             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1061
1062             /* Calculate temporary vectorial force */
1063             tx               = _mm_mul_pd(fscal,dx10);
1064             ty               = _mm_mul_pd(fscal,dy10);
1065             tz               = _mm_mul_pd(fscal,dz10);
1066
1067             /* Update vectorial force */
1068             fix1             = _mm_add_pd(fix1,tx);
1069             fiy1             = _mm_add_pd(fiy1,ty);
1070             fiz1             = _mm_add_pd(fiz1,tz);
1071
1072             fjx0             = _mm_add_pd(fjx0,tx);
1073             fjy0             = _mm_add_pd(fjy0,ty);
1074             fjz0             = _mm_add_pd(fjz0,tz);
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             r20              = _mm_mul_pd(rsq20,rinv20);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq20             = _mm_mul_pd(iq2,jq0);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088             ewrt             = _mm_mul_pd(r20,ewtabscale);
1089             ewitab           = _mm_cvttpd_epi32(ewrt);
1090             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1091             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1092             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm_mul_pd(fscal,dx20);
1101             ty               = _mm_mul_pd(fscal,dy20);
1102             tz               = _mm_mul_pd(fscal,dz20);
1103
1104             /* Update vectorial force */
1105             fix2             = _mm_add_pd(fix2,tx);
1106             fiy2             = _mm_add_pd(fiy2,ty);
1107             fiz2             = _mm_add_pd(fiz2,tz);
1108
1109             fjx0             = _mm_add_pd(fjx0,tx);
1110             fjy0             = _mm_add_pd(fjy0,ty);
1111             fjz0             = _mm_add_pd(fjz0,tz);
1112
1113             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1114
1115             /* Inner loop uses 134 flops */
1116         }
1117
1118         /* End of innermost loop */
1119
1120         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1121                                               f+i_coord_offset,fshift+i_shift_offset);
1122
1123         /* Increment number of inner iterations */
1124         inneriter                  += j_index_end - j_index_start;
1125
1126         /* Outer loop uses 18 flops */
1127     }
1128
1129     /* Increment number of outer iterations */
1130     outeriter        += nri;
1131
1132     /* Update outer/inner flops */
1133
1134     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1135 }